
Microprocessors and Microsystems 47 (2016) 287–302

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Fitting processor architectures for measurement-based probabilistic

timing analysis

Leonidas Kosmidis a , b , Eduardo Quiñones b , Jaume Abella

b , ∗, Tullio Vardanega

c ,
Carles Hernandez

b , Andrea Gianarro

d , Ian Broster e , Francisco J. Cazorla

b , f

a Universitat Politecnica de Catalunya, Barcelona, Spain
b Barcelona Supercomputing Center, Barcelona, Spain
c University of Padova, Padova, Italy
d Cobham Gaisler, Gotemburg, Sweden
e Rapita Systems Ltd, York, England
f Spanish National Research Council (IIIA-CSIC), Barcelona, Spain

a r t i c l e i n f o

Article history:

Received 3 January 2016

Revised 21 June 2016

Accepted 18 July 2016

Available online 20 July 2016

Keywords:

Worst-case execution time

Processor architecture

Cache memories

Probabilistic analysis

Time randomization

a b s t r a c t

The pressing market demand for competitive performance/cost ratios compels Critical Real-Time Embed-

ded Systems industry to employ feature-rich hardware. The ensuing rise in hardware complexity however

makes worst-case execution time (WCET) analysis of software programs – which is often required, espe-

cially for programs at the highest levels of integrity – an even harder challenge. State-of-the-art WCET

analysis techniques are hampered by the soaring cost and complexity of obtaining accurate knowledge of

the internal operation of advanced processors and the difficulty of relating data obtained from measure-

ment observations with reliable worst-case behaviour. This frustrating conundrum calls for novel solu-

tions, with low intrusiveness on development practice. Measurement-Based Probabilistic Timing Analysis

(MBPTA) techniques offer the opportunity to simultaneously reduce the cost of acquiring the knowledge

needed for computing reliable WCET bounds and gain increased confidence in the representativeness

of measurement observations. This paper describes the changes required in the design of several high-

performance features – massively used in modern processors – to meet MBPTA requirements.

© 2016 Elsevier B.V. All rights reserved.

1

w

i

i

a

S

a

a

a

a

w

i

a

a

g

b

t

c

i

t

o

u

a

d

s

h

0

. Introduction

The market for Critical Real-Time Embedded Systems (CRTES),

hich includes the automotive and avionics sectors, is experienc-

ng an unprecedented growth [1] . While crucial to keeping compet-

tive advantage, the inclusion of increasingly sophisticated value-

dded functions, such as for example Advanced Driver Assistance

ystems, causes CRTES makers to continually seek higher guar-

nteed computational performance while striving to contain cost

nd power budget. This goal can only realistically be achieved by

dding complex and powerful hardware accelerator features such

s caches or multicore designs. 1

However, the use of aggressive performance-enhancing hard-

are features may highly complicate the computation of reli-
∗ Corresponding author. Fax: +34 934137721.

E-mail address: jaume.abella@bsc.es (J. Abella).
1 This trend deflects from prior practice in CRTES, where processors used to be

n-order and cacheless, to simplify verification of timing behaviour.

f

a

p

ttp://dx.doi.org/10.1016/j.micpro.2016.07.014

141-9331/© 2016 Elsevier B.V. All rights reserved.
ble and tight timing bounds. 2 Worst-Case Execution Time (WCET)

nalysis is an integral step of verification for real-time systems in

eneral, and for CRTES in particular. One common use of WCET

ounds is for schedulability analysis to ascertain whether applica-

ion tasks can complete within their assigned deadlines under all

onditions.

Numerous techniques exist for performing WCET analysis, rang-

ng from measurement-based to static analysis, via hybrid variants

hat use elements of both [2] . Measurement-based techniques rely

n user’s ability to design stressful tests in which the application

nder test is run in conditions similar to the worst ones that can

rise during operation. Static timing analysis is challenged by the

ifficulty to model accurately the timing of complex hardware de-

igns, and also by the increasing amount of information needed to

eed the models to estimate the WCET. Finally, hybrid approaches

lleviate some of the problems of those techniques to handle com-
2 In the context of timing analysis, a reliable bound is a bound that can be sup-

orted by strong arguments and proofs.

http://dx.doi.org/10.1016/j.micpro.2016.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.07.014&domain=pdf
mailto:jaume.abella@bsc.es
http://dx.doi.org/10.1016/j.micpro.2016.07.014

288 L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302

(

s

i

e

r

t

l

p

S

S

p

a

s

o

a

p

r

f

2

I

g

I

l

m

t

e

plex hardware, but hybrid approaches are subject to similar limita-

tions.

The availability of more powerful hardware and the quest for

more functional value per unit of product also prompt CRTES in-

dustry to consider adopting mixed-criticality design solutions for

their systems. From the timing perspective, which is the focus

of this paper, the challenge with mixed-criticality systems lays in

the need for solutions to ensure strict temporal isolation between

programs assigned to different criticality levels, so that their be-

haviour can be deemed composable in the time dimension. 3 In the

absence of effective means to abate the pessimism of WCET anal-

ysis, however, mixed-criticality solutions that achieve time isola-

tion by fencing budget allowances, risks incurring massive over-

provisioning, which defeats the purpose of combining systems to-

gether.

Probabilistic techniques may greatly aid on all of those fronts.

In particular, with Measurement-Based Probabilistic Timing Analy-

sis (MBPTA) methods [3–6] , the execution time of the application

can be accurately modelled – at some level of execution granu-

larity – by a probability distribution. MBPTA seeks to determine

WCET estimates for arbitrarily low probabilities of exceedance,

termed probabilistic WCET or pWCET. As a consequence, there is

some residual risk (in the form of an exceedance probability) be-

yond which it cannot be proven that a pWCET bound cannot be ex-

ceeded. However, this residual risk is upper bounded with a given

probability, which can be determined at a level low enough to suit

the needs of system design in the application domain. For example,

the residual risk can stay in the region of 10 −9 per hour of opera-

tion, largely below the acceptable probability of failure in certified

systems.

Under MBPTA, at a given granularity of execution, the re-

sponse time of every individual execution component at that level

(e.g., an instruction) is assigned a distinct probability of occur-

rence. This trait – which shall not be confused with the prob-

ability of that component being executed in a run of the pro-

gram – is described by a probabilistic Execution Time Profile (ETP),

expressed by the pair: < timing vector; probability vector > . The

timing vector in the ETP enumerates all its possible response

times. For each response time in the timing vector, the proba-

bility vector lists the probability of occurrence of that response

time in an instance of execution. Hence, for execution component

C i we have ET P (C i) = 〈 →

t i ,
→

p i 〉 where
→

t i = (t 1
i
, t 2

i
, . . . , t

N i
i

) and

→

p i =
(p 1

i
, p 2

i
, . . . , p

N i
i

) , with

∑ N i
j=1

p
N j
i

= 1 . At the program level, MBPTA

requires that the ETP for the program exercised during analysis

matches or upper-bounds program’s ETP during operation.

The processor architecture is instrumental in ensuring that in-

dividual instructions have an associated ETP. As this guarantee in

turn is a crucial enabler to a sound and effective application of

MBPTA, the processor architecture is the level of execution granu-

larity on which we focus in this work.

Contribution . Within the context of the FP7 PROXIMA project

[7] we describe the architecture features that a processor should

possess to be amenable by construction to the use of MBPTA. We

term this quality MBPTA compliance . In presenting our case, we of-

fer insight on the costs that may be incurred in actual implemen-

tation of a MBPTA-compliant processor. To that end, we categorise

processor resources according to their timing behaviour and de-

tail how they should be designed for use in a MBPTA-compliant

processor. Without loss of generality, we consider the inner oper-

ation of the processor to employ a number of passive resources
3 Time composability is had when the timing behaviour of an individual software

component does not change in the face of composition when the system is inte-

grated, and so, the timing analysis performed in isolation remains valid at system

integration.

a

y

p
e.g., caches, buffers, buses, etc.). We assume each processor in-

truction to use some of those resources in a given order, whether

n sequence or in parallel. We design processor resources so that

ach of them can be assigned a given ETP. To achieve this for all

esources, we use time randomisation in some , actually very few, of

hem. Resources that are not time randomised must be assigned a

ocal upper bound to their response time that can be safely com-

osed. We assume a time anomaly free baseline architecture.

The remainder of this paper is organised as follows.

ection 2 introduces PROXIMA and contextualises this work.

ection 3 presents the requirements that MBPTA places on

rocessor hardware. Section 4 classifies hardware resources in

 taxonomy specifically related with MBPTA. Section 5 presents

oftware-only solutions that could be applied to make commercial-

ff-the-shelf processor hardware fit for MBPTA. Section 6 presents

 demonstrative implementation of a processor architecture, pur-

osely designed for compliance with MBPTA. Section 7 surveys

elated work. Section 8 draws some conclusions and outlines the

uture of this line of work.

. Context within PROXIMA

This work has been performed within the scope of PROX-

MA [7] , an Integrated Project (IP) of the Seventh framework pro-

ramme for research and technological development (FP7). PROX-

MA objectives include providing a complete toolchain enabling

ow-cost timing verification for systems based on multicore and

anycore processors implementing critical real-time functionali-

ies. In particular, PROXIMA toolchain includes the following main

lements:

• Hardware and software platforms amenable for MBPTA . One of

the key elements of the toolchain is a hardware platform pro-

viding the timing properties required by MBPTA to facilitate ob-

taining reliable and tight pWCET estimates. This hardware plat-

form has been implemented in a FPGA prototype used in the

Space domain. Alternative software-only solutions have been

developed to enable MBPTA on top of commercial off-the-shelf

(COTS) processors that include a non-MBPTA-compliant version

of the Space prototype, an Infineon AURIX T277 and a Freescale

P4080 processors. MBPTA compliance in future manycore pro-

cessors has also been investigated by means of architectural

simulators.

