Microprocessors and Microsystems 47 (2016) 287-302

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Fitting processor architectures for measurement-based probabilistic
timing analysis

@ CrossMark

Leonidas Kosmidis*P, Eduardo Quifiones®, Jaume Abella®* Tullio Vardanega®,
Carles Hernandez", Andrea Gianarro?, lan Broster€, Francisco]. Cazorla®f

aUniversitat Politecnica de Catalunya, Barcelona, Spain

b Barcelona Supercomputing Center, Barcelona, Spain

¢ University of Padova, Padova, Italy

d Cobham Gaisler, Gotemburg, Sweden

¢ Rapita Systems Ltd, York, England

fSpanish National Research Council (IIA-CSIC), Barcelona, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 3 January 2016
Revised 21 June 2016
Accepted 18 July 2016
Available online 20 July 2016

Keywords:

Worst-case execution time
Processor architecture
Cache memories
Probabilistic analysis

Time randomization

The pressing market demand for competitive performance/cost ratios compels Critical Real-Time Embed-
ded Systems industry to employ feature-rich hardware. The ensuing rise in hardware complexity however
makes worst-case execution time (WCET) analysis of software programs - which is often required, espe-
cially for programs at the highest levels of integrity - an even harder challenge. State-of-the-art WCET
analysis techniques are hampered by the soaring cost and complexity of obtaining accurate knowledge of
the internal operation of advanced processors and the difficulty of relating data obtained from measure-
ment observations with reliable worst-case behaviour. This frustrating conundrum calls for novel solu-
tions, with low intrusiveness on development practice. Measurement-Based Probabilistic Timing Analysis
(MBPTA) techniques offer the opportunity to simultaneously reduce the cost of acquiring the knowledge
needed for computing reliable WCET bounds and gain increased confidence in the representativeness
of measurement observations. This paper describes the changes required in the design of several high-

performance features - massively used in modern processors - to meet MBPTA requirements.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The market for Critical Real-Time Embedded Systems (CRTES),
which includes the automotive and avionics sectors, is experienc-
ing an unprecedented growth [1]. While crucial to keeping compet-
itive advantage, the inclusion of increasingly sophisticated value-
added functions, such as for example Advanced Driver Assistance
Systems, causes CRTES makers to continually seek higher guar-
anteed computational performance while striving to contain cost
and power budget. This goal can only realistically be achieved by
adding complex and powerful hardware accelerator features such
as caches or multicore designs.!

However, the use of aggressive performance-enhancing hard-
ware features may highly complicate the computation of reli-

* Corresponding author. Fax: +34 934137721.
E-mail address: jaume.abella@bsc.es (J. Abella).
1 This trend deflects from prior practice in CRTES, where processors used to be
in-order and cacheless, to simplify verification of timing behaviour.

http://dx.doi.org/10.1016/j.micpro.2016.07.014
0141-9331/© 2016 Elsevier B.V. All rights reserved.

able and tight timing bounds.? Worst-Case Execution Time (WCET)
analysis is an integral step of verification for real-time systems in
general, and for CRTES in particular. One common use of WCET
bounds is for schedulability analysis to ascertain whether applica-
tion tasks can complete within their assigned deadlines under all
conditions.

Numerous techniques exist for performing WCET analysis, rang-
ing from measurement-based to static analysis, via hybrid variants
that use elements of both [2]. Measurement-based techniques rely
on user’s ability to design stressful tests in which the application
under test is run in conditions similar to the worst ones that can
arise during operation. Static timing analysis is challenged by the
difficulty to model accurately the timing of complex hardware de-
signs, and also by the increasing amount of information needed to
feed the models to estimate the WCET. Finally, hybrid approaches
alleviate some of the problems of those techniques to handle com-

2 In the context of timing analysis, a reliable bound is a bound that can be sup-
ported by strong arguments and proofs.

http://dx.doi.org/10.1016/j.micpro.2016.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.07.014&domain=pdf
mailto:jaume.abella@bsc.es
http://dx.doi.org/10.1016/j.micpro.2016.07.014

288 L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302

plex hardware, but hybrid approaches are subject to similar limita-
tions.

The availability of more powerful hardware and the quest for
more functional value per unit of product also prompt CRTES in-
dustry to consider adopting mixed-criticality design solutions for
their systems. From the timing perspective, which is the focus
of this paper, the challenge with mixed-criticality systems lays in
the need for solutions to ensure strict temporal isolation between
programs assigned to different criticality levels, so that their be-
haviour can be deemed composable in the time dimension.? In the
absence of effective means to abate the pessimism of WCET anal-
ysis, however, mixed-criticality solutions that achieve time isola-
tion by fencing budget allowances, risks incurring massive over-
provisioning, which defeats the purpose of combining systems to-
gether.

Probabilistic techniques may greatly aid on all of those fronts.
In particular, with Measurement-Based Probabilistic Timing Analy-
sis (MBPTA) methods [3-6], the execution time of the application
can be accurately modelled - at some level of execution granu-
larity - by a probability distribution. MBPTA seeks to determine
WCET estimates for arbitrarily low probabilities of exceedance,
termed probabilistic WCET or pWCET. As a consequence, there is
some residual risk (in the form of an exceedance probability) be-
yond which it cannot be proven that a pWCET bound cannot be ex-
ceeded. However, this residual risk is upper bounded with a given
probability, which can be determined at a level low enough to suit
the needs of system design in the application domain. For example,
the residual risk can stay in the region of 10-° per hour of opera-
tion, largely below the acceptable probability of failure in certified
systems.

Under MBPTA, at a given granularity of execution, the re-
sponse time of every individual execution component at that level
(e.g., an instruction) is assigned a distinct probability of occur-
rence. This trait - which shall not be confused with the prob-
ability of that component being executed in a run of the pro-
gram - is described by a probabilistic Execution Time Profile (ETP),
expressed by the pair: <timing vector; probability vector>. The
timing vector in the ETP enumerates all its possible response
times. For each response time in the timing vector, the proba-
bility vector lists the probability of occurrence of that response
time in an instance of execution. Hence, for execution component

¢; we have ETP(C)) = (?,—,5,-) where 6= (¢1,62,....t") and pi=

(A B
(p!. p?.. ..,p?’"), with Z?’;l p?]j = 1. At the program level, MBPTA
requires that the ETP for the program exercised during analysis
matches or upper-bounds program’s ETP during operation.

The processor architecture is instrumental in ensuring that in-
dividual instructions have an associated ETP. As this guarantee in
turn is a crucial enabler to a sound and effective application of
MBPTA, the processor architecture is the level of execution granu-
larity on which we focus in this work.

Contribution. Within the context of the FP7 PROXIMA project
[7] we describe the architecture features that a processor should
possess to be amenable by construction to the use of MBPTA. We
term this quality MBPTA compliance. In presenting our case, we of-
fer insight on the costs that may be incurred in actual implemen-
tation of a MBPTA-compliant processor. To that end, we categorise
processor resources according to their timing behaviour and de-
tail how they should be designed for use in a MBPTA-compliant
processor. Without loss of generality, we consider the inner oper-
ation of the processor to employ a number of passive resources

3 Time composability is had when the timing behaviour of an individual software
component does not change in the face of composition when the system is inte-
grated, and so, the timing analysis performed in isolation remains valid at system
integration.

(e.g., caches, buffers, buses, etc.). We assume each processor in-
struction to use some of those resources in a given order, whether
in sequence or in parallel. We design processor resources so that
each of them can be assigned a given ETP. To achieve this for all
resources, we use time randomisation in some, actually very few, of
them. Resources that are not time randomised must be assigned a
local upper bound to their response time that can be safely com-
posed. We assume a time anomaly free baseline architecture.

The remainder of this paper is organised as follows.
Section 2 introduces PROXIMA and contextualises this work.
Section 3 presents the requirements that MBPTA places on
processor hardware. Section 4 classifies hardware resources in
a taxonomy specifically related with MBPTA. Section 5 presents
software-only solutions that could be applied to make commercial-
off-the-shelf processor hardware fit for MBPTA. Section 6 presents
a demonstrative implementation of a processor architecture, pur-
posely designed for compliance with MBPTA. Section 7 surveys
related work. Section 8 draws some conclusions and outlines the
future of this line of work.

2. Context within PROXIMA

This work has been performed within the scope of PROX-
IMA [7], an Integrated Project (IP) of the Seventh framework pro-
gramme for research and technological development (FP7). PROX-
IMA objectives include providing a complete toolchain enabling
low-cost timing verification for systems based on multicore and
manycore processors implementing critical real-time functionali-
ties. In particular, PROXIMA toolchain includes the following main
elements:

» Hardware and software platforms amenable for MBPTA. One of
the key elements of the toolchain is a hardware platform pro-
viding the timing properties required by MBPTA to facilitate ob-
taining reliable and tight pWCET estimates. This hardware plat-
form has been implemented in a FPGA prototype used in the
Space domain. Alternative software-only solutions have been
developed to enable MBPTA on top of commercial off-the-shelf
(COTS) processors that include a non-MBPTA-compliant version
of the Space prototype, an Infineon AURIX T277 and a Freescale
P4080 processors. MBPTA compliance in future manycore pro-
cessors has also been investigated by means of architectural
simulators.

MBPTA-compliant real-time operating systems (RTOS). The RTOS
needs to be enhanced with features so that its contribution to
the execution time of the analysed tasks is made constant, and
hence, time-composable, and its impact on the hardware and
software state is neutral w.r.t. the properties needed to attain
MBPTA compliance, thus being transparent for the timing anal-
ysis process. RTOS features have been implemented as part of
PikeOS, RTEMS-SMP, ERIKA and some research-oriented RTOS.
Timing analysis tools. Appropriate methods for the estimation of
PWCET are required to account for the timing behaviour of the
underlying hardware/software platform. They must be compat-
ible with the tracing methods in place, and capable of provid-
ing pWCET estimates that hold valid in front of the different
sources of execution time variation that can be exercised dur-
ing operation such as hardware/software initial state, input val-
ues, execution path traversals, etc. Some of these methods have
been implemented as part of RapiTime commercial toolchain
whereas others will remain as standalone tools.

These elements have been implemented by a set of industrial
and academic partners including hardware, RTOS and timing anal-
ysis tool vendors and related research institutions. Evaluation is
performed on a number of case studies from the avionics, space,

L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302 289

railway and automotive domains. The project finishes in September
2016, so most technologies have reached a high degree of maturity.

This paper reviews MBPTA-compliant hardware behaviour to
deliver the timing properties needed to estimate reliable and tight
PWCET. We also show how some of these goals can be achieved in
the absence of MBPTA-compliant hardware.

3. MBPTA requirements on hardware design
3.1. Taxonomy of timing analysis techniques

We differentiate three main timing analysis types, each of
which has a deterministic and probabilistic variant.

