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To elucidate the genetic architecture of amyotrophic lateral 
sclerosis (ALS) and find associated loci, we assembled a  
custom imputation reference panel from whole-genome-
sequenced patients with ALS and matched controls (n = 1,861). 
Through imputation and mixed-model association analysis in 
12,577 cases and 23,475 controls, combined with 2,579 cases 
and 2,767 controls in an independent replication cohort, we 
fine-mapped a new risk locus on chromosome 21 and identified 
C21orf2 as a gene associated with ALS risk. In addition, we 
identified MOBP and SCFD1 as new associated risk loci.  
We established evidence of ALS being a complex genetic trait 
with a polygenic architecture. Furthermore, we estimated  
the SNP-based heritability at 8.5%, with a distinct and 
important role for low-frequency variants (frequency 1–10%). 
This study motivates the interrogation of larger samples  
with full genome coverage to identify rare causal variants  
that underpin ALS risk.

ALS is a fatal neurodegenerative disease that affects 1 in 400 people, 
with death occurring within 3 to 5 years of the onset of symptoms1. 
Twin-based studies estimate heritability to be around 65%, and 5–10% 
of patients with ALS have a positive family history1,2. Both of these 
features are indicative of an important genetic component in ALS 
etiology. Following initial discovery of a risk-associated C9orf72 locus 
in ALS genome-wide association studies (GWAS)3–5, identification of 
a pathogenic hexanucleotide-repeat expansion in this locus revolu-
tionized the field of ALS genetics and biology6,7. The majority of ALS 
heritability, however, remains unexplained, and only two additional 
risk loci have since been identified robustly3,8.

To discover new genetic risk loci and elucidate the genetic archi-
tecture of ALS, we genotyped 7,763 new cases and 4,669 controls and 
additionally collected genotype data from published GWAS of ALS. In 
total, we analyzed 14,791 cases and 26,898 controls from 41 cohorts 
(Supplementary Table 1 and Supplementary Note). We combined 
these cohorts on the basis of genotyping platform and nationality to form 
27 case–control strata. In total, 12,577 cases and 23,475 controls passed 
quality control (Online Methods and Supplementary Tables 2–5).

For imputation purposes, we obtained high-coverage (~43.7×) 
whole-genome sequencing data from 1,246 patients with ALS and 615 
controls from the Netherlands (Online Methods and Supplementary 
Fig. 1). After quality control, we constructed a reference panel including  

18,741,510 single-nucleotide variants (SNVs). Imputing this cus-
tom reference panel into Dutch ALS cases considerably increased 
the imputation accuracy for low-frequency variants (minor allele  
frequency (MAF) = 0.5–10%) in comparison to commonly used  
reference panels from 1000 Genomes Project Phase 1 (ref. 9) and 
Genome of the Netherlands10 (Fig. 1a). Improvement was also 
observed when imputing into ALS cases from the UK (Fig. 1b). To 
benefit from the global diversity of haplotypes, the custom and 1000 
Genomes Project panels were combined, which further improved 
imputation. Given these results, we used the merged reference panel 
to impute all strata in our study.

In total, we imputed 8,697,640 variants passing quality control 
into the 27 strata and tested the strata separately for association with 
ALS risk by logistic regression. We then included the results in an 
inverse-variance-weighted, fixed-effects meta-analysis, which identi-
fied four loci associated at genome-wide significance (P < 5 × 10−8) 
(Fig. 2a). The previously reported C9orf72 (rs3849943)3–5,8, UNC13A 
(rs12608932)3,5 and SARM1 (rs35714695)8 loci all reached genome-
wide significance, as did a new association for a nonsynonymous 
variant in C21orf2 (rs75087725, P = 8.7 × 10−11; Supplementary 
Tables 6–10). This variant was present on only 10 haplotypes in the 
1000 Genomes Project reference panel (MAF = 1.3%), whereas it was 
present on 62 haplotypes in our custom reference panel (MAF = 1.7%). 
As a result, more strata passed quality control for this variant by pass-
ing the allele frequency threshold of 1% (Supplementary Table 11). 
This result demonstrates the benefit of the merged reference panel 
with ALS-specific content, which improved imputation and resulted 
in the identification of a genome-wide significant association.