• MBPTA-compliant real-time operating systems (RTOS) . The RTOS

needs to be enhanced with features so that its contribution to

the execution time of the analysed tasks is made constant, and

hence, time-composable, and its impact on the hardware and

software state is neutral w.r.t. the properties needed to attain

MBPTA compliance, thus being transparent for the timing anal-

ysis process. RTOS features have been implemented as part of

PikeOS, RTEMS-SMP, ERIKA and some research-oriented RTOS.

• Timing analysis tools . Appropriate methods for the estimation of

pWCET are required to account for the timing behaviour of the

underlying hardware/software platform. They must be compat-

ible with the tracing methods in place, and capable of provid-

ing pWCET estimates that hold valid in front of the different

sources of execution time variation that can be exercised dur-

ing operation such as hardware/software initial state, input val-

ues, execution path traversals, etc. Some of these methods have

been implemented as part of RapiTime commercial toolchain

whereas others will remain as standalone tools.

These elements have been implemented by a set of industrial

nd academic partners including hardware, RTOS and timing anal-

sis tool vendors and related research institutions. Evaluation is

erformed on a number of case studies from the avionics, space,

L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302 289

r

2

d

p

t

3

3

w

(

b

w

o

S

m

e

t

o

c

d

c

e

t

a

1

V

t

r

r

c

3

t

l

e

c

p

r

ailway and automotive domains. The project finishes in September

016, so most technologies have reached a high degree of maturity.

This paper reviews MBPTA-compliant hardware behaviour to

eliver the timing properties needed to estimate reliable and tight

WCET. We also show how some of these goals can be achieved in

he absence of MBPTA-compliant hardware.

. MBPTA requirements on hardware design

.1. Taxonomy of timing analysis techniques

We differentiate three main timing analysis types, each of

hich has a deterministic and probabilistic variant.

• Measurement-based deterministic timing analysis (MBDTA)

techniques take advantage of the observation data obtained

from executing the programs of interest on the real proces-

sor hardware. Simple high-watermark techniques have been

used in industry for many years. They are usually coupled with

detailed analysis of the software structure that provides con-

fidence in exercising those worst-case paths or scenarios at

the application level that can arise during system operation.

To make safety allowances for the unknown (which the cog-

nizant associates with the difficulty of determining the hard-

ware worst case), an engineering margin is often added to the

computed bound. The intent of the margin is striking some

sound balance between pessimistic overkill and risk of under-

estimation. Determining a reliable and tight engineering mar-

gin is extremely difficult – if at all possible – especially when

the system may exhibit discontinuous changes in timing due

to unanticipated timing behaviour. The confidence had on the

WCET estimate determined with MBDTA is, therefore, fully-

dependent on the ability of the end user to identify what be-

haviour needs to be triggered in the hardware and software to

observe the WCET that can occur during operation (or execu-

tion times close to it) and to produce program inputs that trig-

ger that behaviour. The increasing complexity of the hardware

(i.e. the use of cache hierarchies and multicores) is also a threat

for the scalability of this approach [8] .

• Static deterministic timing analysis (SDTA) techniques rely on

the construction of a cycle-accurate model of the processor

and an abstract representation of the application code. SDTA

searches the resulting state space for the worst case, with

constraint-based integer linear programming. Obviously, such

an analysis cannot carry forward all the possible states of ex-

ecution. Hence, conservative choices are made during the pro-

cess, thus trading a reduction in the state space for increased

pessimism [9–11] . SDTA has abundant need for information

about the timing specification of the processor hardware and

flow facts for the application. As the prediction must neces-

sarily err on the side of pessimism, any lack of information

about the timing behaviour of the object of analysis (e.g., the

address of a memory access needed to determine if execution

hits or misses in cache) or about processor timing behaviour

degrades the tightness of the WCET estimate. Further, the re-

sult of the analysis is as reliable as the input provided to it [8] .

The rise in complexity of next-generation CRTES greatly exacer-

bates this problem: the volume of detailed knowledge needed

to construct a sufficiently accurate execution model as well as

the time, effort, cost and complexity entailed in acquiring that

information, challenge the adoption of SDTA for CRTES applica-

tions.

• Hybrid techniques build upon MBDTA, but collect execution

time measurements at finer granularities such as, for instance,

per function, per basic block, etc. Then, they operate on those

measurements to account for unobserved behaviour. For in-
stance, RapiTime [12] creates a representation of the control

flow of the program and operates on the measurements ob-

tained for each of the elements in the program, to generate

measurements for unobserved execution paths. This approach

can lead to higher confidence than that for traditional MBDTA,

by inflating WCET estimates, and a lower effort/cost of use.

However its confidence still depends on the ability of the user

to make sound assertions on flow facts and to understand and

control numerous hardware-related aspects such as cache inter-

actions among programs and inter-task interference in the use

of hardware shared resources in multicores [8] .

At the present state of the art, probabilistic timing analysis

PTA) can be applied in either a static (SPTA) [5] or measurement-

ased (MBPTA) [4] fashion: we refer the interested reader to those

orks for details on PTA fundamentals. In this work we focus

n MBPTA only since it is more mature for industrial use than

PTA [8] .

MBPTA generates a probability distribution that describes the

aximum probability with which an instance of the program can

xceed its assigned budget. As illustrative example, Fig. 1 (a) shows

he probability distribution function (PDF) of the execution times

f a (single-path) synthetic program on a MBPTA-compliant pro-

essor architecture. From the PDF, one can build the cumulative

istribution function (CDF) and its complementary (1-CDF) ex-

eedance function or pWCET, which tells the probability that the

xecution time of one run of that program may exceed a given

hreshold (see Fig. 1 (b) and 1 (c)). Using conventional means, for

 set of R runs, one could only derive an exceedance probability of

/ R at most. For smaller probabilities, techniques such as Extreme

alue Theory (EVT) [13] are needed: Fig. 1 (d) illustrates the hypo-

hetical result of applying EVT to a collection of 10 0 0 measurement

uns taken on a MBPTA-compliant processor. The dotted line rep-

esents the 1-CDF derived from the observed execution times. The

ontinuous line represents the projection obtained with EVT.

.2. Requirements

MBPTA considers events resulting from the observation of end-

o-end measurement runs of the program, thus at coarser granu-

arity than processor instructions. MBPTA builds upon EVT [4,13] to

stimate pWCET. Yet MBPTA and EVT are not the same thing. We

larify this by differentiating the requirements that MBPTA im-

oses due its use of EVT and other MBPTA requirements to satisfy

epresentativeness requirements.

• Extreme Value Theory: The use of EVT requires that its in-

put, i.e. the observed execution times in our case, to be de-

scribed with independent and identically distributed (i.i.d.) ran-

dom variables. Two random variables are said to be indepen-

dent if they describe two events such that the occurrence of

one event does not have any impact on the occurrence of the

other event. Two random variables are said to be identically

distributed if they have the same probability distribution. Spe-

cific statistical tests can be used to check these properties on a

set of execution times, see Section 6 .

It is worth noting that some authors have shown that inde-

pendence across observations is not strictly needed as long as

maxima are independent or the dependence across maxima is

weak [14,15] . However, in the rest of this paper we build upon

independent data since it is a by-product of MBPTA-compliant

platforms presented in this work.

• Representativeness: The goal of MBPTA is to derive – from exe-

cution times obtained during analysis – WCET estimates that

hold valid during operation. However, the pWCET estimates

obtained with EVT stay valid under the execution conditions

considered at analysis. Those execution conditions include all

290 L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302

Fig. 1. Synthetic program PDF, CDF, 1-CDF and pWCET curve.

o

s

g

i

f

s

d

a

p

M

g

a

i

l

g

p

t

p

m

s

p

f

4 A basic block is a fragment of the program’s code, which has a single entry

point and a single exit point.
events that may impact the execution time of the program

under analysis (e.g., memory layout, arbitration in shared re-

sources). Analysis-time conditions experienced can differ from

those during operation simply because the latter may be un-

known. In order to cover this gap, MBPTA imposes several

representativeness-related requirements beyond those of EVT (a

data sample of a random variable so that each execution time

observation is i.i.d.). MBPTA defines representativeness as the

requirement in which the impact of any relevant event affect-

ing execution time is properly upper-bounded at analysis time,

where a relevant event corresponds to any event occurring with

a probability above a cutoff threshold (e.g., 10 −9 per hour of

operation). Hence, MBPTA requires providing evidence on the

fact that analysis time observations capture the impact of those

events that can arise during operation and significantly impact

execution time and so, pWCET [16,17] .

3.3. Execution time profiles

The axiomatic existence of an ETP per dynamic instruction (i.e.

an individual instance of that program instruction in a given run

of the program) ensures that, under MBPTA, each potential execu-

tion time of the program has a distinct probability of occurrence.

It therefore follows that every program run has an associated ETP,

which enables to achieve the prerequisite i.i.d. execution time be-

haviour [18] (EVT requirement). To obtain reliable results, it is also

necessary that the ETPs, which characterise the program runs dur-

ing WCET analysis, can be shown to upper bound the probabilistic

distribution of the program’s execution time that may occur during
peration (representativeness requirement). The wisdom and con-

equence of this particular requirement are discussed in Section 4 .

Unfortunately, regardless of whether ETPs are sought for pro-

ram instructions or full programs, they cannot be determined

n most current processor architectures since the events that af-

ect instructions’ execution time, e.g. cache hits/misses, cannot be

oundly attached a probability of occurrence. So we need to un-

erstand what features a processor architecture should possess to

llow ETPs to exist.