+ Measurement-based deterministic timing analysis (MBDTA)
techniques take advantage of the observation data obtained
from executing the programs of interest on the real proces-
sor hardware. Simple high-watermark techniques have been
used in industry for many years. They are usually coupled with
detailed analysis of the software structure that provides con-
fidence in exercising those worst-case paths or scenarios at
the application level that can arise during system operation.
To make safety allowances for the unknown (which the cog-
nizant associates with the difficulty of determining the hard-
ware worst case), an engineering margin is often added to the
computed bound. The intent of the margin is striking some
sound balance between pessimistic overkill and risk of under-
estimation. Determining a reliable and tight engineering mar-
gin is extremely difficult - if at all possible - especially when
the system may exhibit discontinuous changes in timing due
to unanticipated timing behaviour. The confidence had on the
WOCET estimate determined with MBDTA is, therefore, fully-
dependent on the ability of the end user to identify what be-
haviour needs to be triggered in the hardware and software to
observe the WCET that can occur during operation (or execu-
tion times close to it) and to produce program inputs that trig-
ger that behaviour. The increasing complexity of the hardware
(i.e. the use of cache hierarchies and multicores) is also a threat
for the scalability of this approach [8].

Static deterministic timing analysis (SDTA) techniques rely on
the construction of a cycle-accurate model of the processor
and an abstract representation of the application code. SDTA
searches the resulting state space for the worst case, with
constraint-based integer linear programming. Obviously, such
an analysis cannot carry forward all the possible states of ex-
ecution. Hence, conservative choices are made during the pro-
cess, thus trading a reduction in the state space for increased
pessimism [9-11]. SDTA has abundant need for information
about the timing specification of the processor hardware and
flow facts for the application. As the prediction must neces-
sarily err on the side of pessimism, any lack of information
about the timing behaviour of the object of analysis (e.g., the
address of a memory access needed to determine if execution
hits or misses in cache) or about processor timing behaviour
degrades the tightness of the WCET estimate. Further, the re-
sult of the analysis is as reliable as the input provided to it [8].
The rise in complexity of next-generation CRTES greatly exacer-
bates this problem: the volume of detailed knowledge needed
to construct a sufficiently accurate execution model as well as
the time, effort, cost and complexity entailed in acquiring that
information, challenge the adoption of SDTA for CRTES applica-
tions.

Hybrid techniques build upon MBDTA, but collect execution
time measurements at finer granularities such as, for instance,
per function, per basic block, etc. Then, they operate on those
measurements to account for unobserved behaviour. For in-

stance, RapiTime [12] creates a representation of the control
flow of the program and operates on the measurements ob-
tained for each of the elements in the program, to generate
measurements for unobserved execution paths. This approach
can lead to higher confidence than that for traditional MBDTA,
by inflating WCET estimates, and a lower effort/cost of use.
However its confidence still depends on the ability of the user
to make sound assertions on flow facts and to understand and
control numerous hardware-related aspects such as cache inter-
actions among programs and inter-task interference in the use
of hardware shared resources in multicores [8].

At the present state of the art, probabilistic timing analysis
(PTA) can be applied in either a static (SPTA) [5] or measurement-
based (MBPTA) [4] fashion: we refer the interested reader to those
works for details on PTA fundamentals. In this work we focus
on MBPTA only since it is more mature for industrial use than
SPTA [8].

MBPTA generates a probability distribution that describes the
maximum probability with which an instance of the program can
exceed its assigned budget. As illustrative example, Fig. 1(a) shows
the probability distribution function (PDF) of the execution times
of a (single-path) synthetic program on a MBPTA-compliant pro-
cessor architecture. From the PDF, one can build the cumulative
distribution function (CDF) and its complementary (1-CDF) ex-
ceedance function or pWCET, which tells the probability that the
execution time of one run of that program may exceed a given
threshold (see Fig. 1(b) and 1(c)). Using conventional means, for
a set of R runs, one could only derive an exceedance probability of
1/R at most. For smaller probabilities, techniques such as Extreme
Value Theory (EVT) [13] are needed: Fig. 1(d) illustrates the hypo-
thetical result of applying EVT to a collection of 1000 measurement
runs taken on a MBPTA-compliant processor. The dotted line rep-
resents the 1-CDF derived from the observed execution times. The
continuous line represents the projection obtained with EVT.

3.2. Requirements

MBPTA considers events resulting from the observation of end-
to-end measurement runs of the program, thus at coarser granu-
larity than processor instructions. MBPTA builds upon EVT [4,13] to
estimate pWCET. Yet MBPTA and EVT are not the same thing. We
clarify this by differentiating the requirements that MBPTA im-
poses due its use of EVT and other MBPTA requirements to satisfy
representativeness requirements.

+ Extreme Value Theory: The use of EVT requires that its in-
put, i.e. the observed execution times in our case, to be de-
scribed with independent and identically distributed (i.i.d.) ran-
dom variables. Two random variables are said to be indepen-
dent if they describe two events such that the occurrence of
one event does not have any impact on the occurrence of the
other event. Two random variables are said to be identically
distributed if they have the same probability distribution. Spe-
cific statistical tests can be used to check these properties on a
set of execution times, see Section 6.

It is worth noting that some authors have shown that inde-
pendence across observations is not strictly needed as long as
maxima are independent or the dependence across maxima is
weak [14,15]. However, in the rest of this paper we build upon
independent data since it is a by-product of MBPTA-compliant
platforms presented in this work.

Representativeness: The goal of MBPTA is to derive - from exe-
cution times obtained during analysis - WCET estimates that
hold valid during operation. However, the pWCET estimates
obtained with EVT stay valid under the execution conditions
considered at analysis. Those execution conditions include all

290 L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302

0,20
0,18
0,16
0,14
0,12
0,10
0,08
0,06
0,04
0,02
0,00

Probability

O 1 2 3 4 5 6 7 8 9 10 11
ET (ms)

(a) Probability distribution
function (PDF)

1,0E+00
1,0E-02
1,0E-04
1,0E-06
1,0E-08
1,0E-10
1,0E-12
1,0E-14
1,0E-16
1,0E-18
1,0E-20

Exceedance Probability

0O 1 2 3 4 5 6 7 8 9 1011
ET (ms)

(¢) CDF and 1-CDF

(logarithmic scale)

1,0
0,9
0,8 = i
0,7
0,6
0,5
0,4
0,3
el i A-EDF
0,1
0,0

0o 1

Probability

2 3 4 5 6 7 8 9 10 11
ET (ms)

(b) Cumulative distribution
function (CDF) and 1-CDF

1,0E+00
1,0E-02 = EVT(Efggch)tlon

£ 1,08-04 7\ 7

E 1,0E-06 actual

E 1,0E-08 measurements

@ 1,0E-10 (1-CDF)

S 1,0E-12

E 1,0E-14 /target probability

B 10516 Jloimmmmm mim s e e ey .
1,0E-18 pWCET estimate !
1,0E-20 I

0O 1 2 3 4 5 6 7 8 9 1011

PWCET (ms)

(d) Example of the pWCET
curve

Fig. 1. Synthetic program PDF, CDF, 1-CDF and pWCET curve.

events that may impact the execution time of the program
under analysis (e.g., memory layout, arbitration in shared re-
sources). Analysis-time conditions experienced can differ from
those during operation simply because the latter may be un-
known. In order to cover this gap, MBPTA imposes several
representativeness-related requirements beyond those of EVT (a
data sample of a random variable so that each execution time
observation is i.i.d.). MBPTA defines representativeness as the
requirement in which the impact of any relevant event affect-
ing execution time is properly upper-bounded at analysis time,
where a relevant event corresponds to any event occurring with
a probability above a cutoff threshold (e.g., 10~° per hour of
operation). Hence, MBPTA requires providing evidence on the
fact that analysis time observations capture the impact of those
events that can arise during operation and significantly impact
execution time and so, pWCET [16,17].

3.3. Execution time profiles

The axiomatic existence of an ETP per dynamic instruction (i.e.
an individual instance of that program instruction in a given run
of the program) ensures that, under MBPTA, each potential execu-
tion time of the program has a distinct probability of occurrence.
It therefore follows that every program run has an associated ETP,
which enables to achieve the prerequisite i.i.d. execution time be-
haviour [18] (EVT requirement). To obtain reliable results, it is also
necessary that the ETPs, which characterise the program runs dur-
ing WCET analysis, can be shown to upper bound the probabilistic
distribution of the program’s execution time that may occur during

operation (representativeness requirement). The wisdom and con-
sequence of this particular requirement are discussed in Section 4.

Unfortunately, regardless of whether ETPs are sought for pro-
gram instructions or full programs, they cannot be determined
in most current processor architectures since the events that af-
fect instructions’ execution time, e.g. cache hits/misses, cannot be
soundly attached a probability of occurrence. So we need to un-
derstand what features a processor architecture should possess to
allow ETPs to exist.

For the sake of keeping the discussion simple, the rest of the
paper focuses on single-path programs. However, we note that
MBPTA has been proven effective on arbitrary multi-path pro-
grams. At least three techniques can be employed to that effect: (1)
applying MBPTA to each program path - if feasible — and choos-
ing the highest pWCET estimate obtained across them. (2) Col-
lecting measurements on an extended version of the target pro-
gram, where all conditional constructs are modified to exhibit a
probabilistic timing behaviour that upper-bounds all possible al-
ternative branches [6]. This solution requires the availability of the
program sources which is difficult to meet in practice. (3) Using
more elaborate methods that require basic block* coverage of mea-
surement observations, augment the resulting data by negatively
padding the cost of each basic block for positive (acceleration) ef-
fects that could occur across unobserved program paths, and syn-

4 A basic block is a fragment of the program’s code, which has a single entry
point and a single exit point.

L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302 291

thetically construct the worst-case path from them. The details of
the latter method are presented in [19].

4. Probabilistically modelling the timing behaviour of
processor resources

When the latencies with which each resource responds should
have an attached probability of occurrence, the execution time of
the instructions using those resources can then also be captured
probabilistically. In this respect, the probabilistic execution time of
an instruction is a function of the ETP of the resources it uses and
how they are arranged, in series or in parallel. Ultimately, this en-
ables capturing the execution of the whole program, which is com-
prised of instructions, in a probabilistic manner.

For a processor to be MBPTA compliant, the pWCET estimates
obtained for the programs that run on it must hold valid for the
whole operational life of the system. Hence, they must hold valid
for every run of the programs of interest under all (or a desired
subset of those that can arise during operation) execution condi-
tions. To understand how the timing behaviour of processor re-
sources needs to be modelled for those guarantees to be obtained,
we first show how the MBPTA process works.

4.1. Probabilistic timing analysis process

Systems amenable to MBPTA have two distinct modes of use:
one for analysis, and another for operation.