Linear mixed models (LMMs) can improve power while controlling 
for sample structure11, which would be particularly important in our 
study that included a large number of imperfectly balanced strata.  
Even though LMM analysis for ascertained case–control data poten-
tially results in a small loss of power in comparison to meta-analysis11, 
we judged the advantage of combining all strata while controlling the 
false positive rate to be more important than this potential loss and 
therefore jointly analyzed all strata in an LMM to identify additional 
risk loci. There was no overall inflation of the LMM test statistics in 
comparison to the meta-analysis test statistics (Supplementary Fig. 2).  
We observed modest inflation of test statistics in the quantile– 
quantile plot (λGC = 1.12, λ1,000 = 1.01; Supplementary Fig. 3).  
LD score regression yielded an intercept of 1.10 (standard error  
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of 7.8 × 10−3). Although an LD score regression intercept higher 
than 1.0 can indicate the presence of residual population stratifica-
tion, which is fully corrected for in an LMM, this can also reflect a 
distinct genetic architecture where most causal variants are rare or a 
noninfinitesimal architecture12. The LMM identified all four genome-
wide-significant associations from the meta-analysis. Furthermore, 
three additional loci—MOBP at 3p22.1 (rs616147), SCFD1 at 14q12 
(rs10139154) and a long noncoding RNA at 8p23.2 (rs7813314)—
were associated at genome-wide significance (Fig. 2b, Table 1 and 
Supplementary Tables 12–14). SNPs in the MOBP locus have been 
reported to be associated in a GWAS on progressive supranuclear palsy 
(PSP)13 and to act as a modifier for survival in frontotemporal demen-
tia (FTD)14. The putative pleiotropic effects of variants in this locus 
suggest that ALS, FTD and PSP share a neurodegenerative pathway. 
We also found that rs74654358 at 12q14.2 in the TBK1 gene approxi-
mated genome-wide significance (MAF = 4.9%, odds ratio (OR) = 1.21 
for the A allele, P = 6.6 × 10−8). This gene was recently identified as an 
ALS risk gene through exome sequencing15,16.

In the replication phase, we genotyped the newly discovered  
associated SNPs in nine independent replication cohorts, totaling 
2,579 cases and 2,767 controls. In these cohorts, we replicated the 
signals for the C21orf2, MOBP and SCFD1 loci, with lower P values  
in the combined analysis than in the discovery phase (combined  

P value = 3.08 × 10−10, 4.19 × 10−10 and 3.45 × 10−8 for rs75087725, 
rs616147 and rs10139154, respectively; Table 1 and Supplementary 
Fig. 4)17. The combined signal for rs7813314 was less significant 
because the effects for the discovery and replication phases were in 
opposite directions, indicating non-replication. Although replication 
yielded an effect estimate for rs10139154 similar to that obtained  
in the discovery phase, this effect was not statistically significant  
(P = 0.09) in the replication phase alone. This lack of significance 
reflects the limited sample size of our replication phase, a feature that 
is inherent to studies of ALS because of its low prevalence. Even larger 
sample sizes are warranted to replicate this signal robustly.

There was no evidence of residual association in each locus  
after conditioning on the top SNP, indicating that all the risk loci are 
independent signals. Apart from the C9orf72, UNC13A and SARM1 
loci, we found no evidence of associations previously described in 
smaller GWAS (Supplementary Table 15).