For the sake of keeping the discussion simple, the rest of the

aper focuses on single-path programs. However, we note that

BPTA has been proven effective on arbitrary multi-path pro-

rams. At least three techniques can be employed to that effect: (1)

pplying MBPTA to each program path – if feasible – and choos-

ng the highest pWCET estimate obtained across them. (2) Col-

ecting measurements on an extended version of the target pro-

ram, where all conditional constructs are modified to exhibit a

robabilistic timing behaviour that upper-bounds all possible al-

ernative branches [6] . This solution requires the availability of the

rogram sources which is difficult to meet in practice. (3) Using

ore elaborate methods that require basic block 4 coverage of mea-

urement observations, augment the resulting data by negatively

adding the cost of each basic block for positive (acceleration) ef-

ects that could occur across unobserved program paths, and syn-

L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302 291

t

t

4

p

h

t

p

a

h

a

p

o

w

f

s

t

s

w

4

o

o

l

p

F

b

c

u

m

f

m

b

t

1

t

t

t

t

b

c

{

b

u

t

i

e

Fig. 2. Deterministic and probabilistic upper-bounding latencies.

t

t

t

u

4

c

a

h

a

o

m

t

w

l

t

t

s

W

p

s

t
hetically construct the worst-case path from them. The details of

he latter method are presented in [19] .

. Probabilistically modelling the timing behaviour of

rocessor resources

When the latencies with which each resource responds should

ave an attached probability of occurrence, the execution time of

he instructions using those resources can then also be captured

robabilistically. In this respect, the probabilistic execution time of

n instruction is a function of the ETP of the resources it uses and

ow they are arranged, in series or in parallel. Ultimately, this en-

bles capturing the execution of the whole program, which is com-

rised of instructions, in a probabilistic manner.

For a processor to be MBPTA compliant, the pWCET estimates

btained for the programs that run on it must hold valid for the

hole operational life of the system. Hence, they must hold valid

or every run of the programs of interest under all (or a desired

ubset of those that can arise during operation) execution condi-

ions. To understand how the timing behaviour of processor re-

ources needs to be modelled for those guarantees to be obtained,

e first show how the MBPTA process works.

.1. Probabilistic timing analysis process

Systems amenable to MBPTA have two distinct modes of use:

ne for analysis, and another for operation.

• The analysis mode is used to obtain pWCET estimates that

hold valid during system operation. To this end, the timing be-

haviour of the system in that mode must upper bound that of

the system after deployment, as used in real scenarios. This

guarantees that circumstances that can occur during the life-

time of the system cannot alter its timing behaviour in a way

that has not already been upper bounded at analysis time.

• The operation mode is used during actual operation. In this

mode, timing conditions are unrestricted (or restricted to a spe-

cific subset) and can thus lead to lower execution times than

those experienced in the analysis mode.

By intent, the analysis mode requires that the timing behaviour

f the system as a whole and of its individual components in iso-

ation (seen at the granularity of execution of interest) either up-

er bounds or matches that which will occur in operation mode.

or MBPTA-compliant processor architectures, this condition can

e achieved in either a deterministic or a probabilistic manner. Ac-

ordingly, any pWCET estimate obtained by analysis is a reliable

pper bound of the execution times that may occur after deploy-

ent in operation. Next we discuss what needs to be done for dif-

erent hardware resources.

Fig. 2 provides a schematic view of the meaning of (a) deter-

inistic upper-bounding and (b) probabilistic upper-bounding. In

oth figures, the x -axis represents execution time, and the y -axis

he probability for any particular latency to occur (this is obviously

 in the case of deterministic resources). In Fig. 2 (a), the solid ver-

ical line represents the analysis-mode bound (am), Bound det
am

for

he latency of a component. If in the operation-mode (om), the ac-

ual latencies, { lat det
om

} , are below Bound det
am

, which is shown with

he dotted lines, then the obtained bound is reliable. If it cannot

e ensured that this is the case, the operation-time actual laten-

ies (dashed lines) can be bigger than the analysis-mode bound

 lat det
om

} > Bound det
am

, hence the bound is not reliable and cannot

e used. In Fig. 2 (b) the solid curve represents the analysis-mode

pper-bound ETP of the latency of the resource, Bound
pro
am

. We say

hat ETP i ≥ ETP j , that is, ETP i probabilistically upper-bounds ETP j ,

f for any cutoff probability the execution time of ETP i is higher or

qual than the execution time of ETP j . Hence, if actual latencies for
he resource are like the dotted curve, then they are probabilis-

ically upper-bounded by Bound
pro
am

(solid line). If latencies match

hose described by the dashed curve, they are not probabilistically

pper-bounded by Bound
pro
am

.

.2. Taxonomy of hardware resources for canonical MBPTA

ompliance

We term jitterless resources the processor resources that have

 fixed latency, independent of the input request and of the past

istory of service. Several hardware resources in current processor

rchitectures are jitterless such as, for instance, integer additions

r read operations in a register file. Jitterless resources are easy to

odel for all types of static timing analysis. For MBPTA techniques,

he ETP of a jitterless resource jl is given by: ET P jl = 〈 (l) , (1 . 0) 〉 ,
here l is the latency of the resource. Its PDF is shown in Fig. 3 (a).

Other resources, for instance cache memories, have a variable

atency: we call them jittery resources ; their latency depends on

heir history of service, i.e. the execution history of the program,

he input request, or a combination of them. Let us discuss each

uch case in turn:

• Dependence on execution history. Some resources are stateful

and their state is affected by the processing of requests. If la-

tency depends on the internal state of the resource and this

state is in turn affected by previous requests, then we say that

the resource latency depends on the execution history of the

program. With caches, the latency of an access request depends

on whether it is a hit or a miss, which in turn depends on the

sequence of previous accesses to memory.

• Dependence on input request. The latency is determined by the

data carried by the request: data are usually encoded in the in-

struction that issues the request, or stored in its input registers.

This is the case for some floating-point operations whose la-

tency depends on the actual values operated. For instance, typ-

ically dividing by a power-of-2 takes shorter than dividing by

any other value.

Jittery resources have an intrinsically variable impact on the

CET estimate for a given program. The significance of this im-

act depends on the magnitude of the jitter, the program under

tudy, and the analysis method. For any given jittery resource, ei-

her all requests to it are assumed to incur the worst-case latency

292 L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302

Fig. 3. Probabilistic timing behaviour of a single instruction for each type of resource.

t

u

t

p

t

l

o

n

e

m

m

e

m

t

N

s

s

a

a

b

t

t

n

o

4

p

p

l

p

– as long as timing anomalies can be excluded [20] – or the re-

source is time-randomised. The design choice for a given resource

needs to trade the design cost for time randomising against the

degradation of WCET tightness for always assuming worst-case la-

tency.

The ETP for a resource r wl , assumed or configured to worst-case

latency, can be expressed as ET P r wl
= 〈 (l max) , (1 . 0) 〉 , where l max is

the worst-case latency of the resource. An example of the impact

of such upper bounding is shown in Fig. 3 (b). In the example, the

actual probabilities for each latency are unknown; only frequen-

cies can be obtained; upper bounding therefore is needed. This

would correspond, for instance, to the case of a floating-point di-

vider whose latency depends on the input values operated since,

typically, we cannot determine what their distribution will be dur-

ing operation.

Conversely, the ETP of a time-randomised jittery resource r j

is: ET P r j = 〈 (l 1
j
, l 2

j
. . . , l k

j
) , (p 1

j
, p 2

j
, . . . p k

j
) 〉 where l i

j
and p i

j
represent

the different latencies of the resource r j and their associated prob-

abilities of occurrence. This is shown in Fig. 3 (c). This could be the

case of a cache access to a time-randomised cache, whose hit and

miss probability depend on the (probabilistic) state left by previous

cache accesses. Note that the probability of a given latency is dif-

ferent from the frequency with which it may occur. For instance,

consider a resource R 1 with

→

t 1 = (t 1
1
, t 2

1
) . Latency t 1

1
in the timing

vector would have a true probability of occurrence p 1 1 = 0 . 5 if – in

the implementation of that resource – on every request to it we

tossed a coin and the request had latency t 1
1

if we saw heads and

2
1 otherwise. In contrast, we could have a deterministic stateful re-

source R 2 with latency
→

t 2 = (t 1
2
, t 2

2
) . If for R 2 we observed that, for a

given program, 50% of the requests take t 1 2 and 50% t 2 2 , we would

have a 50% observed frequency for each possible latency of that

resource, but not necessarily a true 50% probability.

For the purposes of MBPTA, the timing behaviour of jitterless

and jittery (either upper-bounded or time-randomised) resources

can all be described probabilistically by ETP.

4.3. MBPTA compliance via padding

The ultimate goal of a MBPTA compliant architecture is to en-

sure that measurements taken during analysis at program granu-

larity are subject to a probabilistic behaviour defined by an ETP

that upper-bounds that of the program during operation. The pre-

vious three cases (jitterless, upper-bounded and time-randomised

resources) – together with the proper control on input-dependent

sources of jitter (e.g. execution paths) – define the canonical ap-

proach to reach MBPTA compliance.

Notably, there are other ways to achieve MBPTA compliance

such as execution time padding . With padding, a fixed value or

a distribution is composed (added) to the program ETP at anal-

ysis such that the result of the composition is another ETP that
pper-bounds that of the program during operation. This is bet-

er illustrated with an example. Let us assume we have a single

ath program comprising floating point operations. Further assume

hat all floating point operations can take a variable latency from

 min to l max depending on the values operated. Controlling values

perated is, in general, beyond the reach of the user. In this sce-

ario padding can be used by adding to each of the measured ex-

cution times of the program n f pops × (l max − l min) . This approach

akes the pessimistic assumption that during analysis measure-

ents, each of the n fpops floating point operations of the program

xperienced a delay of l min , while during operation each of them

ay take l max . Hence, for each operation we increase the execution

ime observation by the maximum impact this can have l max − l min .

ote that this is a form of enforcing the worst-case latency by

oftware-only means.