» The analysis mode is used to obtain pWCET estimates that
hold valid during system operation. To this end, the timing be-
haviour of the system in that mode must upper bound that of
the system after deployment, as used in real scenarios. This
guarantees that circumstances that can occur during the life-
time of the system cannot alter its timing behaviour in a way
that has not already been upper bounded at analysis time.

The operation mode is used during actual operation. In this
mode, timing conditions are unrestricted (or restricted to a spe-
cific subset) and can thus lead to lower execution times than
those experienced in the analysis mode.

By intent, the analysis mode requires that the timing behaviour
of the system as a whole and of its individual components in iso-
lation (seen at the granularity of execution of interest) either up-
per bounds or matches that which will occur in operation mode.
For MBPTA-compliant processor architectures, this condition can
be achieved in either a deterministic or a probabilistic manner. Ac-
cordingly, any pWCET estimate obtained by analysis is a reliable
upper bound of the execution times that may occur after deploy-
ment in operation. Next we discuss what needs to be done for dif-
ferent hardware resources.

Fig. 2 provides a schematic view of the meaning of (a) deter-
ministic upper-bounding and (b) probabilistic upper-bounding. In
both figures, the x-axis represents execution time, and the y-axis
the probability for any particular latency to occur (this is obviously
1 in the case of deterministic resources). In Fig. 2(a), the solid ver-
tical line represents the analysis-mode bound (am), Boundd¢ for
the latency of a component. If in the operation-mode (om), the ac-
tual latencies, {latd¢’}, are below Boundd¢, which is shown with
the dotted lines, then the obtained bound is reliable. If it cannot
be ensured that this is the case, the operation-time actual laten-
cies (dashed lines) can be bigger than the analysis-mode bound
{latdet} > Boundde, hence the bound is not reliable and cannot
be used. In Fig. 2(b) the solid curve represents the analysis-mode
upper-bound ETP of the latency of the resource, Bound2?. We say
that ETP; > ETP;, that is, ETP; probabilistically upper-bounds ETP;,
if for any cutoff probability the execution time of ETP; is higher or
equal than the execution time of ETP;. Hence, if actual latencies for

{latdet} > bounddset

111

_ L1
0 Boundd<! time

{latdet} < boundget

J

(a) deterministic-latency resource

pro
bound gy,

0 time
(b) probabilistic-latency resource

Fig. 2. Deterministic and probabilistic upper-bounding latencies.

the resource are like the dotted curve, then they are probabilis-

tically upper-bounded by Bound®y? (solid line). If latencies match

those described by the dashed curve, they are not probabilistically
pro

upper-bounded by Bound,.

4.2. Taxonomy of hardware resources for canonical MBPTA
compliance

We term jitterless resources the processor resources that have
a fixed latency, independent of the input request and of the past
history of service. Several hardware resources in current processor
architectures are jitterless such as, for instance, integer additions
or read operations in a register file. Jitterless resources are easy to
model for all types of static timing analysis. For MBPTA techniques,
the ETP of a jitterless resource jl is given by: ETP; = ((I), (1.0)),
where [is the latency of the resource. Its PDF is shown in Fig. 3(a).

Other resources, for instance cache memories, have a variable
latency: we call them jittery resources; their latency depends on
their history of service, i.e. the execution history of the program,
the input request, or a combination of them. Let us discuss each
such case in turn:

» Dependence on execution history. Some resources are stateful
and their state is affected by the processing of requests. If la-
tency depends on the internal state of the resource and this
state is in turn affected by previous requests, then we say that
the resource latency depends on the execution history of the
program. With caches, the latency of an access request depends
on whether it is a hit or a miss, which in turn depends on the
sequence of previous accesses to memory.

Dependence on input request. The latency is determined by the
data carried by the request: data are usually encoded in the in-
struction that issues the request, or stored in its input registers.
This is the case for some floating-point operations whose la-
tency depends on the actual values operated. For instance, typ-
ically dividing by a power-of-2 takes shorter than dividing by
any other value.

Jittery resources have an intrinsically variable impact on the
WCET estimate for a given program. The significance of this im-
pact depends on the magnitude of the jitter, the program under
study, and the analysis method. For any given jittery resource, ei-
ther all requests to it are assumed to incur the worst-case latency

292 L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302
1 1 " " P]
O Probability
Ha 08 @Observed freq [08
=3 Probability Observed freq
0.6 0,6 T Probability |- 0,6 A1-CDF
—&—1-CDF
0.4 0,4 4 A1-CDF | | 04 -
0.2 0,2 1+ 0,2 11—
0 oL 1l m 7 oL B s
trin = tmax = 1 tmin=1 2 3 tmax=4 tmin=1 2 3 tmax=4

(a) Jitterless resource (jl)

resource (wl)

(b) Jittery upper-bounded

(c) Jittery time-randomised
resource (rj)

Fig. 3. Probabilistic timing behaviour of a single instruction for each type of resource.

- as long as timing anomalies can be excluded [20] - or the re-
source is time-randomised. The design choice for a given resource
needs to trade the design cost for time randomising against the
degradation of WCET tightness for always assuming worst-case la-
tency.

The ETP for a resource r,,, assumed or configured to worst-case
latency, can be expressed as ETP;,, = ((Imax), (1.0)), where lnqy is
the worst-case latency of the resource. An example of the impact
of such upper bounding is shown in Fig. 3(b). In the example, the
actual probabilities for each latency are unknown; only frequen-
cies can be obtained; upper bounding therefore is needed. This
would correspond, for instance, to the case of a floating-point di-
vider whose latency depends on the input values operated since,
typically, we cannot determine what their distribution will be dur-
ing operation.

Conversely, the ETP of a time-randomised jittery resource r;
is: ETP;, ((l}, 113 ...,l;.‘), (p}, p?, . .p’]?)) where l; and pz represent
the different latencies of the resource r; and their associated prob-
abilities of occurrence. This is shown in Fig. 3(c). This could be the
case of a cache access to a time-randomised cache, whose hit and
miss probability depend on the (probabilistic) state left by previous
cache accesses. Note that the probability of a given latency is dif-
ferent from the frequency with which it may occur. For instance,

consider a resource R; with t;= (t},t2). Latency t! in the timing
vector would have a true probability of occurrence p} =0.5if - in
the implementation of that resource - on every request to it we
tossed a coin and the request had latency tll if we saw heads and
tf otherwise. In contrast, we could have a deterministic stateful re-

source R, with latency t_;: (t],t2). If for R, we observed that, for a
given program, 50% of the requests take t; and 50% t22, we would
have a 50% observed frequency for each possible latency of that
resource, but not necessarily a true 50% probability.

For the purposes of MBPTA, the timing behaviour of jitterless
and jittery (either upper-bounded or time-randomised) resources
can all be described probabilistically by ETP.

4.3. MBPTA compliance via padding

The ultimate goal of a MBPTA compliant architecture is to en-
sure that measurements taken during analysis at program granu-
larity are subject to a probabilistic behaviour defined by an ETP
that upper-bounds that of the program during operation. The pre-
vious three cases (jitterless, upper-bounded and time-randomised
resources) — together with the proper control on input-dependent
sources of jitter (e.g. execution paths) - define the canonical ap-
proach to reach MBPTA compliance.

Notably, there are other ways to achieve MBPTA compliance
such as execution time padding. With padding, a fixed value or
a distribution is composed (added) to the program ETP at anal-
ysis such that the result of the composition is another ETP that

upper-bounds that of the program during operation. This is bet-
ter illustrated with an example. Let us assume we have a single
path program comprising floating point operations. Further assume
that all floating point operations can take a variable latency from
Imin to lmax depending on the values operated. Controlling values
operated is, in general, beyond the reach of the user. In this sce-
nario padding can be used by adding to each of the measured ex-
ecution times of the program ngy,ps x (Imax — lin)- This approach
makes the pessimistic assumption that during analysis measure-
ments, each of the ng,, floating point operations of the program
experienced a delay of I;,, while during operation each of them
may take Inqx. Hence, for each operation we increase the execution
time observation by the maximum impact this can have lnax — lyin-
Note that this is a form of enforcing the worst-case latency by
software-only means.

More sophisticated forms of execution time padding are pos-
sible. For instance, let us assume that the ETP of an instruction i
at analysis does not upper-bound its ETP during operation. Further
assume another instruction j for which its analysis-time ETP upper-
bounds the operation one. If an argument can be built on the fact
that the reduction in execution time caused by i is smaller than
the increase caused by j, and both i and j always execute, then the
net impact is an analysis-time ETP upper-bounding the one during
operation, which suffices for the application of MBPTA.

4.4. ETP of several execution components

A composite ETP can easily be determined for every individual
program component (ETPyc), e.g. a dynamic instruction, that uses
processor resources, which has an associated ETP describing their
latency. That is ETPyc = f(ETP;,ETP,, ..., ETP,;), where ETP; is the
probabilistic execution time of resource r;.

- Sequential composition: the ETP, fs(ETP;,ETP,, ..., ETP,), result-
ing from sequential composition is one where latencies and
probabilities are determined by the type of dependence across
the input ETP (whether systematic or probabilistic, as shown
later in Section 4.5). The reader should note that sequential
composition as intended here is architectural, hence referring
to execution, and not mathematical, hence related to abstract
interpretation. The latter is employed in SPTA and uses the con-
volution operator for combining the ETPs of static instructions
(e.g., instructions in the object code of the program).

Let us assume two ETPs, ETP, ={((1,2),(0.5,0.5)) and
ETP, = ((5,10), (0.5,0.5)). Further assume that whenever
ETP; takes latency 1, then ETP, = ((5,10),(0.8,0.2)) and
whenever ETP; takes latency 2, then the second ETP is ETP, =
((5,10), (0.2,0.8)). In this case, ETPy,; = fs(ETP,ETR),
leading to ETP;,; =((6,7,11,12), (0.4, 0.1, 0.1, 0.4)). Still,
ETP, takes, for instance, latency 5 with probability 0.5 be-

L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302 293

cause P(ETP, = 1) x P(ETP, = 5) + P(ETP, = 2) x P(ETP, = 5)
is 0.5x0.84+0.5x02=0.5.

The key trait here is that the dependence that ETP, has on ETP,
can be modelled probabilistically. As a result, the executions
carried out during analysis, capture the behaviour of this de-
pendence and hence, cause it to be covered by the pWCET es-
timate derived to bound the execution time during operation.
This is the typical case for the ETP of cache accesses since the
ETP of a given cache access depends on what the previous ac-
cesses did. For instance, if a first access hits, it does not evict
any data and the second access may have a given hit probabil-
ity. However, if the first access misses, it will evict some data
likely decreasing the hit probability of the second access. Still,
the second access has an ETP since the dependence between
the first and the second access is probabilistic given that the
first access will hit or miss with a true probability when using
time-randomised caches.