The association of the low-frequency nonsynonymous SNP in 
C21orf2 suggested that this gene could be directly involved in ALS 
risk. Indeed, we found no evidence that linkage disequilibrium  
(LD) between this SNP and sequenced variants beyond the boundaries  
of C21orf2 explained the association of this locus (Supplementary 
Fig. 5). In addition, we investigated the burden of rare coding muta-
tions in C21orf2 in a set of whole-genome-sequenced cases (n = 2,562) 
and controls (n = 1,138). After quality control, these variants were 
tested for association using pooled association tests for rare variants 
and applying correction for population structure (tests T5 and T1 
for alleles with 5% and 1% frequency, respectively; Supplementary 
Note). This approach demonstrated an excess of nonsynonymous and 
loss-of-function mutations in C21orf2 among ALS cases that per-
sisted after conditioning on rs75087725 (PT5 = 9.2 × 10−5, PT1 = 0.01; 
Supplementary Fig. 6), further supporting the notion that C21orf2 
contributes to ALS risk.

In an effort to fine-map the other loci to pinpoint susceptibility genes, 
we searched for SNPs in these loci with cis expression quantitative  
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a bFigure 1  Comparison of imputation accuracy. (a,b) Aggregate r2 values 
between imputed and sequenced genotypes on chromosome 20 are shown 
when using different reference panels for imputation. Allele frequencies 
were calculated from the Dutch samples included in the Genome of 
the Netherlands (GoNL) cohort. The highest imputation accuracy was 
achieved when imputing from the merged custom and 1000 Genomes 
Project (1000GP) panel. The difference in accuracy was most pronounced 
for low-frequency alleles (frequency 0.5–10%) in ALS cases from both the 
Netherlands (a) and the UK (b).
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b Figure 2  Meta-analysis and LMM associations. (a) Manhattan plot for  
the meta-analysis results. This approach yielded four genome-
wide-significant associations. The associated SNP in C21orf2 is a 
nonsynonymous variant not found to be associated in previous GWAS. 
(b) Manhattan plot for the LMM results. This analysis yielded three loci 
in addition to those identified by meta-analysis with associations that 
reached genome-wide significance (MOBP, LOC101927815 and SCFD1). 
The association for SNPs in the previously identified ALS risk gene TBK1 
approached genome-wide significance (P = 6.6 × 10−8).  
As the C21orf2 SNP was removed from a Swedish stratum because 
of MAF <1%, this SNP was tested separately, but it is presented here 
together with all SNPs with MAF >1% in all strata. LOC101927815 
is shown in gray because the association for this locus could not be 
replicated. Loci are labeled by the name of the nearest gene. The dotted 
lines correspond to the significance threshold of P = 5 × 10–8.
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trait locus (cis-eQTL) effects observed in brain and other tissues 
(Supplementary Table 16 and Supplementary Note)18. We found 
overlap with previously identified brain cis-eQTLs for five regions 
(Supplementary Fig. 7, Supplementary Table 17 and Supplementary 
Data Set). In the C9orf72 locus, we found that proxies of rs3849943  
(LD r2 = 0.21–0.56) only had a brain cis-eQTL effect on C9orf72 
(minimal P = 5.27 × 10−7), which harbors the hexanucleotide-repeat 
expansion that drives this GWAS signal. Additionally, we found that 
rs12608932 and its proxies in the UNC13A locus had an exon-level 
cis-eQTL effect on KCNN1 in frontal cortex (P = 1.15 × 10−3)19. 
Another overlap was observed in the SARM1 locus where rs35714695 
and its proxies had the strongest exon-level cis-eQTL effect on 
POLDIP2 in multiple brain tissues (P = 2.32 × 10−3). In the SCFD1 
locus, rs10139154 and its proxies had a cis-eQTL effect on SCFD1 in  
cerebellar tissue (P = 7.71 × 10−4). For the MOBP locus, rs1768208 and 
its proxies had a cis-eQTL effect on RPSA (P = 7.71 × 10−4).