More sophisticated forms of execution time padding are pos-

ible. For instance, let us assume that the ETP of an instruction i

t analysis does not upper-bound its ETP during operation. Further

ssume another instruction j for which its analysis-time ETP upper-

ounds the operation one. If an argument can be built on the fact

hat the reduction in execution time caused by i is smaller than

he increase caused by j , and both i and j always execute, then the

et impact is an analysis-time ETP upper-bounding the one during

peration, which suffices for the application of MBPTA.

.4. ETP of several execution components

A composite ETP can easily be determined for every individual

rogram component (ETP pc), e.g. a dynamic instruction, that uses

rocessor resources, which has an associated ETP describing their

atency. That is E T P pc = f (E T P 1 , E T P 2 , . . . , E T P n) , where ETP i is the

robabilistic execution time of resource r i .

• Sequential composition : the ETP, f s (E T P 1 , E T P 2 , . . . , E T P n) , result-

ing from sequential composition is one where latencies and

probabilities are determined by the type of dependence across

the input ETP (whether systematic or probabilistic, as shown

later in Section 4.5). The reader should note that sequential

composition as intended here is architectural, hence referring

to execution, and not mathematical, hence related to abstract

interpretation. The latter is employed in SPTA and uses the con-

volution operator for combining the ETPs of static instructions

(e.g., instructions in the object code of the program).

Let us assume two ETPs, ET P 1 = 〈 (1 , 2) , (0 . 5 , 0 . 5) 〉 and

ET P 2 = 〈 (5 , 10) , (0 . 5 , 0 . 5) 〉 . Further assume that whenever

ETP 1 takes latency 1, then ET P 2 = 〈 (5 , 10) , (0 . 8 , 0 . 2) 〉 and

whenever ETP 1 takes latency 2, then the second ETP is ET P 2 =
〈 (5 , 10) , (0 . 2 , 0 . 8) 〉 . In this case, E T P 1+2 = f s (E T P 1 , E T P 2) ,

leading to ET P 1+2 = 〈 (6 , 7 , 11 , 12) , (0.4, 0.1, 0.1, 0.4) 〉 . Still,

ETP takes, for instance, latency 5 with probability 0.5 be-
2

L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302 293

4

e

E

p

e

e

a

o

s

o

d

t

t

e

t

o

a

t

s

t

M

w

n

b

t

e

s

o

h

4

r

c

i

s

p

fi

r

s

l

m

s
cause P (ET P 1 = 1) × P (ET P 2 = 5) + P (ET P 1 = 2) × P (ET P 2 = 5)

is 0 . 5 × 0 . 8 + 0 . 5 × 0 . 2 = 0 . 5 .

The key trait here is that the dependence that ETP 2 has on ETP 1
can be modelled probabilistically. As a result, the executions

carried out during analysis, capture the behaviour of this de-

pendence and hence, cause it to be covered by the pWCET es-

timate derived to bound the execution time during operation.

This is the typical case for the ETP of cache accesses since the

ETP of a given cache access depends on what the previous ac-

cesses did. For instance, if a first access hits, it does not evict

any data and the second access may have a given hit probabil-

ity. However, if the first access misses, it will evict some data

likely decreasing the hit probability of the second access. Still,

the second access has an ETP since the dependence between

the first and the second access is probabilistic given that the

first access will hit or miss with a true probability when using

time-randomised caches.

• Parallel composition : processor resources may also be arranged

in parallel. Examples of parallel resources are some partic-

ular designs of cache memories and translation lookaside

buffers (TLB), where cache access and address translation

can occur in parallel. With parallel arrangements, no depen-

dence across ETP can exist, since for that to exist some

sequential relation across ETP should occur, which should

be addressed by sequential composition. The probabilities

of the parallel composition (f p (E T P 1 , E T P 2 , . . . , E T P n)) corre-

spond to the multiplication of probabilities across ETP. How-

ever, the latencies correspond to the maximum latency of

the probabilities multiplied. This is illustrated with the fol-

lowing example. Let the ETP for two program components

be ET P 1 = 〈 (1 , 4) , (0 . 4 , 0 . 6) 〉 and ET P 2 = 〈 (2 , 3) , (0 . 3 , 0 . 7) 〉 re-

spectively. The ETP from their parallel composition, ET P 1+2 =
f p (E T P 1 , E T P 2) , is ET P 1+2 = 〈 (2 , 3 , 4) , (0 . 12 , 0 . 28 , 0 . 6) 〉 .

.5. Dependence across ETP

The property of independence and identical distribution can be

rroneously construed as needing instructions, and their associated

TP, to be independent of one another. This is incorrect: the i.i.d.

roperty applies – in certain conditions – to the observation of the

xecution time of individual dynamic instructions across multiple

xecutions. Notably however, the i.i.d. properties may not apply

cross distinct dynamic instructions (that is to say, to fragments

f program execution that contain more than one instruction). In-

tructions may in fact have dependences among them when the

utcome of one random event that represents the execution of one

ynamic instruction has an impact on the ETP of following instruc-

ions.

We call causal dependence any dependence among two instruc-

ions in a given precedence order such that the execution of the

arlier one affects the timing behaviour of the later one. Obviously,

he execution time of the earlier one determines when the later

ne can start executing, but our notion of causal dependence actu-

lly means that the latency a given instruction not only affects the

ime at which the later one starts but also its duration.

We differentiate two types of causal dependences among a

ource (preceding) instruction and a target (subsequent) instruc-

ion that do not prevent the latter instruction from exhibiting a

BPTA-compliant timing behaviour across program runs.

• Systematic dependence : The ETP of the target instruction is af-

fected by the execution of the source instruction. This effect

may alter the ETP of the target instruction in any way like, for

instance, shifting some latencies in its ETP or making new la-

tencies appear in the ETP of that instruction. None of this how-
ever causes the target instruction to lose its MBPTA-compliant

behaviour.

This can be better understood with an example. Recall the goal

of MBPTA is to control sources of execution time variability

in such a way that the observations taken during the analy-

sis stage can be used to upper bound probabilistically the tim-

ing behaviour of the program during operation. Let us consider

two instructions, one source and one target, on a given basic

block, bb 1. Let us also assume that the ETP of the target instruc-

tion is ET P isol
target = 〈 (t 1 , t 2 , t 3) , (p 1 , p 2 , p 3) 〉 if it runs in isolation.

Further assume that the execution of the target instruction as

part of the basic block bb 1, hence in the presence of the source

instruction, is ET P bb1
target = 〈 (t 1 , t 2 , t

′
3
, t 4) , (p 1 , p 2 , p

′
3
, p 4) 〉 . In this

new ETP the probability of t 3 changes and a new latency t 4 can

be experienced. In this example the target instruction, which

in fact represents a dynamic instruction, is executed as part of

the basic block. Such target (dynamic) instruction is attached to

a single ETP, ET P bb1
target , irrespective of this being different from

the ETP holding when the instruction was executed in isolation.

Further, this ETP stays constant during analysis and operation.

Therefore, all observations of the execution time of the target

instruction as part of this basic block are observations of this

ET P bb1
target . The key trait here is that the ETP must hold for every

dynamic instruction over successive executions of the program.

In the previous example, if the initial conditions are fixed, the

target dynamic instruction in bb 1 will have a single ETP.

• Probabilistic dependence : The execution of the source instruc-

tion has a probabilistic effect on the ETP of the target instruc-

tion. This is the case of memory accesses to a time randomised

cache. A probabilistic causal dependence causes that dynamic

instruction to suffer a transformation in its ETP. However, given

that the causal effect in the target instruction is probabilis-

tic, this is equivalent to applying a transfer function transf ()

that takes as an input an ETP and provides as an outcome an-

other ETP tran f (ET P isol
target) = ET P bb

target . Again, the key trait is that

the target (dynamic) instruction is always subject to the same

ET P bb
target thus enabling MBPTA to properly capture its timing ef-

fects at analysis time analogously as they will occur during op-

eration.

Overall, on a PTA-compliant platform, any hardware and soft-

are state with bearing on the execution time after of any dy-

amic instruction of the program is reached with a given proba-

ility. Therefore, one can build the ETP of every single program path

hat can be traversed by an observable execution by collecting the

xecution time of each final state of that system and its corre-

ponding probability of occurrence. Therefore, the execution time

f the program as a whole (seen as the traversal of a given path)

as an ETP and is, hence, a random variable with i.i.d. properties.

.6. More complex single-core processor architectures

We have shown that jittery deterministic resources need to be

edesigned to make their timing behaviour amenable to MBPTA by

onstruction. This can be done by either randomising their tim-

ng behaviour or enforcing them to their worst-case latency. Re-

ources with probabilistic latency perfectly fit the MBPTA princi-

les. However, jittery processor resources exist that do not easily

t in the taxonomy we used in Section 4.2 . This is the case of

esource buffers, also known as first-in first-out (FIFO) queues or

imply buffers.

A buffer resource may stall if it gets full, which increases the

atency of the requests that use it. Stalls across pipeline stages

ay for example occur owing to contention for buffer space; those

talls would be real enough to fear, but difficult to predict causally.