Parallel composition: processor resources may also be arranged
in parallel. Examples of parallel resources are some partic-
ular designs of cache memories and translation lookaside
buffers (TLB), where cache access and address translation
can occur in parallel. With parallel arrangements, no depen-
dence across ETP can exist, since for that to exist some
sequential relation across ETP should occur, which should
be addressed by sequential composition. The probabilities
of the parallel composition (f,(ETP;,ETP,,...,ETP,)) corre-
spond to the multiplication of probabilities across ETP. How-
ever, the latencies correspond to the maximum latency of
the probabilities multiplied. This is illustrated with the fol-
lowing example. Let the ETP for two program components
be ETP, = ((1,4), (0.4,0.6)) and ETP, = ((2,3), (0.3,0.7)) re-
spectively. The ETP from their parallel composition, ETP ., =
fp(ETP;,ETR,), is ETP; 5, = ((2,3,4), (0.12,0.28,0.6)).

4.5. Dependence across ETP

The property of independence and identical distribution can be
erroneously construed as needing instructions, and their associated
ETP, to be independent of one another. This is incorrect: the i.i.d.
property applies - in certain conditions - to the observation of the
execution time of individual dynamic instructions across multiple
executions. Notably however, the i.i.d. properties may not apply
across distinct dynamic instructions (that is to say, to fragments
of program execution that contain more than one instruction). In-
structions may in fact have dependences among them when the
outcome of one random event that represents the execution of one
dynamic instruction has an impact on the ETP of following instruc-
tions.

We call causal dependence any dependence among two instruc-
tions in a given precedence order such that the execution of the
earlier one affects the timing behaviour of the later one. Obviously,
the execution time of the earlier one determines when the later
one can start executing, but our notion of causal dependence actu-
ally means that the latency a given instruction not only affects the
time at which the later one starts but also its duration.

We differentiate two types of causal dependences among a
source (preceding) instruction and a target (subsequent) instruc-
tion that do not prevent the latter instruction from exhibiting a
MBPTA-compliant timing behaviour across program runs.

- Systematic dependence: The ETP of the target instruction is af-
fected by the execution of the source instruction. This effect
may alter the ETP of the target instruction in any way like, for
instance, shifting some latencies in its ETP or making new la-
tencies appear in the ETP of that instruction. None of this how-

ever causes the target instruction to lose its MBPTA-compliant
behaviour.

This can be better understood with an example. Recall the goal
of MBPTA is to control sources of execution time variability
in such a way that the observations taken during the analy-
sis stage can be used to upper bound probabilistically the tim-
ing behaviour of the program during operation. Let us consider
two instructions, one source and one target, on a given basic
block, bb1. Let us also assume that the ETP of the target instruc-
tion is ETP{5b = ((t1, £, £3), (P1, P2, p3)) if it runs in isolation.
Further assume that the execution of the target instruction as
part of the basic block bb1, hence in the presence of the source
instruction, is ETPL,. = ((t1, b3, t5, t4), (P1, P2, P3, P4)). In this
new ETP the probability of t3 changes and a new latency t4 can
be experienced. In this example the target instruction, which
in fact represents a dynamic instruction, is executed as part of
the basic block. Such target (dynamic) instruction is attached to
a single ETP, ETPt’j]brlge[, irrespective of this being different from
the ETP holding when the instruction was executed in isolation.
Further, this ETP stays constant during analysis and operation.
Therefore, all observations of the execution time of the target
instruction as part of this basic block are observations of this
ETPIb,.. The key trait here is that the ETP must hold for every
dynamic instruction over successive executions of the program.
In the previous example, if the initial conditions are fixed, the
target dynamic instruction in bb1 will have a single ETP.
Probabilistic dependence: The execution of the source instruc-
tion has a probabilistic effect on the ETP of the target instruc-
tion. This is the case of memory accesses to a time randomised
cache. A probabilistic causal dependence causes that dynamic
instruction to suffer a transformation in its ETP. However, given
that the causal effect in the target instruction is probabilis-
tic, this is equivalent to applying a transfer function transf()
that takes as an input an ETP and provides as an outcome an-
other ETP tran f(ETPj0,,) = ETPE . Again, the key trait is that
the target (dynamic) instruction is always subject to the same
ETP .. thus enabling MBPTA to properly capture its timing ef-
fects at analysis time analogously as they will occur during op-
eration.

.

Overall, on a PTA-compliant platform, any hardware and soft-
ware state with bearing on the execution time after of any dy-
namic instruction of the program is reached with a given proba-
bility. Therefore, one can build the ETP of every single program path
that can be traversed by an observable execution by collecting the
execution time of each final state of that system and its corre-
sponding probability of occurrence. Therefore, the execution time
of the program as a whole (seen as the traversal of a given path)
has an ETP and is, hence, a random variable with i.i.d. properties.

4.6. More complex single-core processor architectures

We have shown that jittery deterministic resources need to be
redesigned to make their timing behaviour amenable to MBPTA by
construction. This can be done by either randomising their tim-
ing behaviour or enforcing them to their worst-case latency. Re-
sources with probabilistic latency perfectly fit the MBPTA princi-
ples. However, jittery processor resources exist that do not easily
fit in the taxonomy we used in Section 4.2. This is the case of
resource buffers, also known as first-in first-out (FIFO) queues or
simply buffers.

A buffer resource may stall if it gets full, which increases the
latency of the requests that use it. Stalls across pipeline stages
may for example occur owing to contention for buffer space; those
stalls would be real enough to fear, but difficult to predict causally.

294 L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302

The main characteristic of buffer resources, however, is that
they are not sources of jitter but rather jitter propagators [21]. The
intuition here is that if all jitter that occurs in a processor is prob-
abilistic, that is, it is solely due to time-randomised resources, any
combination of random events has a given probability of occur-
rence. Now, as every single combination of events causes the pro-
gram to incur a distinct execution time, each execution time has a
distinct probability of occurrence. For each combination of random
events, resource buffers may get full and consequently increase the
execution time of the program. However, buffers themselves do
not introduce any change in the probability distribution of random
events. The presence of buffers may well cause the execution time
of the program to vary, but each execution time continues to have
a true probability of occurrence, which is what MBPTA requires.

In general, all hardware resources can be made MBPTA-
compliant as long as they either do not introduce jitter on their
own (hence they are fixed-latency or else just jitter propagators),
their jitter can be upper-bounded or else it can be randomised.

4.7. Multicore processor architectures

In single-core architectures, the execution time of a software
program is influenced by (1) the initial processor state when the
program starts executing — which in turn is affected by previous
execution, (2) the RTOS interferences that it may suffer during ex-
ecution, (3) the input data that influence control flow or data-
dependent jitter in jittery processor resources, and (4) the ran-
domisation occurring in processor resources.

The effect of initial conditions, (1) above, can be taken into ac-
count by flushing the state of all stateful resources (e.g., caches)
prior to the execution of the program. For the RTOS, state-of-the-
art solutions exist to make its interference amenable to probabilis-
tic analysis [11].

The effect of input data on the control flow of the program is
controlled by state-of-the-art techniques that work in unison with
MBPTA [19]. For instance, authors in [19] show how to pad exe-
cution time measurements at basic block granularity to discount
the benefit obtained by executing specific paths when that bene-
fit would not be obtained through other paths. The effect of in-
put data on the latency of processor instructions using resources
with data-dependent jitter as well as the jitter introduced by the
randomised hardware resources are controlled with standard PTA
techniques [5].

In multicore architectures, in addition to all the sources of ex-
ecution time variability that appear in a single-core architecture, a
further one arises: inter-task interference.”

In general in single-core architectures, given two instructions iy
and iy of the same program, where the subscripts determine the
order in which each instruction is executed into the processor, iy
may have a potential impact on the execution time of iy only if
¥y < x, meaning that i, executes prior to ix. In a multicore, when
several programs run in parallel, the execution time of one instruc-
tion i,fl in program T; may be affected by any other instruction

T
i/ from any program T; that may run at the same on any other
available core. If precedence or exclusion constraints are set in the
system such that T; can be asserted to not execute in parallel Ty,
. . T ;
then the inter-task interference generated by i,/ does not affect l;l;l.
If no such assertion can be made instead, T; and T; can execute in
any order. Hence they may execute in parallel on different cores, so
that i) may cause inter-task interference on 151. It is evident that

5 This term does not include the interference that in single core processor occurs
in caches and TLBs owing to context switches. This is intentional as this overhead
can be quantified probabilistically in the context of MBPTA [22].

we cannot conceivably capture the effect that any single instruc-
tion of any task iJTf‘ may have on any other instruction of any other

task ile in the system. Should this be required, MBPTA would be-
come intractable. To prevent this, the design of MBPTA-compliant
multicores must ensure that the worst effect that one program can
have on the execution of any other program owing to inter-task
interference can be probabilistically bounded.

Interestingly, the MBPTA-compliant design principles already
outlined for single-core processors extend quite well to the design
of multicore architectures. The resources for which this approach is
most advantageous are those that are shared upward the processor
hardware architecture off the core, where they may cause massive
inter-task interference. Next we review them in detail.

Shared bus. The authors of [23] show that the arbitration la-
tency of a shared bus can either be upper bounded at analysis
time or randomised so that the timing behaviour observed at anal-
ysis matches or upper-bounds that which may emerge during op-
eration. In fact, upper bounding the bus arbitration latency has
been shown to be viable also for time-deterministic systems [24].
This approach ensures that the latencies and probabilities of the
ETP derived for this resource already account for worst-case in-
teraction in this shared resource. For instance, if latency is upper-
bounded, the ETP accounting for arbitration delay will have the
form ETP,,s = ((latbusmax), (1.0)), where latbusmqx stands for the
maximum bus arbitration latency. Alternatively, if random (lottery)
or random permutations arbitration is used, ETP can also be de-
rived as already proven in [23].

Shared memory controller. The same approach used for buses
can be applied to the arbitration in the memory controller. Thus,
the latency of a shared memory controller can be upper bounded,
which is fine for MBPTA compliance. Again, that measure is in
line with findings for time-deterministic systems [25]. Thus, if
latency is upper-bounded, the ETP for the memory controller
will have the form ETP.pcer = ((latmemctrlpgy), (1.0)), where
latmemctrlygx stands for the maximum memory controller arbi-
tration latency. Note that random (lottery) or random permuta-
tions arbitration can also be alternatively used since ETPs exist for
both policies [23]. However, memory latency can also vary based
on the last operation performed due to the fact that the latency
of a read (or write) operation varies depending on whether the
last operation was a read or write operation. Authors in [25] de-
scribe how to upper-bound memory access latency, so an ETP
can also be derived for this component with the form ETPpray =
((latDRAMmax), (1.0)), where latDRAMpqx stands for the maximum
memory access latency. Note that in this case, latency cannot be
randomised since it depends on non-probabilistic events such as
the particular memory accesses performed by tasks running in
other cores, which are unlikely to be known at analysis time.