To describe the genetic architecture of ALS, we generated polygenic 
scores, which can be used to predict phenotypes for traits with a poly-
genic architecture20. We calculated SNP effects using an LMM in 18 of 
the 27 strata and subsequently assessed predictive ability in the other 
9 independent strata. This analysis showed that a significant albeit 
modest proportion of the phenotypic variance could be explained 
by all SNPs (Nagelkerke r2 = 0.44%, r2 = 0.15% on the liability scale,  
P = 2.7 × 10−10; Supplementary Fig. 8). This finding adds to the exist-
ing evidence that ALS is a complex genetic trait with a polygenic archi-
tecture. To further quantify the contribution of common SNPs to ALS 
risk, we estimated SNP-based heritability using three approaches, all 
assuming a population baseline risk of 0.25% (ref. 21). GCTA-REML 
estimated the SNP-based heritability at 8.5% (s.e.m. = 0.5%). Haseman–
Elston regression yielded a very similar estimate of 7.9%, and LD 
score regression estimated the SNP-based heritability at 8.2% (s.e.m. 
= 0.5%). The heritability estimates for each chromosome were signifi-
cantly correlated with chromosome length (r2 = 0.46, P = 4.9 × 10−4;  
Fig. 3a), again indicative of a polygenic architecture in ALS.

We found that the genome-wide-significant loci only explained 0.2% 
of heritability, and the bulk of the heritability (8.3%, s.e.m. = 0.3%)  
was thus captured by SNPs with associations below genome-wide 
significance. This finding implies that many genetic risk variants have 
yet to be discovered. Understanding where these unidentified risk 
variants remain across the allele frequency spectrum will inform the 

design of future studies to identify these variants. We therefore esti-
mated heritability partitioned by MAF. Furthermore, we contrasted 
these results with those for common polygenic traits studied in GWAS 
such as schizophrenia. We observed a clear trend indicating that most 
variance is explained by low-frequency SNPs (Fig. 3b). Exclusion of 
the C9orf72 locus, which harbors the rare pathogenic repeat expan-
sion, and the other genome-wide-significant loci did not affect this 
trend (Supplementary Fig. 9). This architecture is different from that 
expected for common polygenic traits and reflects a polygenic rare 
variant architecture observed in simulations22.

To gain better insight into the biological pathways that explain  
the associated loci found in this study, we looked for enriched 
pathways using DEPICT23. This analysis identified SNAP recep-
tor (SNARE) activity as the only enriched category (false discovery  
rate (FDR) < 0.05; Supplementary Fig. 10). SNARE complexes have 
a central role in neurotransmitter release and synaptic function24, 
which are both perturbed in ALS25.

Although the biological role of C21orf2, a conserved leucine-rich-
repeat protein, remains poorly characterized, this protein is part of 
the ciliome and is required for the formation and/or maintenance 
of primary cilia26. Defects in primary cilia are associated with vari-
ous neurological disorders, and cilia numbers are decreased in mice 
expressing the Gly93Ala mutant of human SOD1, a well-characterized 
ALS model27. C21orf2 has also been localized to mitochondria in 
immune cells28 and is part of the interactome of the protein prod-
uct of NEK1, which has previously been associated with ALS15. Both 
proteins seem to be involved in DNA repair mechanisms29. Although 
future studies are needed to dissect the function of C21orf2 in ALS 
pathophysiology, we speculate that defects in C21orf2 may lead to 
primary cilium and/or mitochondrial dysfunction or inefficient DNA 
repair and thereby result in adult-onset disease. The other associated 
loci will require more extensive studies to fine-map causal variants. 
SARM1 has been suggested to be a susceptibility gene for ALS, mainly 
because of its role in Wallerian degeneration and its interaction with 
UNC13A8,30. Although these are indeed interesting observations, the 
brain cis-eQTL effect for SNPs in this locus on POLDIP2 suggests 

Table 1  Discovery and replication of new genome-wide significant loci
Discovery Replication Combined