294 L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302

w

t

t

c

m

h

i

o

o

m

h

i

t

t

y

e

b

T

E

t

b

f

m

o

r

c

t

w

l

l

w

l

t

t

b

o

o

l

s

c

〈

m

r

t

o

t

T

H

n

c

d

a

c

T

r

t
The main characteristic of buffer resources, however, is that

they are not sources of jitter but rather jitter propagators [21] . The

intuition here is that if all jitter that occurs in a processor is prob-

abilistic, that is, it is solely due to time-randomised resources, any

combination of random events has a given probability of occur-

rence. Now, as every single combination of events causes the pro-

gram to incur a distinct execution time, each execution time has a

distinct probability of occurrence. For each combination of random

events, resource buffers may get full and consequently increase the

execution time of the program. However, buffers themselves do

not introduce any change in the probability distribution of random

events. The presence of buffers may well cause the execution time

of the program to vary, but each execution time continues to have

a true probability of occurrence, which is what MBPTA requires.

In general, all hardware resources can be made MBPTA-

compliant as long as they either do not introduce jitter on their

own (hence they are fixed-latency or else just jitter propagators),

their jitter can be upper-bounded or else it can be randomised.

4.7. Multicore processor architectures

In single-core architectures, the execution time of a software

program is influenced by (1) the initial processor state when the

program starts executing – which in turn is affected by previous

execution, (2) the RTOS interferences that it may suffer during ex-

ecution, (3) the input data that influence control flow or data-

dependent jitter in jittery processor resources, and (4) the ran-

domisation occurring in processor resources.

The effect of initial conditions, (1) above, can be taken into ac-

count by flushing the state of all stateful resources (e.g., caches)

prior to the execution of the program. For the RTOS, state-of-the-

art solutions exist to make its interference amenable to probabilis-

tic analysis [11] .

The effect of input data on the control flow of the program is

controlled by state-of-the-art techniques that work in unison with

MBPTA [19] . For instance, authors in [19] show how to pad exe-

cution time measurements at basic block granularity to discount

the benefit obtained by executing specific paths when that bene-

fit would not be obtained through other paths. The effect of in-

put data on the latency of processor instructions using resources

with data-dependent jitter as well as the jitter introduced by the

randomised hardware resources are controlled with standard PTA

techniques [5] .

In multicore architectures, in addition to all the sources of ex-

ecution time variability that appear in a single-core architecture, a

further one arises: inter-task interference. 5

In general in single-core architectures, given two instructions i x
and i y of the same program, where the subscripts determine the

order in which each instruction is executed into the processor, i y
may have a potential impact on the execution time of i x only if

y < x , meaning that i y executes prior to i x . In a multicore, when

several programs run in parallel, the execution time of one instruc-

tion i
T 1
x in program T 1 may be affected by any other instruction

i
T j
y from any program T j that may run at the same on any other

available core. If precedence or exclusion constraints are set in the

system such that T j can be asserted to not execute in parallel T 1 ,

then the inter-task interference generated by i
T j
y does not affect i

T 1
x .

If no such assertion can be made instead, T 1 and T j can execute in

any order. Hence they may execute in parallel on different cores, so

that i
T j
y may cause inter-task interference on i

T 1
x . It is evident that
5 This term does not include the interference that in single core processor occurs

in caches and TLBs owing to context switches. This is intentional as this overhead

can be quantified probabilistically in the context of MBPTA [22] .

r

f

e

i
e cannot conceivably capture the effect that any single instruc-

ion of any task i
T k
j

may have on any other instruction of any other

ask i T m
l

in the system. Should this be required, MBPTA would be-

ome intractable. To prevent this, the design of MBPTA-compliant

ulticores must ensure that the worst effect that one program can

ave on the execution of any other program owing to inter-task

nterference can be probabilistically bounded.

Interestingly, the MBPTA-compliant design principles already

utlined for single-core processors extend quite well to the design

f multicore architectures. The resources for which this approach is

ost advantageous are those that are shared upward the processor

ardware architecture off the core, where they may cause massive

nter-task interference. Next we review them in detail.

Shared bus . The authors of [23] show that the arbitration la-

ency of a shared bus can either be upper bounded at analysis

ime or randomised so that the timing behaviour observed at anal-

sis matches or upper-bounds that which may emerge during op-

ration. In fact, upper bounding the bus arbitration latency has

een shown to be viable also for time-deterministic systems [24] .

his approach ensures that the latencies and probabilities of the

TP derived for this resource already account for worst-case in-

eraction in this shared resource. For instance, if latency is upper-

ounded, the ETP accounting for arbitration delay will have the

orm ET P bus = 〈 (latbus max) , (1 . 0) 〉 , where latbus max stands for the

aximum bus arbitration latency. Alternatively, if random (lottery)

r random permutations arbitration is used, ETP can also be de-

ived as already proven in [23] .

Shared memory controller . The same approach used for buses

an be applied to the arbitration in the memory controller. Thus,

he latency of a shared memory controller can be upper bounded,

hich is fine for MBPTA compliance. Again, that measure is in

ine with findings for time-deterministic systems [25] . Thus, if

atency is upper-bounded, the ETP for the memory controller

ill have the form ET P memctrl = 〈 (lat memct rl max) , (1 . 0) 〉 , where

atmemctrl max stands for the maximum memory controller arbi-

ration latency. Note that random (lottery) or random permuta-

ions arbitration can also be alternatively used since ETPs exist for

oth policies [23] . However, memory latency can also vary based

n the last operation performed due to the fact that the latency

f a read (or write) operation varies depending on whether the

ast operation was a read or write operation. Authors in [25] de-

cribe how to upper-bound memory access latency, so an ETP

an also be derived for this component with the form ET P DRAM

=
 (latDRAM max) , (1 . 0) 〉 , where latDRAM max stands for the maximum

emory access latency. Note that in this case, latency cannot be

andomised since it depends on non-probabilistic events such as

he particular memory accesses performed by tasks running in

ther cores, which are unlikely to be known at analysis time.

Shared cache . Cache partitioning has been proved to be a prac-

ical way to attenuate the interference effects from cache sharing.

his solution was first shown for time-deterministic systems [24] .

owever, since it eliminates all cache conflicts among tasks run-

ing on different cores, it cancels out the multicore side of the

ache problem, and allows using, for each multicore, the solutions

evised for single-core processors.

An alternative approach has been put forward in [26] , where

 hardware feature is proposed to limit the eviction frequency

aused by individual tasks on a shared time-randomised cache.

hat mechanism allows controlling inter-task interference without

esorting to cache partitioning, which reduces the pWCET against

he partitioned case, as long as inter-task interference distributes

andomly across sets. The rationale behind that mechanism is as

ollows: during the analysis phase the program under analysis is

xposed to a given eviction rate in the shared cache. Then, dur-

ng operation such eviction rate is not allowed to be exceeded by

L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302 295

t

u

d

o

n

5

s

a

a

m

e

T

t

m

m

c

p

w

t

5

fl

o

o

w

d

o

p

p

m

c

r

5

p

b

〈

d

m

c

m

e

c

h

m

t

t

j

p

t

i

i

a

r

t

Fig. 4. Reference processor architecture.

〈

o

E

p

h

p

W

i

W

p

6

6

o

i

s

m

w

l

1
asks in other cores. Hence, the ETP experienced at analysis time

pper-bounds operation conditions. In other words, the miss rate

uring operation in the shared cache can only be lower than the

ne during the analysis phase. Therefore, the multicore case does

ot differ from the single-core case for the purposes of MBPTA.

. Software-only alternatives

Recently, for some (COTS) time-deterministic hardware re-

ources (e.g., caches) software-only solutions have been shown to

chieve the effects of the hardware design proposals presented

bove. So far, the design of those solutions has focused on cache

emories [27,28] , seeking the same type of MBPTA-related ben-

fits as warranted by hardware-implemented random placement.

he essence of those solutions is to place the data and the code of

he application at random locations in memory so that their place-

ent in time-deterministic caches that implement modulo place-

ent becomes also random and thus, MBPTA requirements for

aches are met. Obviously, this random placement is entirely trans-

arent to the application and has no functional effect on it. Next

e review those solutions and compare their properties against

heir hardware-only correspondents.

.1. Software-only random placement

Software-only random placement aims at causing cache con-

icts in sets to occur randomly by placing objects at random mem-

ry locations. For instance, if an object is placed in a random mem-

ry location Loc , given a cache with S cache sets, the particular set

here the object will be placed in cache, Loc mod S, is also ran-

om.

At the present state of the art, software-only random placement

perates on individual software functions (i.e., syntactically defined

rogram fragments), static variables, and stack frames. As some

adding is required for those entities to be moved in isolation, the

emory footprint of the program grows as a result of the appli-

ation of this technique. Current experience shows [27,28] that the

esulting bloat may be contained within acceptable limits.

.2. Software vs hardware solutions

Hardware solutions place each cache line in an inde-

endent and random location in cache. Therefore, one can

uild an ETP for cache accesses of the form ET P HW cache =
 (l 1

j
, l 2

j
. . . , l k

j
) , (p 1

j
, p 2

j
, . . . p k

j
) 〉 where latencies correspond to the

ifferent outcomes of the cache access (e.g., cache hit and cache

iss) and probabilities depend on the previous (random) events in

ache.

Conversely, software-only solutions do not randomise the place-

ent of cache lines independently. Instead, cache lines in differ-

nt objects have a true probability of conflicting in cache, whereas

ache lines inside a given object have a fully deterministic be-

aviour among them. Still, this does not break MBPTA require-

ents since those deterministic behaviours observed at analysis

ime stay exactly the same during operation as the memory loca-

ion of a given object is randomised but the lines that form the ob-

ect retain their position relative to one another. Hence, there is a

robability [29] that two lines from different objects are placed in

he same cache set and thus, are able to evict each other. However,

f those two lines belong to the same object, the probability of be-

ng in the same set is either 0 or 1 depending on whether their rel-

tive alignment is different or matches the size of one cache way

espectively.