Shared cache. Cache partitioning has been proved to be a prac-
tical way to attenuate the interference effects from cache sharing.
This solution was first shown for time-deterministic systems [24].
However, since it eliminates all cache conflicts among tasks run-
ning on different cores, it cancels out the multicore side of the
cache problem, and allows using, for each multicore, the solutions
devised for single-core processors.

An alternative approach has been put forward in [26], where
a hardware feature is proposed to limit the eviction frequency
caused by individual tasks on a shared time-randomised cache.
That mechanism allows controlling inter-task interference without
resorting to cache partitioning, which reduces the pWCET against
the partitioned case, as long as inter-task interference distributes
randomly across sets. The rationale behind that mechanism is as
follows: during the analysis phase the program under analysis is
exposed to a given eviction rate in the shared cache. Then, dur-
ing operation such eviction rate is not allowed to be exceeded by

L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302 295

tasks in other cores. Hence, the ETP experienced at analysis time
upper-bounds operation conditions. In other words, the miss rate
during operation in the shared cache can only be lower than the
one during the analysis phase. Therefore, the multicore case does
not differ from the single-core case for the purposes of MBPTA.

5. Software-only alternatives

Recently, for some (COTS) time-deterministic hardware re-
sources (e.g., caches) software-only solutions have been shown to
achieve the effects of the hardware design proposals presented
above. So far, the design of those solutions has focused on cache
memories [27,28], seeking the same type of MBPTA-related ben-
efits as warranted by hardware-implemented random placement.
The essence of those solutions is to place the data and the code of
the application at random locations in memory so that their place-
ment in time-deterministic caches that implement modulo place-
ment becomes also random and thus, MBPTA requirements for
caches are met. Obviously, this random placement is entirely trans-
parent to the application and has no functional effect on it. Next
we review those solutions and compare their properties against
their hardware-only correspondents.

5.1. Software-only random placement

Software-only random placement aims at causing cache con-
flicts in sets to occur randomly by placing objects at random mem-
ory locations. For instance, if an object is placed in a random mem-
ory location Loc, given a cache with S cache sets, the particular set
where the object will be placed in cache, Loc mod S, is also ran-
dom.

At the present state of the art, software-only random placement
operates on individual software functions (i.e., syntactically defined
program fragments), static variables, and stack frames. As some
padding is required for those entities to be moved in isolation, the
memory footprint of the program grows as a result of the appli-
cation of this technique. Current experience shows [27,28] that the
resulting bloat may be contained within acceptable limits.

5.2. Software vs hardware solutions

Hardware solutions place each cache line in an inde-
pendent and random location in cache. Therefore, one can
build an ETP for cache accesses of the form ETPyyycache =
(a.e ...,l;.‘), (p},p?,...p’j)) where latencies correspond to the
different outcomes of the cache access (e.g., cache hit and cache
miss) and probabilities depend on the previous (random) events in
cache.

Conversely, software-only solutions do not randomise the place-
ment of cache lines independently. Instead, cache lines in differ-
ent objects have a true probability of conflicting in cache, whereas
cache lines inside a given object have a fully deterministic be-
haviour among them. Still, this does not break MBPTA require-
ments since those deterministic behaviours observed at analysis
time stay exactly the same during operation as the memory loca-
tion of a given object is randomised but the lines that form the ob-
ject retain their position relative to one another. Hence, there is a
probability [29] that two lines from different objects are placed in
the same cache set and thus, are able to evict each other. However,
if those two lines belong to the same object, the probability of be-
ing in the same set is either O or 1 depending on whether their rel-
ative alignment is different or matches the size of one cache way
respectively.

Still, probabilities can be attached to all events and
thus, one can also build an ETP of the form ETPgycqche =

(DRAM]

(Memory Controller |

ITLB | | IL1 DL1| |[DTLB

[jg = el

Fig. 4. Reference processor architecture.

((l},lf ...,l}‘), (p},p?,...p’]‘.)) for cache accesses under software-
only random placement. While latencies will be the same for
ETPywcache and ETPgycqches Drobabilities will not, given that the
probabilities of the different latency outcomes differ across
hardware and software-only solutions.

It is important to appreciate however, that the actual values of
probabilities need not be known in order for MBPTA to be applied.
What is needed is that MBPTA requirements are satisfied, which
is indeed the case for both hardware and software-only solutions.
We can therefore contend that software-only solutions for cache
placement can also be regarded as MBPTA compliant.

6. Case study
6.1. Designing a MBPTA-compliant processor architecture

The core architecture shown in Fig. 4 is an enhanced version
of LEON3 processor used by the European Space Agency and its
industrial suppliers in a number of missions [30].

The said processor consists of a pipeline with the following
stages: fetch (F), decode (D), register access (RA), execution of non-
memory operations (Exe), DL1 access (M), Exceptions (Exc) and
write back (WB). The operations occurring in each stage are as fol-
lows:

« Fetch stage. The IL1 is accessed (and the instruction TLB, ITLB,
on a IL1 miss) to obtain the next instruction to be executed.
Branches are predicted to be taken always.

Decode stage. Instructions are decoded. This stage is, in essence,
an extra delay in the pipeline.

Register access. Instructions read their input registers with fixed
latency.

Execute stage. Non-memory instructions are executed with a
fixed latency that depends solely on the type of operation. Al-
though originally floating-point division (FDIV) and floating-
point square root (FSQRT) instructions had input data depen-
dent latencies, they have been modified as described later.
Memory operations compute their addresses.

Memory stage. Load instructions access the DL1 (and data TLB,
DTLB, on a DL1 miss). Indeed, they also access the write buffer.
Store operations are placed in the write buffer for their of-
fline processing. If the write buffer is full the pipeline will be
blocked.

- Exception stage. Exceptions are managed here.

» Write-back stage. Results (if any) are sent to the register file.

.

The IL1 and DL1 are 16KB in size, 4-way set-associative, with
16B/line IL1 and 32B/line DL1. All caches implement random place-

296 L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302

Table 1

Description of the EEMBC benchmarks.
Name Description
a2time Angle to Time Conversion
basefp Basic Integer and Floating Point
bitmnp Bit Manipulation
cacheb Cache “Buster”
canrdr CAN Remote Data Request
aifft Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
aiirflt Infinite Impulse Response (IIR) Filter
matrix Matrix Arithmetic
pntrch Pointer Chasing
puwmod Pulse Width Modulation (PWM)
rspeed Road Speed Calculation
tblook Table Lookup and Interpolation
ttsprk Tooth to Spark

ment and replacement policies presented in [31]. The DL1 is write-
through and no-write-allocate, so all store operations are prop-
agated to memory. ITLB and DTLB are 8-entry fully-associative
random-replacement, with 4KB page size, and their misses are
handled by a hardware page-walker.

A demonstration prototype of the above processor design has
been implemented in an Altera Stratix IV GX EP4SGX230 FPGA de-
vice operating at 80 MHz.

For its evaluation we use the EEMBC Automotive Bench-
marks [32], which is a well-known benchmark suite representative
of some existing real-time automotive functionalities. The descrip-
tion of each benchmark is conveniently provided in Table 1 for the
sake of completeness.

6.2. Hardware modifications

In the quest for MBPTA-compliance, we have modified cache
placement and replacement policies, as well as selected floating-
point (FP) operations with a comparatively high jitter dependent
on the input parameters. In the original processor design, all
caches (DL1, IL1, DTLB, ITLB) implemented modulo placement and
least recently used (LRU) replacement, whose sensitivity to his-
tory of execution makes them unable to meet the MBPTA prereq-
uisites [31] unless appropriate software support is provided to the
application [27].

Random placement and replacement have been implemented
as described in [31]. In particular, random placement implements
the latest design as described in [33]. Random replacement relies
on the use of a pseudo-random number generator. While the one
described in [33]| has been shown to be convenient, the one de-
scribed in [34] has appeared to generate random numbers with
similar quality while being amenable to a much easier implemen-
tation on a FPGA.

For the FP unit we concentrated on the FDIV and FSQRT opera-
tions, whose latency jitter is highly dependent on the input param-
eters. The FDIV latency varies between 15 and 18 cycles, whereas
the FSQRT latency varies between 23 and 26 cycles. Table 2 pro-

vides examples of input values leading to different latency out-
comes.

Since, from the processor design perspective, the actual latency
of those operations does not occur with a given probability, and all
that one can infer from the application program is the frequency
of their execution, which is of no use for MBPTA, the solution de-
scribed in Fig. 3(b) needs to be applied. The implementation of
FDIV and FSQRT has therefore been modified so that they always
operate in 18 and 26 cycles respectively in the analysis mode. As
we noted earlier, modifications of this kind cause the pWCET es-
timates to incur some (though limited) pessimism, but they make
the corresponding hardware resources MBPTA compliant, which is
what we are after here.

6.3. Deriving ETP

In view of the hardware modifications discussed above, the pro-
cessor architecture of interest includes two main sources of ran-
domised jitter, TLB and caches, each of which makes random con-
tributions to the cumulative execution time of a program running
on it.

We differentiate between two types of instructions: those that
operate on the core (e.g. add, div, mult); and those that operate
on memory (e.g. load, store). Core operations take a variable la-
tency depending on whether they hit in the instruction cache and
instruction TLB, whose ETP (ETP;; and ETP;;p respectively) are
composed in parallel, and memory latency, which is accessed in
case of a miss and whose ETP (ETPpgay) is composed sequentially
with the composition of the instruction cache and the instruction
TLB. This leads to what we term the ETP of the front-end (fend):
ETPfeng = fs(fp(ETPL1, ETP1p), ETPpgan). Then, the resulting ETP,
ETPg,q needs to be composed with the ETP of the buffer between
the front-end and the back-end (ETPpf), the ETP of the decode
stage (ETPg), the buffer after decode (ETPp,p,), the register access
stage (ETPyq), the buffer after register access (ETPy,z3), the core op-
erations (ETPexec), the buffer after execution (ETPbuf4), the mem-
ory operations stage (ETPmem), the buffer after memory operations
(ETPpys5), the exceptions stage (ETPexcep, the buffer after exceptions
(ETPp,ss) and the write-back stage (ETP,).