SNP MAFcases MAFcontrols OR Pmeta PLMM MAFcases MAFcontrols OR P Pcombined I 2

rs75087725 0.02 0.01 1.45 8.65 × 10−11 2.65 × 10−9 0.02 0.01 1.65 3.89 × 10−3 3.08 × 10−10 0.00*

rs616147 0.30 0.28 1.10 4.14 × 10−5 1.43 × 10−8 0.31 0.28 1.13 2.35 × 10−3 4.19 × 10−10 0.00*

rs10139154 0.34 0.31 1.09 1.92 × 10−5 4.95 × 10−8 0.33 0.31 1.06 9.55 × 10−2 3.45 × 10−8 0.05*

rs7813314 0.09 0.10 0.87 7.46 × 10−7 3.14 × 10−8 0.12 0.10 1.17 7.75 × 10−3 1.05 × 10−5 0.80**

Genome-wide-significant loci from the discovery phase including 12,557 cases and 23,475 controls were directly genotyped and tested for association in the replication phase 
including 2,579 cases and 2,767 controls. The three top associated SNPs in the MOBP (rs616147), SCFD1 (rs10139154) and C21orf2 (rs75087725) loci replicated with  
associations in the same direction as in the discovery phase and an association in the combined analysis that exceeded that in the discovery phase. Cochrane’s Q test, *P > 0.1,  
**P = 4.0 × 10−6. MAF, minor allele frequency; OR, odds ratio, Pmeta, meta-analysis P value; PLMM, linear mixed-model P value; Pcombined, P value from meta-analysis of the  
associations in the discovery and replication phase.
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Figure 3  Partitioned heritability. (a) Heritability estimates for each 
chromosome were significantly correlated with chromosome length  
(P = 4.9 × 10−4). (b) For ALS, there was a clear trend where more 
heritability was explained by the low-frequency alleles. This effect was 
still observed when, for a fair comparison between ALS and a previous 
study partitioning heritability for schizophrenia (SCZ) using identical 
methods22, SNPs present in HapMap 3 (HM3) were included. Error bars 
correspond to standard errors.
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that POLDIP2 and not SARM1 could in fact be the causal gene in 
this locus. Similarly, KCNN1, which encodes a neuronal potassium 
channel involved in neuronal excitability, could be the causal gene 
either through a direct eQTL effect or rare variants in LD with the 
associated SNP in UNC13A.

In conclusion, we have identified a key role for rare variation in 
ALS and discovered SNPs in new complex loci. Our study therefore 
informs future study design in ALS genetics, promoting the combina-
tion of larger sample sizes, full genome coverage and targeted genome 
editing experiments, leveraged together to fine-map new loci, identify 
rare causal variants and thereby elucidate the biology of ALS.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The GWAS summary statistics and sequenced vari-
ants are publicly available through the Project MinE data browser at 
http://databrowser.projectmine.com/.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
The software packages used, their version, web source and references are 
described in Supplementary Table 18.

GWAS discovery phase and quality control. Details on the acquired genotype 
data from previously published GWAS are described in Supplementary Table 1.  
Methods for case and control ascertainment for each cohort are described 
in the Supplementary Note. All cases and controls gave written informed 
consent, and the relevant institutional review boards approved this study. To 
obtain genotype data for newly genotyped individuals, genomic DNA was 
hybridized to the Illumina OmniExpress array according to the manufactur-
er’s protocol. Subsequent quality control included (i) removing low-quality 
SNPs and individuals from each cohort, (ii) combining unbalanced cohorts on 
the basis of nationality and genotyping platform to form case–control strata,  
(iii) removing low-quality SNPs, related individuals and population outliers per 
stratum and (iv) calculating genomic inflation factors per stratum. More details 
are described in the Supplementary Note and Supplementary Figure 11.  
The number of SNPs and individuals failing each quality control step per 
cohort and stratum is displayed in Supplementary Tables 2–5.