Still, probabilities can be attached to all events and

hus, one can also build an ETP of the form ET P =
SW cache
 (l 1
j
, l 2

j
. . . , l k

j
) , (p 1

j
, p 2

j
, . . . p k

j
) 〉 for cache accesses under software-

nly random placement. While latencies will be the same for

TP HWcache and ETP SWcache , probabilities will not, given that the

robabilities of the different latency outcomes differ across

ardware and software-only solutions.

It is important to appreciate however, that the actual values of

robabilities need not be known in order for MBPTA to be applied.

hat is needed is that MBPTA requirements are satisfied, which

s indeed the case for both hardware and software-only solutions.

e can therefore contend that software-only solutions for cache

lacement can also be regarded as MBPTA compliant.

. Case study

.1. Designing a MBPTA-compliant processor architecture

The core architecture shown in Fig. 4 is an enhanced version

f LEON3 processor used by the European Space Agency and its

ndustrial suppliers in a number of missions [30] .

The said processor consists of a pipeline with the following

tages: fetch (F), decode (D), register access (RA), execution of non-

emory operations (Exe), DL1 access (M), Exceptions (Exc) and

rite back (WB). The operations occurring in each stage are as fol-

ows:

• Fetch stage. The IL1 is accessed (and the instruction TLB, ITLB,

on a IL1 miss) to obtain the next instruction to be executed.

Branches are predicted to be taken always.

• Decode stage. Instructions are decoded. This stage is, in essence,

an extra delay in the pipeline.

• Register access. Instructions read their input registers with fixed

latency.

• Execute stage. Non-memory instructions are executed with a

fixed latency that depends solely on the type of operation. Al-

though originally floating-point division (FDIV) and floating-

point square root (FSQRT) instructions had input data depen-

dent latencies, they have been modified as described later.

Memory operations compute their addresses.

• Memory stage. Load instructions access the DL1 (and data TLB,

DTLB, on a DL1 miss). Indeed, they also access the write buffer.

Store operations are placed in the write buffer for their of-

fline processing. If the write buffer is full the pipeline will be

blocked.

• Exception stage. Exceptions are managed here.

• Write-back stage. Results (if any) are sent to the register file.

The IL1 and DL1 are 16KB in size, 4-way set-associative, with

6B/line IL1 and 32B/line DL1. All caches implement random place-

296 L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302

Table 1

Description of the EEMBC benchmarks.

Name Description

a2time Angle to Time Conversion

basefp Basic Integer and Floating Point

bitmnp Bit Manipulation

cacheb Cache “Buster”

canrdr CAN Remote Data Request

aifft Fast Fourier Transform (FFT)

aifirf Finite Impulse Response (FIR) Filter

aiifft Inverse Fast Fourier Transform (iFFT)

aiirflt Infinite Impulse Response (IIR) Filter

matrix Matrix Arithmetic

pntrch Pointer Chasing

puwmod Pulse Width Modulation (PWM)

rspeed Road Speed Calculation

tblook Table Lookup and Interpolation

ttsprk Tooth to Spark

v

c

o

t

o

s

F

o

w

t

t

w

6

c

d

t

o

o

o

t

i

c

c

w

T

E

E

t

s

s

e

o

(

(

f

l

b

1

l

c

b

t

f

E

t
ment and replacement policies presented in [31] . The DL1 is write-

through and no-write-allocate, so all store operations are prop-

agated to memory. ITLB and DTLB are 8-entry fully-associative

random-replacement, with 4KB page size, and their misses are

handled by a hardware page-walker.

A demonstration prototype of the above processor design has

been implemented in an Altera Stratix IV GX EP4SGX230 FPGA de-

vice operating at 80 MHz.

For its evaluation we use the EEMBC Automotive Bench-

marks [32] , which is a well-known benchmark suite representative

of some existing real-time automotive functionalities. The descrip-

tion of each benchmark is conveniently provided in Table 1 for the

sake of completeness.

6.2. Hardware modifications

In the quest for MBPTA-compliance, we have modified cache

placement and replacement policies, as well as selected floating-

point (FP) operations with a comparatively high jitter dependent

on the input parameters. In the original processor design, all

caches (DL1, IL1, DTLB, ITLB) implemented modulo placement and

least recently used (LRU) replacement, whose sensitivity to his-

tory of execution makes them unable to meet the MBPTA prereq-

uisites [31] unless appropriate software support is provided to the

application [27] .

Random placement and replacement have been implemented

as described in [31] . In particular, random placement implements

the latest design as described in [33] . Random replacement relies

on the use of a pseudo-random number generator. While the one

described in [33] has been shown to be convenient, the one de-

scribed in [34] has appeared to generate random numbers with

similar quality while being amenable to a much easier implemen-

tation on a FPGA.

For the FP unit we concentrated on the FDIV and FSQRT opera-

tions, whose latency jitter is highly dependent on the input param-

eters. The FDIV latency varies between 15 and 18 cycles, whereas

the FSQRT latency varies between 23 and 26 cycles. Table 2 pro-
Table 2

Input value examples triggering different latencies for FDIVD

Op. Lat Input 1

hexa decimal

FDIVD 15 0 × BFF0 0 0 0 0 0 0 0 0 0 0 0 0 -1.0

FDIVD 18 0 × 0 01ABC0 0 0 0 0 0 0 010 3 . 717(. . .) · 1

FSQRTD 23 0 × 4030 0 0 0 0 0 0 0 0 0 0 0 0 16.0

FSQRTD 26 0 × 40 080 0 0 0 0 0 0 0 0 0 0 0 3.0
ides examples of input values leading to different latency out-

omes.

Since, from the processor design perspective, the actual latency

f those operations does not occur with a given probability, and all

hat one can infer from the application program is the frequency

f their execution, which is of no use for MBPTA, the solution de-

cribed in Fig. 3 (b) needs to be applied. The implementation of

DIV and FSQRT has therefore been modified so that they always

perate in 18 and 26 cycles respectively in the analysis mode. As

e noted earlier, modifications of this kind cause the pWCET es-

imates to incur some (though limited) pessimism, but they make

he corresponding hardware resources MBPTA compliant, which is

hat we are after here.

.3. Deriving ETP

In view of the hardware modifications discussed above, the pro-

essor architecture of interest includes two main sources of ran-

omised jitter, TLB and caches, each of which makes random con-

ributions to the cumulative execution time of a program running

n it.

We differentiate between two types of instructions: those that

perate on the core (e.g. add, div, mult); and those that operate

n memory (e.g. load, store). Core operations take a variable la-

ency depending on whether they hit in the instruction cache and

nstruction TLB, whose ETP (ETP IL 1 and ETP ITLB respectively) are

omposed in parallel, and memory latency, which is accessed in

ase of a miss and whose ETP (ETP DRAM

) is composed sequentially

ith the composition of the instruction cache and the instruction

LB. This leads to what we term the ETP of the front-end (fend):
 T P f end = f s

(
f p (E T P IL 1 , E T P IT LB) , E T P DRAM

)
. Then, the resulting ETP,

TP fend needs to be composed with the ETP of the buffer between

he front-end and the back-end (ETP buf 1), the ETP of the decode

tage (ETP dec), the buffer after decode (ETP buf 2), the register access

tage (ETP ra), the buffer after register access (ETP buf 3), the core op-

rations (ETP exec), the buffer after execution (ETP buf 4), the mem-

ry operations stage (ETP mem

), the buffer after memory operations

 ETP buf 5), the exceptions stage (ETP excep , the buffer after exceptions

 ETP buf 6) and the write-back stage (ETP wb).

While ETP dec , ETP ra , ETP exec , ETP mem

, ETP excep and ETP wb have the

orm < (l), (1.0) > for core operations, ETP for buffers have as many

atencies as potential stalls they may produce, and their proba-

ility vector is 0.0 for all latencies but one, whose probability is

.0. Which latency has probability 1.0 is determined by the state

eft by previous instructions. More details about how buffers in-

rease execution time without expanding the number of proba-

ilistic states can be found in [21] . If all actions occurred sequen-

ially (thus omitting interactions in the buffer to memory), the ETP

or core operations would be as follows:

T P core = f s
(
E T P f end , E T P bu f 1 , E T P dec , E T P bu f 2 ,

E T P ra , E T P bu f 3 , E T P exec , E T P bu f 4 , E T P mem

,

E T P bu f 5 , E T P excep , E T P bu f 6 , E T P wb

)
(1)

Memory operations have the same ETP as core operations for

he different stages and buffers except for the memory stage
and FSQRTD.

Input 2

hexa decimal

0 × 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 .0

0 −308 0 × 3FF0 0 040 0A07610C 1 .0 0 0 06107(…)

L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302 297

(

d

p

i

E

m

m

E

D

c

h

U

d

q

r

a

b

p

g

E

b

E

r

(

6

t

e

c

t

t

T

f

o

u

[

u

u

w

s

i

K

c

e

p

t

f

m

g

v

r

b

b

a

Table 3

Independence and identical distribution test results (2nd and 3rd columns), and

average execution time and pWCET bounds of the complex MBPTA-compliant pro-

cessor vs. an equivalent conventional processor (4th, 5th and 6th columns).