While ETPge., ETPra, ETPexec, ETPmem, ETPexcep and ETP,,;, have the
form <(I), (1.0)> for core operations, ETP for buffers have as many
latencies as potential stalls they may produce, and their proba-
bility vector is 0.0 for all latencies but one, whose probability is
1.0. Which latency has probability 1.0 is determined by the state
left by previous instructions. More details about how buffers in-
crease execution time without expanding the number of proba-
bilistic states can be found in [21]. If all actions occurred sequen-
tially (thus omitting interactions in the buffer to memory), the ETP
for core operations would be as follows:

ETPcore = fs(ETPfends ETPbufls ETPder ETPbust
ETPrq, ETPyy 3. ETPexec, ET Py 4, ET Prem,

ETPyy s, ETPexcep, ETPyy g6, E Twa) (1)

Memory operations have the same ETP as core operations for
the different stages and buffers except for the memory stage

Table 2
Input value examples triggering different latencies for FDIVD and FSQRTD.
Op. Lat Input 1 Input 2
hexa decimal hexa decimal
FDIVD 15 0 x BFFO000000000000 -1.0 0 x 4000000000000000 2.0
FDIVD 18 0 x 001ABC0000000010 3.717(...)- 1073 0 x 3FF000400A07610C 1.00006107(...)
FSQRTD 23 0 x 4030000000000000 16.0

FSQRTD 26 0 x 4008000000000000 3.0

L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302 297

(ETPmem). The memory latency, instead of depending on ETPpem,
depends on the time of the data memory path (dmpath) com-
posed by the data cache and the data TLB, which are accessed
in parallel, and memory latency, which is accessed sequentially:
ETPympach = fs(fo(ETPpr1. ETPpri8), ETPogan). Therefore, the ETP for
memory operations (still omitting interactions in the buffer to
memory) is as follows:

ETPnem = fs (E TPrena, ETPyyf1, ETPyec, ETPyy g, ET By,
ETPyyf3, ETPexec, ETPyy g4, ET Pympath

ETPbufS’ETPexcep’ETPbufG’ETwa) (2)

Finally, we must consider that the misses occurring in the
DL1/DTLB and in the IL1/ITLB are serialised in the buffer that
connects the core to the memory controller. Again, this buffer
has an ETP of the same form as any other buffer (ETPp,mram)-
Unlike previous buffers, where an instruction could only be
delayed due to activities of older instructions, here data re-
quests from some instructions may get delayed by instruction
requests of younger instructions. Still, the buffer can only have
a finite number of states and each state will have a proba-
bility that, hypothetically could be derived by expanding the
probability tree from the beginning of the execution of the pro-
gram. Thus, ETPpmpray should be composed serially with the
ETP of the memory accesses, sO ETPgp;q and ETPyppqn Should
be ETPeng = fs(fp(ETPy1. ETPrip). ETPoyspran- ETPoRav) and
ETPympacn = fs(p(ETPpr1., ETPprip), - -ETPyyppram, ETPpram) for a cor-
rect calculation of the ETP of core (Eq. 1) and memory operations
(Eq. 2).

6.4. Checking the i.i.d. hypothesis

The existence of an ETP for individual instructions ensures that
the program execution times exhibit the prerequisite i.i.d. prop-
erty of MBPTA. With MBPTA, we empirically ascertain whether this
claim holds, by using proper i.i.d. tests applied on the execution
times of running EEMBC benchmarks [32] on the processor archi-
tecture.

To assert independence we use the Ljung-Box test [35] (LB).
The Ljung-Box test is a powerful method that tests autocorrelation
for different lags simultaneously, so for each datum with the next
one (lag 1), the one after (lag 2), and so on and so forth. In partic-
ular we test all lags up to 20 as shown appropriate by authors in
[36].

To check that the identical distribution hypothesis stands, we
use the Kolmogorov-Smirnov (KS) goodness-of-fit test [37]. We
use a 5% significance level (a typical value for this type of tests),
whereby absolute values obtained with both the LB and KS tests
should be above the threshold (0.05) to assert independence and
identical distribution respectively. In particular, both tests, LB and
KS, deliver values in the range [0,1]. Any value below the signifi-
cance level (0.05) rejects the hypothesis, and cannot reject it oth-
erwise.

For each benchmark, less than 1000 runs were needed for each
program, in line with previous experience [4,31]. Running 1,000
times a program whose typical execution time is in the order of
few milliseconds (as typical of CRTES) implies that pWCET esti-
mates for that program can be obtained in a few seconds alto-
gether, which is a rather affordable overhead for an industrial de-
velopment timescale. Under the heading ‘Statistical tests’ Table 3
reports the results of both tests for all benchmarks. Since values for
both tests, LB and KS, are always above the significance level, 0.05,
both tests are passed in all cases, which proves that the example
architecture meets the i.i.d. requirement of our MBPTA approach.

Table 3

Independence and identical distribution test results (2nd and 3rd columns), and
average execution time and pWCET bounds of the complex MBPTA-compliant pro-
cessor vs. an equivalent conventional processor (4th, 5th and 6th columns).

Benchmarks Statistical tests Timing analysis results
Inde- Identical Average Max pPWCET
pence distribution Exec. Time Exec. Time 10~
a2time 0.31 0.34 0.10% 1.79% 8.44%
basefp 0.85 0.91 0.00% 0.06% 0.36%
bitmnp 0.97 0.77 -0.01% 0.12% 0.26%
cacheb 0.87 0.06 0.02% 0.41% 3.27%
canrdr 0.18 0.82 0.00% 0.00% 0.12%
matrix 0.25 0.70 0.00% 0.01% 0.11%
pntrch 0.79 0.93 0.00% 0.00% 0.12%
puwmod 0.99 0.85 0.00% 0.00% 0.12%
rspeed 0.16 0.50 0.00% 0.00% 0.12%
tblook 0.75 0.86 0.07% 0.86% 2.80%
ttsprk 0.36 0.80 0.00% 0.03% 0.24%
=
(=]
+
g l\
p
2 @
i
Q
5 g
o @
R =
B
©
ol
P 5 eemreesseessessrssmessessrressesssesssens Nnssneenern e
[
» .
@
o A2TIME TN T
i’ l T I T T T
3.0e+07 3.2e+07 3.4e+07 3.6e+07 3.8e+07

execution cycles

Fig. 5. pWCET estimates for the a2time benchmark program.

1e+00

1e-04

exceedance probability
1e-12 1e-08
L

o
'\;‘I, l T T T T T T T T
6400000 6800000 7200000 7600000
execution cycles
Fig. 6. pWCET estimates for the cacheb benchmark program.
6.5. pWCET

In this section we show the type of probabilistic WCET esti-
mates that can be obtained for the example architecture, with the
method presented in [4]. The black line reaching arbitrarily low
exceedance probabilities in Figs. 5 and 6 plots the pWCET distri-
bution obtained for the a2time and cacheb benchmark programs

298 L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302

of the EEMBC suite, run on the example architecture. The red line
(reaching only down to 10~3 exceedance probability) plots the em-
pirical 1-CDF of the 1000 runs performed for these benchmarks.
The x-axis shows the execution time and the y-axis the probabil-
ity of exceeding it. Assuming for the sake of argument that an
exceedance event represents a timing failure in the system, we
may concentrate on exceedance probabilities of 10-12 and 10-13
per run, well within acceptable probabilities of failure in the safety
regulation of automotive and avionics systems.

Increasing the exceedance probability (moving up in the y-
axis) does not translate into large increases in the WCET esti-
mates (moving right in the x-axis); quite the contrary in fact, as
the pWCET curves appear to have a very steep slope. In general,
the larger the number of random events entailed in a run (e.g.,
the number of cache accesses), the less likely that abrupt perfor-
mance variations occur other than (if at all) at extreme exceedance
thresholds. Thus, execution time variation is moderate and the
PWHCET curve is steep.

As the example processor architecture demonstrably meets the
requirements needed for MBPTA, it can be argued that MBPTA can
be applied to performance-aggressive hardware features. Interest-
ingly, the MBPTA process stays unchanged in procedure and effort,
while the pWCET estimates become considerably smaller (up to 9%
in the specific experiment) than the engineering margin often ap-
plied in measurement-based deterministic timing analysis by in-
dustry (20%) in the case of [38].

To the best of our knowledge, complex architectures including
caches, TLB, and staged pipelines with buffers, have not been unre-
strictedly used with static timing analysis, unless with cautionary
restrictions that mitigate the rapid degradation in the tightness of
the WCET estimates that arise from resources being used whose
state cannot be determined exactly. MBDTA also is at a loss with
those processor architectures, because no suite of observation runs
can possibly cover the whole state space of all resources exhaus-
tively. Those techniques are also known to be fragile even to the
way the program is built, because small changes in the way pro-
gram objects are allocated in memory, which are hard to capture
in test suites, may lead to abrupt changes in execution time.

6.6. MBPTA-compliant architectures performance

The above results show that the proposed MBPTA techniques,
united with the proposed modification to the design of processor
resources, enable CRTES designers to aim at considerably higher
levels of guaranteed performance.

Notably, there is a further angle of interest to quantify the ben-
efit of the MBPTA approach discussed in this paper. Under the
heading ‘Timing analysis results’, Table 3 reports average execu-
tion times and pWCET estimates for an exceedance threshold of
10~ per run, obtained for the EEMBC benchmark programs on the
example processor architecture. The values are normalised against
those obtained running the same programs on an analogous ar-
chitecture that implements modulo placement LRU replacement
caches and TLB instead of random placement and replacement, and
where the latency behaviour of the FDIV and FSQRT operations had
been set to operation mode, hence not set to the worst-case out-
come as in the analysis mode.

For instance, cacheb executes in 7,150,507 cycles in the non-
time-randomised architecture. The 1000 runs of cacheb on our
time-randomised architecture take 7,152,211 cycles on average
(0.02% more than without time randomisation) and 7,179,573 cy-
cles at most (0.41% more than the actual execution time without
time randomisation). The pWCET curve at an exceedance thresh-
old of 10~ per run is 7,384,084 cycles, as shown in Fig. 6 (3.27%
higher than the actual execution time without time randomisa-
tion).

The average execution time of the MBPTA-compliant architec-
ture is roughly the same as for the time-deterministic alternative,
thus showing that time randomisation fares well even in the aver-
age case. If we compare the maximum observed execution time in
the MBPTA-compliant architecture, it is only slightly above that of
the time-deterministic alternative. Even more interesting, pWCET
estimates are, on average, only up to 9% higher than the average
performance obtained for a processor architecture implementing
modulo and LRU as the placement and replacement policies for all
caches, and without upper bounding FDIV and FSQRT latencies.

Whereas the WCET values for those programs on the time-
deterministic architecture are not available (computing them
would require the porting of static timing analysis tools, which was
outside of the scope of this work), relevant literature shows that
WOCET values are intrinsically very conservative and can be many
times greater than the average case [39]. Our study shows that,
for our MBPTA-compliant design, the observed inflation was up
to 8.44% for a2time, which allows arguing that MBPTA-compliant
processors are viable for CRTES industry, thus below the usual 20%
engineering margin applied on top of the maximum observed exe-
cution time [38]. The pWCET estimates are only up to 8.44% higher
than the actual execution time on a time-deterministic architec-
ture because the platform is properly designed so that the instruc-
tion and data sets of the programs fit in IL1 and DL1 caches re-
spectively, thus experiencing very few misses, and FDIV and FSQRT
operations are extremely infrequent in general, and in the EEMBC
benchmarks in particular.