Whole-genome sequencing (custom reference panel). Individuals were 
whole-genome sequenced on the Illumina HiSeq 2500 platform using PCR-free 
library preparation and 100-bp paired-end sequencing, yielding a minimum 
of 35× coverage. Reads were aligned to the hg19 human genome build, and 
after variant calling (Isaac variant caller) additional SNV and sample quality 
control was performed (Supplementary Fig. 12 and Supplementary Note). 
Individuals in our custom reference panel were also included in the GWAS in 
strata sNL2, sNL3 and sNL4.

Merging reference panels. All high-quality calls in the custom reference 
panel were phased using SHAPEIT2 software. After checking strand and allele 
inconsistencies, both the 1000 Genomes Project reference panel (release 05-
21-2011)31 and custom reference panel were imputed up to the union of their 
variants as described previously32. Variants with inconsistent allele frequencies 
between the two panels were removed.

Imputation accuracy performance. To compare the imputation accuracy 
between different reference panels, 109 unrelated ALS cases of Dutch ancestry 
sequenced by Complete Genomics and 67 ALS cases from the UK sequenced by 
Illumina were selected as a test panel. All variants not present on the Illumina 
Omni1M array were masked, and the SNVs on chromosome 20 were subse-
quently imputed back using four different reference panels (1000 Genomes 
Project, GoNL, custom panel and merged panel). Concordance between the 
imputed alleles and sequenced alleles was assessed in each allele frequency bin 
where allele frequencies were calculated from the Dutch samples included in 
the Genome of the Netherlands cohort.

GWAS imputation. Prephasing was performed for each stratum using 
SHAPEIT2 with the 1000 Genomes Project phase 1 (release 05-21-2011) hap-
lotypes31 as a reference panel. Subsequently, strata were imputed up to the 
merged reference panel in 5-Mb chunks using IMPUTE2. Imputed variants 
with a MAF <1% or INFO score <0.3 were excluded from further analysis. 
Variants with allele frequency differences between strata, defined as deviating 
by >10 s.d. from the normalized mean allele frequency difference between 
those strata and an absolute difference >5%, were excluded because they are 
likely to represent sequencing or genotyping artifacts. Imputation concordance 
scores for cases and controls were compared to assess biases in imputation 
accuracy (Supplementary Table 19).

Meta-analysis. Logistic regression was performed on imputed genotype dos-
ages under an additive model using SNPTEST software. On the basis of scree 
plots, one to four principal components were included per stratum. These 
results were then combined in an inverse-variance-weighted, fixed-effect meta-
analysis using METAL. No marked heterogeneity across strata was observed 
as the Cochrane’s Q test statistics did not deviate from the null distribution  
(λ = 0.96). Therefore, no SNPs were removed owing to excessive heterogeneity. 

The genomic inflation factor was calculated, and the quantile–quantile plot is 
provided in Supplementary Figure 3a.

Linear mixed model. All strata were combined including SNPs that passed 
quality control in every stratum. Subsequently, genetic relationship matri-
ces (GRMs) were calculated for each chromosome including all SNPs using 
the Genome-Wide Complex Trait Analysis (GCTA) software package. Each 
SNP was then tested in an LMM including a GRM composed of all chromo-
somes excluding the target chromosome (leave one chromosome out, LOCO).  
The genomic inflation factor was calculated, and the quantile–quantile plot is 
provided as Supplementary Figure 3b.

Replication. For the replication phase, independent ALS cases and controls 
from Australia, Belgium, France, Germany, Ireland, Italy, the Netherlands  
and Turkey that were not used in the discovery phase were included. A pre-
designed TaqMan genotyping assay was used to replicate rs75087725 and 
rs616147. Sanger sequencing was performed to replicate rs10139154 and 
rs7813314 (Supplementary Table 20 and Supplementary Note). All genotypes 
were tested in a logistic regression per country and subsequently underwent 
meta-analysis.