Benchmarks Statistical tests Timing analysis results

Inde- Identical Average Max pWCET

pence distribution Exec. Time Exec. Time 10 −15

a2time 0 .31 0 .34 0 .10% 1 .79% 8 .44%

basefp 0 .85 0 .91 0 .00% 0 .06% 0 .36%

bitmnp 0 .97 0 .77 –0 .01% 0 .12% 0 .26%

cacheb 0 .87 0 .06 0 .02% 0 .41% 3 .27%

canrdr 0 .18 0 .82 0 .00% 0 .00% 0 .12%

matrix 0 .25 0 .70 0 .00% 0 .01% 0 .11%

pntrch 0 .79 0 .93 0 .00% 0 .00% 0 .12%

puwmod 0 .99 0 .85 0 .00% 0 .00% 0 .12%

rspeed 0 .16 0 .50 0 .00% 0 .00% 0 .12%

tblook 0 .75 0 .86 0 .07% 0 .86% 2 .80%

ttsprk 0 .36 0 .80 0 .00% 0 .03% 0 .24%

Fig. 5. pWCET estimates for the a2time benchmark program.

Fig. 6. pWCET estimates for the cacheb benchmark program.

6

m

m

e

b
 ETP mem

). The memory latency, instead of depending on ETP mem

,

epends on the time of the data memory path (dmpath) com-

osed by the data cache and the data TLB, which are accessed

n parallel, and memory latency, which is accessed sequentially:

 T P dmpath = f s
(

f p (E T P DL 1 , E T P DT LB) , E T P DRAM

)
. Therefore, the ETP for

emory operations (still omitting interactions in the buffer to

emory) is as follows:

T P mem

= f s
(
E T P f end , E T P bu f 1 , E T P dec , E T P bu f 2 , E T P ra ,

E T P bu f 3 , E T P exec , E T P bu f 4 , E T P dmpath ,

E T P bu f 5 , E T P excep , E T P bu f 6 , E T P wb

)
(2)

Finally, we must consider that the misses occurring in the

L1/DTLB and in the IL1/ITLB are serialised in the buffer that

onnects the core to the memory controller. Again, this buffer

as an ETP of the same form as any other buffer (ETP bufDRAM

).

nlike previous buffers, where an instruction could only be

elayed due to activities of older instructions, here data re-

uests from some instructions may get delayed by instruction

equests of younger instructions. Still, the buffer can only have

 finite number of states and each state will have a proba-

ility that, hypothetically could be derived by expanding the

robability tree from the beginning of the execution of the pro-

ram. Thus, ETP bufDRAM

should be composed serially with the

TP of the memory accesses, so ETP fend and ETP dmpath should

e E T P f end = f s
(

f p (E T P IL 1 , E T P IT LB) , E T P bu f DRAM

, E T P DRAM

)
and

T P dmpath = f s (f p (ETP DL 1 „ ETP DTLB), . . ETP bufDRAM

, ETP DRAM

) for a cor-

ect calculation of the ETP of core (Eq. 1) and memory operations

 Eq. 2).

.4. Checking the i.i.d. hypothesis

The existence of an ETP for individual instructions ensures that

he program execution times exhibit the prerequisite i.i.d. prop-

rty of MBPTA. With MBPTA, we empirically ascertain whether this

laim holds, by using proper i.i.d. tests applied on the execution

imes of running EEMBC benchmarks [32] on the processor archi-

ecture.

To assert independence we use the Ljung–Box test [35] (LB).

he Ljung-Box test is a powerful method that tests autocorrelation

or different lags simultaneously, so for each datum with the next

ne (lag 1), the one after (lag 2), and so on and so forth. In partic-

lar we test all lags up to 20 as shown appropriate by authors in

36] .

To check that the identical distribution hypothesis stands, we

se the Kolmogorov–Smirnov (KS) goodness-of-fit test [37] . We

se a 5% significance level (a typical value for this type of tests),

hereby absolute values obtained with both the LB and KS tests

hould be above the threshold (0.05) to assert independence and

dentical distribution respectively. In particular, both tests, LB and

S, deliver values in the range [0,1]. Any value below the signifi-

ance level (0.05) rejects the hypothesis, and cannot reject it oth-

rwise.

For each benchmark, less than 10 0 0 runs were needed for each

rogram, in line with previous experience [4,31] . Running 1,0 0 0

imes a program whose typical execution time is in the order of

ew milliseconds (as typical of CRTES) implies that pWCET esti-

ates for that program can be obtained in a few seconds alto-

ether, which is a rather affordable overhead for an industrial de-

elopment timescale. Under the heading ‘Statistical tests’ Table 3

eports the results of both tests for all benchmarks. Since values for

oth tests, LB and KS, are always above the significance level, 0.05,

oth tests are passed in all cases, which proves that the example

rchitecture meets the i.i.d. requirement of our MBPTA approach.
.5. pWCET

In this section we show the type of probabilistic WCET esti-

ates that can be obtained for the example architecture, with the

ethod presented in [4] . The black line reaching arbitrarily low

xceedance probabilities in Figs. 5 and 6 plots the pWCET distri-

ution obtained for the a2time and cacheb benchmark programs

298 L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302

t

t

a

t

t

e

p

m

c

d

w

o

W

t

f

t

p

e

c

t

t

t

s

o

b

s

S

i

p

c

a

f

t

M

7

a

t

t

a

i

T

fl

i

r

p

s

s

t

f

[

a

e

S

a

a

i

t

n
of the EEMBC suite, run on the example architecture. The red line

(reaching only down to 10 −3 exceedance probability) plots the em-

pirical 1-CDF of the 10 0 0 runs performed for these benchmarks.

The x -axis shows the execution time and the y -axis the probabil-

ity of exceeding it. Assuming for the sake of argument that an

exceedance event represents a timing failure in the system, we

may concentrate on exceedance probabilities of 10 −12 and 10 −15

per run, well within acceptable probabilities of failure in the safety

regulation of automotive and avionics systems.

Increasing the exceedance probability (moving up in the y-

axis) does not translate into large increases in the WCET esti-

mates (moving right in the x -axis); quite the contrary in fact, as

the pWCET curves appear to have a very steep slope. In general,

the larger the number of random events entailed in a run (e.g.,

the number of cache accesses), the less likely that abrupt perfor-

mance variations occur other than (if at all) at extreme exceedance

thresholds. Thus, execution time variation is moderate and the

pWCET curve is steep.

As the example processor architecture demonstrably meets the

requirements needed for MBPTA, it can be argued that MBPTA can

be applied to performance-aggressive hardware features. Interest-

ingly, the MBPTA process stays unchanged in procedure and effort,

while the pWCET estimates become considerably smaller (up to 9%

in the specific experiment) than the engineering margin often ap-

plied in measurement-based deterministic timing analysis by in-

dustry (20%) in the case of [38] .

To the best of our knowledge, complex architectures including

caches, TLB, and staged pipelines with buffers, have not been unre-

strictedly used with static timing analysis, unless with cautionary

restrictions that mitigate the rapid degradation in the tightness of

the WCET estimates that arise from resources being used whose

state cannot be determined exactly. MBDTA also is at a loss with

those processor architectures, because no suite of observation runs

can possibly cover the whole state space of all resources exhaus-

tively. Those techniques are also known to be fragile even to the

way the program is built, because small changes in the way pro-

gram objects are allocated in memory, which are hard to capture

in test suites, may lead to abrupt changes in execution time.

6.6. MBPTA-compliant architectures performance

The above results show that the proposed MBPTA techniques,

united with the proposed modification to the design of processor

resources, enable CRTES designers to aim at considerably higher

levels of guaranteed performance.

Notably, there is a further angle of interest to quantify the ben-

efit of the MBPTA approach discussed in this paper. Under the

heading ‘Timing analysis results’, Table 3 reports average execu-

tion times and pWCET estimates for an exceedance threshold of

10 −15 per run, obtained for the EEMBC benchmark programs on the

example processor architecture. The values are normalised against

those obtained running the same programs on an analogous ar-

chitecture that implements modulo placement LRU replacement

caches and TLB instead of random placement and replacement, and

where the latency behaviour of the FDIV and FSQRT operations had

been set to operation mode, hence not set to the worst-case out-

come as in the analysis mode.

For instance, cacheb executes in 7,150,507 cycles in the non-

time-randomised architecture. The 10 0 0 runs of cacheb on our

time-randomised architecture take 7,152,211 cycles on average

(0.02% more than without time randomisation) and 7,179,573 cy-

cles at most (0.41% more than the actual execution time without

time randomisation). The pWCET curve at an exceedance thresh-

old of 10 −15 per run is 7,384,084 cycles, as shown in Fig. 6 (3.27%

higher than the actual execution time without time randomisa-

tion).
The average execution time of the MBPTA-compliant architec-

ure is roughly the same as for the time-deterministic alternative,

hus showing that time randomisation fares well even in the aver-

ge case. If we compare the maximum observed execution time in

he MBPTA-compliant architecture, it is only slightly above that of

he time-deterministic alternative. Even more interesting, pWCET

stimates are, on average, only up to 9% higher than the average

erformance obtained for a processor architecture implementing

odulo and LRU as the placement and replacement policies for all

aches, and without upper bounding FDIV and FSQRT latencies.

Whereas the WCET values for those programs on the time-

eterministic architecture are not available (computing them

ould require the porting of static timing analysis tools, which was

utside of the scope of this work), relevant literature shows that

CET values are intrinsically very conservative and can be many

imes greater than the average case [39] . Our study shows that,

or our MBPTA-compliant design, the observed inflation was up

o 8.44% for a2time , which allows arguing that MBPTA-compliant

rocessors are viable for CRTES industry, thus below the usual 20%

ngineering margin applied on top of the maximum observed exe-

ution time [38] . The pWCET estimates are only up to 8.44% higher

han the actual execution time on a time-deterministic architec-

ure because the platform is properly designed so that the instruc-

ion and data sets of the programs fit in IL1 and DL1 caches re-

pectively, thus experiencing very few misses, and FDIV and FSQRT

perations are extremely infrequent in general, and in the EEMBC

enchmarks in particular.