It is worth noting that the ETPs for individual dynamic in-
structions in our processor are non-independent across them (see
Section 4.5). This occurs because random-placement caches (as an
instance of a state-sensitive time-randomised resource) create de-
pendence across instructions in the same run since any (random)
cache set conflict occurring during a particular run holds system-
atically across the whole run. Such dependence across ETPs for dif-
ferent instructions is captured in the observations taken at analysis
time, and are accounted for in the pWCET estimate derived with
MBPTA.

7. Related work

There is an increasingly rich literature on the problem of WCET
analysis. One substantial part of the state of the art, with more his-
tory and tradition, addresses Deterministic Timing Analysis (DTA)
techniques, which include its static and measurement-based vari-
ants, SDTA and MBDTA respectively. The state of the art in DTA
is comprehensively surveyed in [2], so we omit discussing it here.
The other, more recent, but rather vibrant, considers the various
flavours of PTA.

The static variant of MBPTA, known as SPTA, has been stud-
ied for relatively simple processor architectures that use time-
randomised caches [5,40,41]. Authors in [42] present the first com-
prehensive comparison among SDTA, SPTA and MBPTA techniques
showing that if enough information is had for the timing analy-
sis, whether one technique is superior to the others depends on
the particular characteristics of the program under analysis. There-
fore, there is not a dominant technique. However, as detailed in
[8], techniques such as SDTA and SPTA are more sensitive to the
amount of information had for the timing analysis process, with
effects on either tightness or reliability. This relates to the fact that
SDTA and SPTA need a detailed timing model of the hardware and
additional flow-facts describing the operation of the software such
as value ranges and memory addresses.

Conversely, MBPTA, the focus of this paper, requires amounts of
information comparable to those obtained by end users in the con-
text of MBDTA, but it scales to arbitrarily complex software run-
ning on top of high-performance hardware easing the collection

L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302 299

of evidence usable for certification purposes [43]. MBPTA has been
used in the context of time-randomised architectures for single-
path programs [4,44| and multi-path programs [6,19].

At hardware level, random placement was proposed in [31] to
enable the use of set-associative caches for MBPTA. [45] and
[16] discuss the reliability of pWCET estimates obtained with
MBPTA on top of random placement caches. In particular authors
discuss representativeness related to the fact that some random
events may have a low probability to be captured in the measure-
ment runs, yet have a high impact on execution time. The latter
work [16] and other recent works [17] conduct thorough analysis
of those scenarios in the context of MBPTA and propose ways to
address them.

EVT has been applied to time deterministic architectures to
derive execution time bounds [46]. While randomisation - and
creating deterministic bounds to jitter resources — is not needed
for the application of EVT, deterministic architectures seriously
difficult deriving a representativeness argument. That is, with
EVT-only approaches, building a representativeness argument that
analysis-time execution conditions capture those that can arise
during operation is completely left to the user. Instead, with
MBPTA-compliance - through randomisation and deterministic up-
per bounding - the space of potential execution conditions is auto-
matically, transparently and randomly sampled as the user makes
more runs. Hence, representativeness just requires the user to per-
form enough runs to probabilistically capture the impact of the
different sources of jitter, rather than the user designing specific
experiments to reach that goal [47].

8. Conclusions and future work

In this paper we have shown that in order for MBPTA to be us-
able economically and assuredly, the target processors should be
designed such that every program instruction have a distinct prob-
abilistic ETP. We have shown that this ETP can be built incremen-
tally from the timing behaviour of the processor resources used by
that instruction.

Using MBPTA on MBPTA-friendly processor architectures, the
timing interference between competing applications, which is one
of the key problems in mixed-criticality systems, can be studied
from the angle of exceedance probability: the probability that the
execution time of a program exceeds a given threshold. We have
shown that this threshold is tight, owing to the natural atten-
uation of multiple worst-case events generated as ii.d. random
variables. We have shown that the probabilistic worst-case ex-
ecution time bounds obtained with the proposed technique are
only marginally greater (around 12% in our case study) than the
average-case performance of time-deterministic processor architec-
tures. This allows achieving higher guaranteed (feasible) utilisa-
tion for mixed-criticality systems, because little would be lost, if
at all, in raw processor performance, and a great reduction would
be had in the pessimistic over-provisioning incurred with tradi-
tional techniques. The use of Extreme Value Theory allows setting
bounds for execution-time budgets at levels of exceedance proba-
bility that satisfy the system assurance requirements. Normal mit-
igation measures (i.e. adding some form of redundancy, setting up
a safe state, etc.) can be taken if protection guarantees had to be
provided for higher-criticality applications at conditions past the
given exceedance threshold.

Acknowledgment

This work has received funding from the European Commu-
nity’s Seventh Framework Programme [FP7/2007-2013] under grant
agreement 611085 (PROXIMA, www.proxima-project.eu). Support
was also provided by the Ministry of Science and Technology of

Spain under contract TIN2015-65316-P and the HiPEAC Network of
Excellence. Leonidas Kosmidis is funded by the Spanish Ministry of
Education under FPU grant AP2010-4208. Jaume Abella has been
partially supported by the MINECO under Ramon y Cajal postdoc-
toral fellowship number RYC-2013-14717. The authors wish to ac-
knowledge Michael Houston, Liliana Cucu-Grosjean and Luca San-
tinelli for contributing to the genesis of this work.

References

[1] P. Clarke, Automotive chip content growing fast, says gartner, in: http://www.
eetimes.com/electronics-news/4207377/Automotive- chip-content-growing-fast,
2011.

[2] R. Wilhelm,]. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G.Bernat, C. Ferdinand, R.Heckmann, T. Mitra, F. Mueller, [. Puaut, P. Puschner,
G. Staschulat, P. Stenstréem, The worst-case execution time problem: overview
of methods and survey of tools, Trans. Embed. Comput. Syst. 7 (3) (2008) 1-53.

[3] J. Hansen, S. Hissam, G.A. Moreno, Statistical-based WCET estimation and val-
idation, in: the 9th International Workshop on Worst-Case Execution Time
(WCET) Analysis, 2009.

[4] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis,
J. Abella, E. Mezzetti, E. Quifiones, FJ. Cazorla, Measurement-based probabilis-
tic timing analysis for multi-path programs, in: Euromicro Conference on Re-
al-Time System (ECRTS-12), 2012.

[5] FJ. Cazorla, E. Quifiones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, D. Maxim,
PROARTIS: Probabilistically analysable real-time systems, ACM TECS (2013).

[6] L. Kosmidis, J. Abella, F. Wartel, E. Quifiones, A. Colin, F. Cazorla, PUB path
upper-bounding for measurement-based probabilistic timing analysis, in: Eu-
romicro Conference on Real-Time Systems (ECRTS-14), 2014.

[7] PROXIMA, Probabilistic real-time control of mixed-criticality multicore and
manycore systems, http://www.proxima-project.eu.

[8] J. Abella, C. Hernandez, E. Quinones, F. Cazorla, P. Conmy, M. Azkarate-askasua,
J. Perez, E. Mezzetti, T. Vardanega, WCET analysis methods: Pitfalls and chal-
lenges on their trustworthiness, in: International Symposium on Industrial Em-
bedded Systems (SIES), 2015, pp. 1-10, doi:10.1109/SIES.2015.7185039.

[9] R. Kirner, I. Wenzel, B. Rieder, P. Puschner, Using measurements as a comple-
ment to static worst-case execution time analysis, Intel. Syst. Serv. Mankind
(2005).

[10] R. Kirner, P. Puschner, Obstacles in worst-case execution time analysis., in:
11th IEEE International Symposium on Object-oriented Real-time distributed
Computing, 2008, pp. 333-339.

[11] E. Mezzetti, T. Vardanega, On the industrial fitness of WCET analysis, Interna-
tional Workshop On Worst-Case Execution Time Analysis (WCET 2011), 2011.

[12] Rapitime, http://www.RapitaSystems.com/RapiTime.

[13] S. Kotz, S. Nadarajah, Extreme Value Distributions: Theory and Applications,
World Scientific, 2000.

[14] S. Coles, An Introduction to Statistical Modeling of Extreme Values, Springer,
2001.

[15] L. Santinelli, J. Morio, G. Dufour, D. Jacquemart, On the sustainability of the
extreme value theory for WCET estimation, International Workshop on Worst-
Case Execution Time Analysis (WCET), 2014.

[16]]. Abella, E. Quifiones, F. Wartel, T. Vardanega, F. Cazorla, Heart of gold: Making
the improbable happen to extend coverage in probabilistic timing analysis, in:
Euromicro Conference on Real-Time System (ECRTS-14), 2014.

[17] S. Milutinovic, J. Abella, F. Cazorla, Modelling probabilistic cache represen-
tativeness in the presence of arbitrary access patterns, in: Symposium on
Object/Component/Service-oriented Real-time Distributed Computing (ISORC),
2016.

[18] J. Abella, FJ. Cazorla, E. Quifiones, T. Vardanega, Measurement-based prob-
abilistic timing analysis and i.i.d property. White Paper., 2013. http://www.
proartis-project.eu/publications/MBPTA-white-paper.

[19] M. Ziccardi, E. Mezzetti, T. Vardanega,]. Abella, FJ. Cazorla, EPC: extended path
coverage for measurement-based probabilistic timing analysis, 36th IEEE Real-
Time Systems Symposium (RTSS), 2015.

[20] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, 1. Polian, J. Eisinger, B. Becker,
A definition and classification of timing anomalies, International Workshop On
Worst-Case Execution Time Analysis (WCET 2006), 2006.

[21] L. Kosmidis, T. Vardanega,]. Abella, E. Quifiones, F]. Cazorla, Applying mea-
surement-based probabilistic timing analysis to buffer resources, International
Workshop On Worst-Case Execution Time Analysis (WCET), 2013.

[22] L. Kosmidis, E. Quifiones,]. Abella, T. Vardanega, F. Cazorla, Achieving tim-
ing composability with probabilistic timing analysis, Symposium on Ob-
ject/Component/Service-oriented Real-time Distributed Computing (ISORC),
2013.

[23] J. Jalle, L. Kosmidis, J. Abella, E. Quifiones, F. Cazorla, Bus designs for time-prob-
abilistic multicore processors, in: Design Automation and Test in Europe
(DATE), 2014.

[24] M. Paolieri, E. Quifiones, F. Cazorla, G. Bernat, M. Valero, Hardware support for
WCET analysis of hard real-time multicore systems, International Symposium
on Computer Architecture (ISCA), 2009.