Rare variant analysis in C21orf2. The burden of nonsynonymous rare  
variants in C21orf2 was assessed in whole-genome sequencing data obtained 
from ALS cases and controls from the Netherlands, Belgium, Ireland, the UK 
and the United States. After quality control, the burden of nonsynonymous 
and loss-of-function mutations in C21orf2 was tested for association in each 
country and meta-analysis was subsequently performed. More details are  
provided in the Supplementary Note and Supplementary Figure 13.

Polygenic risk scores. To assess the predictive accuracy of polygenic risk 
scores in an independent data set, SNP weights were assigned on the basis 
of the LMM (GCTA-LOCO) analysis in 18 of 27 strata. SNPs in high LD  
(r2 >0.5) in a 250-kb window were clumped. Subsequently, polygenic risk 
scores for cases and controls in the nine independent strata were calculated  
on the basis of their genotype dosages using PLINK v1.9. To obtain the 
Nagelkerke r2 and corresponding P values, these scores were then regressed 
on their true phenotype in a logistic regression where (on the basis of  
scree plots) the first three principal components, sex and stratum were 
included as covariates.

SNP-based heritability estimates. GCTA-REML. GRMs were calculated 
using GCTA software including genotype dosages passing quality control  
in all strata. On the basis of the diagonal of the GRM, individuals represent-
ing subpopulations that contained an abundance of rare alleles (diagonal  
values mean ±2 s.d.) were removed (Supplementary Fig. 14a). Pairs 
where relatedness (off-diagonal) exceeded 0.05 were removed as  
well (Supplementary Fig. 14b). The eigenvectors for the first ten princi-
pal components were included as fixed effects to account for more subtle  
population structure. The prevalence of ALS was defined as the lifetime 
morbid risk for ALS (that is, 1 in 400)21. To estimate the SNP-based her-
itability for all non-genome-wide-significant SNPs, the genotypes for the 
SNPs reaching genome-wide significance were modeled as fixed effects. The 
variance explained by the GRM therefore reflects the SNP-based heritability  
of all non-genome-wide-significant SNPs. SNP-based heritability parti-
tioned by chromosome or MAF was calculated by including multiple GRMs,  
calculated on SNPs from each chromosome or in the respective frequency 
bin, in one model.

Haseman–Elston regression. The phenotype correlation–genotype correla-
tion (PCGC) regression software package was used to calculate heritability on 
the basis of the Haseman–Elston regression including the eigenvectors for the 
first ten principal components as covariates. The prevalence was again defined 
as the lifetime morbid risk (1 in 400).

LD score regression. Summary statistics from GCTA-LOCO and LD  
scores calculated from European individuals in 1000 Genomes Project  
were used for LD score regression. Associated SNPs (P < 5 × 10−8) and  
variants not in HapMap 3 were excluded. Considering adequate correction  
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for population structure and distant relatedness in the LMM, the intercept  
was constrained to 1.0 (ref. 12).

Biological pathway analysis (DEPICT). Functional interpretation of associ-
ated GWAS loci was carried out using DEPICT, using locus definition based 
on 1000 Genomes Project Phase 1 data. This method prioritizes genes in the 
affected loci and predicts involved pathways, biological processes and tissues, 
using gene co-regulation data from 77,840 expression arrays. Three separate 
analyses were performed for GWAS loci reaching P = 1 × 10−4, P = 1 × 10−5 or 

P = 1 × 10−6. One thousand permutations were used for adjusting the nominal 
enrichment P values for biases and additionally 200 permutations were used 
for FDR calculation.

31.	Delaneau, O. et al. Integrating sequence and array data to create an improved  
1000 Genomes Project haplotype reference panel. Nat. Commun. 5, 3934 
(2014).

32.	Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of 
genomes. G3 (Bethesda) 1, 457–470 (2011).
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