[25] M. Paolieri, E. Quifiones, F. Cazorla, M. Valero, An Analyzable Memory Con-
troller for Hard Real-Time CMPs., Embedded System Letters (ESL), 2009.

http://www.proxima-project.eu
http://www.eetimes.com/electronics-news/4207377/Automotive-chip-content-growing-fast
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://www.proxima-project.eu
http://dx.doi.org/10.1109/SIES.2015.7185039
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0009
http://www.RapitaSystems.com/RapiTime
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0014
http://www.proartis-project.eu/publications/MBPTA-white-paper
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021

300 L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302

[26] M. Slijepcevic, L. Kosmidis, J. Abella, E.Q. nones, F. Cazorla, Time-analysable
non-partitioned shared caches for real-time multicore systems, in: Design Au-
tomation Conference (DAC), 2014.

[27] L. Kosmidis, C. Curtsinger, E. Quifiones, J. Abella, E. Berger, F. Cazorla, Proba-
bilistic timing analysis on conventional cache designs, Design Automation and
Test in Europe (DATE), 2013.

[28] L. Kosmidis, et al., Containing timing-related certification cost in automo-
tive systems deploying complex hardware, in: Design Automation Conference
(DAC). (Best Paper Award), 2014.

[29] P. Benedicte, L. Kosmidis, E. Quinones,]. Abella, F. Cazorla, A confidence as-
sessment of WCET estimates for software time randomized caches, in: Inter-
national Conference on Industrial Informatics (INDIN), 2016.

[30] http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=
13&Itemid=53, Leon3 Processor, Cobham Gaisler,

[31] L. Kosmidis, J. Abella, E. Quifiones, F. Cazorla, A cache design for probabilis-
tically analysable real-time systems, Design Automation and Test in Europe
(DATE), 2013.

[32]]. Poovey, Characterization of the EEMBC Benchmark Suite, North Carolina State
University, 2007.

[33] L. Kosmidis, J. Abella, E. Quifiones, F. Cazorla, Efficient cache designs for prob-
abilistically analysable real-time systems, IEEE Trans. Comput. 63 (12) (2014).

[34] 1. Agirre, M. Azkarate-Askasua, C. Hernandez,]. Abella, J. Perez, T. Vardanega,
F. Cazorla, lec-61508 sil 3 compliant pseudo-random number generators for
probabilistic timing analysis, in: Digital System Design (DSD), 2015 Euromicro
Conference on, 2015, pp. 677-684, doi:10.1109/DSD.2015.26.

[35] G. Box, D. Pierce, Distribution of residual autocorrelations in autoregressive-in-
tegrated moving average time series models, J. Am. Stat. Assoc. 65 (332) (1970)
1509-1526.

[36] J. Abella, J. del Castillo, M. Padilla, F. Cazorla, Extreme value theory in com-
puter sciences: The case of embedded safety-critical systems, in: International
Conference on Risk Analysis (ICRA), 2015.

[37] M. DeGroot, M. Schervish, Probability and Statistics, Addison-Wesley, Reading
MA., 2002.

[38] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quifiones,]J. Abella, A. Gogonel,
A. Baldovin, E. Mezzetti, L. Cucu, T. Vardanega, F. Cazorla, Measurement-based
probabilistic timing analysis: Lessons from an integrated-modular avionics
case study, International Symposium on Industrial Embedded Systems (SIES),
2013.

[39] J. Gustafsson, A. Ermedahl, Experiences from applying WCET analysis in in-
dustrial settings, Symposium on Object/Component/Service-Oriented Realtime
Distributed Computing (ISORC), 2007.

[40] S. Altmeyer, R. Davis, On the correctness, optimality and precision of static
probabilistic timing analysis, in: Design Automation and Test in Europe (DATE),
2014.

[41] R. Davis, L. Santinelli, S. Altmeyer, C. Maiza, L. Cucu-Grosjean, Analysis of prob-
abilistic cache related pre-emption delays, in: Euromicro Conference on Real-
Time System (ECRTS), 2013.

[42]]. Abella, D. Hardy, I. Puaut, E. Quifiones, F. Cazorla, On the comparison of de-
terministic and probabilistic WCET estimation techniques, in: Euromicro Con-
ference on Real-Time System (ECRTS-14), 2014.

[43] Z. Stephenson,]. Abella, T. Vardanega, Supporting industrial use of probabilistic
timing analysis with explicit argumentation, in: 11th IEEE International Confer-
ence on Industrial Informatics (INDIN), 2013.

[44] L. Kosmidis, J. Abella, E. Quifiones, F. Cazorla, Multi-level unified caches for
probabilistically time analysable real-time systems, Real-Time Systems Sympo-
sium (RTSS), 2013.

[45]]. Reineke, Randomized caches considered harmful in hard real-time systems,
Leibniz Trans. Embed. Syst. 1 (1) (2014) 03:1-03:13.

[46] L. Yue, I. Bate, T. Nolte, L. Cucu-Grosjean, A new way about using statistical
analysis of worst-case execution times, in: ACM SIGBED Review, 2011.

[47] EJ. Cazorla, T. Vardanega, E. Quifiones, J. Abella, Upper-bounding program exe-
cution time with extreme value theory, International Workshop On Worst-Case
Execution Time Analysis (WCET), 2013.

http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=13&Itemid=53
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://dx.doi.org/10.1109/DSD.2015.26
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041

L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302 301

Leonidas Kosmidis is a PhD. student in the CAOS group at Barcelona Supercomputing Center (BSC), Spain. Leonidas joined BSC in 2009 and
received his MSc in Computer Architecture, Networks and Systems in 2011 from Universitat Politécnica de Catalunya (UPC), Spain. He holds a BSc
in Computer Science from University of Crete, Greece and worked as an intern at ARM Cambridge and Ecole Centrale Paris. Leonidas participates
in FP7 PROARTIS and PROXIMA projects. His main focus is hardware and software design for real-time embedded systems.

Eduardo Quiiiones is a senior PhD. Researcher at BSC and member of HiPEAC. He received his MS degree in 2003 and his PhD. in 2008 at the
UPC. His area of expertise is in safety-critical systems and high performance compiler techniques. He is involved in several FP7 European projects

(parMERASA, PROARTIS, PROXIMA and P-SOCRATES), as well as some bilateral ESA-BSC projects. He spent one year as an intern at Intel Research
Labs (2002 - 2003).

Jaume Abella is a senior PhD. Researcher in the CAOS group at BSC and member of HIPEAC. He received his MS (2002) and PhD. (2005) degrees
from the UPC. He worked at the Intel Barcelona Research Center (2005-2009) in the design and modeling of circuits and microarchitectures for
fault-tolerance and low power, and memory hierarchies. He joined the BSC in 2009 where he is in charge of hardware designs for FP7 PROARTIS
and PROXIMA, and BSC tasks in ARTEMIS VeTeSS. Jaume is also involved in two ESA-BSC bilateral projects and FP7 parMERASA. He has authored
more than 15 patents and 60 papers in top conferences and journals in the area. He is (has been) co-advisor of ten MS and PhD students.

Tullio Vardanega currently is at the University of Padua, Italy. He holds a MSc in Computer Science from the University of Pisa, Italy, and a PhD
in Computer Science from the Technical University of Delft, Netherlands. He worked at European Space Agency (ESA) from July 1991 to December
2001. At the University of Padua, he teaches and leads research in the areas of high-integrity distributed real-time systems and advanced software
engineering methods. He has a vast network of national and international research collaborations. He has co-authored 90+ refereed papers and
held organizational roles in several international events and bodies, for ESA, the European Commission, ISO, IEEE and Ada-Europe.

Carles Hernandez received the M.S. degree in telecommunications and PhD in computer sciences from Universitat Politcnica de Valncia, in 2006
and 2012, respectively. He is currently senior PhD. Researcher at the Barcelona Supercomputing Center. His area of expertise includes network-on
chip and reliability-aware processor design. He participates (has participated) in NaNoC, parMERASA, PROXIMA IP7 and VeTeSS ARTEMIS projects.

In the context of PROXIMA he is in charge of probabilistic technology developments in the Leon3 processor. In 2012 he was intern at Intel Mobile
Communications Munich.

Andrea Gianarro is a hardware engineer at Cobham Gaisler experienced in digital development on FPGA (Xilinx, Altera), Computer Science graduate
with honors. Proficiency in VHDL programming with a focus on system-level integration and hardware architectures. Experienced in on-chip and
off-chip interconnects: AMBA AHB, APB, CAN, RapidIO, Ethernet, SGMII, DDR2.

302

L. Kosmidis et al./Microprocessors and Microsystems 47 (2016) 287-302

Ian Broster is a founder and director of Rapita Systems Ltd. He earned his PhD in 2003 at the Real-time Systems group of University of York
for work on the timing analysis of realtime communication. He has been involved in significant real-time research projects involving scheduling
analysis, predictable multi-core, real-time communication and fault tolerance. He has a valuable mix of academic and industrial experience of real-
time and embedded systems. He is actively involved in the transfer of research technologies to practical industrial uses in the domain of reliable
embedded systems.

Francisco J. Cazorla is the leader of the CAOS group at BSC and member of HIPEAC Network of Excellence. He has led projects funded by in-
dustry (IBM and Sun Microsystems), by the European Space Agency (ESA) and public-funded projects (FP7 PROARTIS project and FP7 PROXIMA
project). He has participated in FP6 (SARC) and FP7 Projects (MERASA, VeTeSS, parMERASA). His research area focuses on multithreaded for both
high-performance and real-time systems on which he is co-advising several PhD theses. He has co-authored 3 patents and over 100 papers in
international refereed conferences and journals.

	Fitting processor architectures for measurement-based probabilistic timing analysis
	1 Introduction
	2 Context within PROXIMA
	3 MBPTA requirements on hardware design
	3.1 Taxonomy of timing analysis techniques
	3.2 Requirements
	3.3 Execution time profiles

	4 Probabilistically modelling the timing behaviour of processor resources
	4.1 Probabilistic timing analysis process
	4.2 Taxonomy of hardware resources for canonical MBPTA compliance
	4.3 MBPTA compliance via padding
	4.4 ETP of several execution components
	4.5 Dependence across ETP
	4.6 More complex single-core processor architectures
	4.7 Multicore processor architectures

	5 Software-only alternatives
	5.1 Software-only random placement
	5.2 Software vs hardware solutions

	6 Case study
	6.1 Designing a MBPTA-compliant processor architecture
	6.2 Hardware modifications
	6.3 Deriving ETP
	6.4 Checking the i.i.d. hypothesis
	6.5 pWCET
	6.6 MBPTA-compliant architectures performance

	7 Related work
	8 Conclusions and future work
	 Acknowledgment
	 References