It is worth noting that the ETPs for individual dynamic in-

tructions in our processor are non-independent across them (see

ection 4.5). This occurs because random-placement caches (as an

nstance of a state-sensitive time-randomised resource) create de-

endence across instructions in the same run since any (random)

ache set conflict occurring during a particular run holds system-

tically across the whole run. Such dependence across ETPs for dif-

erent instructions is captured in the observations taken at analysis

ime, and are accounted for in the pWCET estimate derived with

BPTA.

. Related work

There is an increasingly rich literature on the problem of WCET

nalysis. One substantial part of the state of the art, with more his-

ory and tradition, addresses Deterministic Timing Analysis (DTA)

echniques, which include its static and measurement-based vari-

nts, SDTA and MBDTA respectively. The state of the art in DTA

s comprehensively surveyed in [2] , so we omit discussing it here.

he other, more recent, but rather vibrant, considers the various

avours of PTA.

The static variant of MBPTA, known as SPTA, has been stud-

ed for relatively simple processor architectures that use time-

andomised caches [5,40,41] . Authors in [42] present the first com-

rehensive comparison among SDTA, SPTA and MBPTA techniques

howing that if enough information is had for the timing analy-

is, whether one technique is superior to the others depends on

he particular characteristics of the program under analysis. There-

ore, there is not a dominant technique. However, as detailed in

8] , techniques such as SDTA and SPTA are more sensitive to the

mount of information had for the timing analysis process, with

ffects on either tightness or reliability. This relates to the fact that

DTA and SPTA need a detailed timing model of the hardware and

dditional flow-facts describing the operation of the software such

s value ranges and memory addresses.

Conversely, MBPTA, the focus of this paper, requires amounts of

nformation comparable to those obtained by end users in the con-

ext of MBDTA, but it scales to arbitrarily complex software run-

ing on top of high-performance hardware easing the collection

L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302 299

o

u

p

e

[

M

d

e

m

w

o

a

d

c

f

d

E

a

d

M

p

m

m

f

d

e

8

a

d

a

t

t

t

o

f

e

s

u

v

e

o

a

t

t

a

b

t

b

b

i

a

p

g

A

n

a

w

S

E

E

p

t

k

t

R

 ,

[

[

[

[
f evidence usable for certification purposes [43] . MBPTA has been

sed in the context of time-randomised architectures for single-

ath programs [4,44] and multi-path programs [6,19] .

At hardware level, random placement was proposed in [31] to

nable the use of set-associative caches for MBPTA. [45] and

16] discuss the reliability of pWCET estimates obtained with

BPTA on top of random placement caches. In particular authors

iscuss representativeness related to the fact that some random

vents may have a low probability to be captured in the measure-

ent runs, yet have a high impact on execution time. The latter

ork [16] and other recent works [17] conduct thorough analysis

f those scenarios in the context of MBPTA and propose ways to

ddress them.

EVT has been applied to time deterministic architectures to

erive execution time bounds [46] . While randomisation – and

reating deterministic bounds to jitter resources – is not needed

or the application of EVT, deterministic architectures seriously

ifficult deriving a representativeness argument. That is, with

VT-only approaches, building a representativeness argument that

nalysis-time execution conditions capture those that can arise

uring operation is completely left to the user. Instead, with

BPTA-compliance – through randomisation and deterministic up-

er bounding – the space of potential execution conditions is auto-

atically, transparently and randomly sampled as the user makes

ore runs. Hence, representativeness just requires the user to per-

orm enough runs to probabilistically capture the impact of the

ifferent sources of jitter, rather than the user designing specific

xperiments to reach that goal [47] .

. Conclusions and future work

In this paper we have shown that in order for MBPTA to be us-

ble economically and assuredly, the target processors should be

esigned such that every program instruction have a distinct prob-

bilistic ETP. We have shown that this ETP can be built incremen-

ally from the timing behaviour of the processor resources used by

hat instruction.

Using MBPTA on MBPTA-friendly processor architectures, the

iming interference between competing applications, which is one

f the key problems in mixed-criticality systems, can be studied

rom the angle of exceedance probability: the probability that the

xecution time of a program exceeds a given threshold. We have

hown that this threshold is tight, owing to the natural atten-

ation of multiple worst-case events generated as i.i.d. random

ariables. We have shown that the probabilistic worst-case ex-

cution time bounds obtained with the proposed technique are

nly marginally greater (around 12% in our case study) than the

verage-case performance of time-deterministic processor architec-

ures. This allows achieving higher guaranteed (feasible) utilisa-

ion for mixed-criticality systems, because little would be lost, if

t all, in raw processor performance, and a great reduction would

e had in the pessimistic over-provisioning incurred with tradi-

ional techniques. The use of Extreme Value Theory allows setting

ounds for execution-time budgets at levels of exceedance proba-

ility that satisfy the system assurance requirements. Normal mit-

gation measures (i.e. adding some form of redundancy, setting up

 safe state, etc.) can be taken if protection guarantees had to be

rovided for higher-criticality applications at conditions past the

iven exceedance threshold.

cknowledgment

This work has received funding from the European Commu-

ity’s Seventh Framework Programme [FP7/2007-2013] under grant

greement 611085 (PROXIMA, www.proxima-project.eu). Support

as also provided by the Ministry of Science and Technology of
pain under contract TIN2015-65316-P and the HiPEAC Network of

xcellence. Leonidas Kosmidis is funded by the Spanish Ministry of

ducation under FPU grant AP2010-4208. Jaume Abella has been

artially supported by the MINECO under Ramon y Cajal postdoc-

oral fellowship number RYC-2013-14717. The authors wish to ac-

nowledge Michael Houston, Liliana Cucu–Grosjean and Luca San-

inelli for contributing to the genesis of this work.

eferences

[1] P. Clarke, Automotive chip content growing fast, says gartner, in: http://www.

eetimes.com/electronics-news/4207377/Automotive- chip- content- growing- fast
2011.

[2] R. Wilhelm , J. Engblom , A. Ermedahl , N. Holsti , S. Thesing , D. Whalley ,
G.Bernat , C. Ferdinand , R.Heckmann , T. Mitra , F. Mueller , I. Puaut , P. Puschner ,

G. Staschulat , P. Stenströem , The worst-case execution time problem: overview
of methods and survey of tools, Trans. Embed. Comput. Syst. 7 (3) (2008) 1–53 .

[3] J. Hansen , S. Hissam , G.A. Moreno , Statistical-based WCET estimation and val-

idation, in: the 9th International Workshop on Worst-Case Execution Time
(WCET) Analysis, 2009 .

[4] L. Cucu-Grosjean , L. Santinelli , M. Houston , C. Lo , T. Vardanega , L. Kosmidis ,
J. Abella , E. Mezzetti , E. Quiñones , F.J. Cazorla , Measurement-based probabilis-

tic timing analysis for multi-path programs, in: Euromicro Conference on Re-
al-Time System (ECRTS-12), 2012 .

[5] F.J. Cazorla , E. Quiñones , T. Vardanega , L. Cucu , B. Triquet , G. Bernat , E. Berger ,

J. Abella , F. Wartel , M. Houston , L. Santinelli , L. Kosmidis , C. Lo , D. Maxim ,
PROARTIS: Probabilistically analysable real-time systems, ACM TECS (2013) .

[6] L. Kosmidis , J. Abella , F. Wartel , E. Quiñones , A. Colin , F. Cazorla , PUB path
upper-bounding for measurement-based probabilistic timing analysis, in: Eu-

romicro Conference on Real-Time Systems (ECRTS-14), 2014 .
[7] PROXIMA, Probabilistic real-time control of mixed-criticality multicore and

manycore systems, http://www.proxima-project.eu .
[8] J. Abella, C. Hernandez, E. Quinones, F. Cazorla, P. Conmy, M. Azkarate-askasua,

J. Perez, E. Mezzetti, T. Vardanega, WCET analysis methods: Pitfalls and chal-

lenges on their trustworthiness, in: International Symposium on Industrial Em-
bedded Systems (SIES), 2015, pp. 1–10, doi: 10.1109/SIES.2015.7185039 .

[9] R. Kirner , I. Wenzel , B. Rieder , P. Puschner , Using measurements as a comple-
ment to static worst-case execution time analysis, Intel. Syst. Serv. Mankind

(2005) .
[10] R. Kirner , P. Puschner , Obstacles in worst-case execution time analysis., in:

11th IEEE International Symposium on Object-oriented Real-time distributed

Computing, 2008, pp. 333–339 .
[11] E. Mezzetti , T. Vardanega , On the industrial fitness of WCET analysis, Interna-

tional Workshop On Worst-Case Execution Time Analysis (WCET 2011), 2011 .
[12] Rapitime, http://www.RapitaSystems.com/RapiTime .

[13] S. Kotz , S. Nadarajah , Extreme Value Distributions: Theory and Applications,
World Scientific, 20 0 0 .

[14] S. Coles , An Introduction to Statistical Modeling of Extreme Values, Springer,

2001 .
[15] L. Santinelli , J. Morio , G. Dufour , D. Jacquemart , On the sustainability of the

extreme value theory for WCET estimation, International Workshop on Worst–
Case Execution Time Analysis (WCET), 2014 .

[16] J. Abella , E. Quiñones , F. Wartel , T. Vardanega , F. Cazorla , Heart of gold: Making
the improbable happen to extend coverage in probabilistic timing analysis, in:

Euromicro Conference on Real-Time System (ECRTS-14), 2014 .

[17] S. Milutinovic , J. Abella , F. Cazorla , Modelling probabilistic cache represen-
tativeness in the presence of arbitrary access patterns, in: Symposium on

Object/Component/Service-oriented Real-time Distributed Computing (ISORC),
2016 .

[18] J. Abella, F.J. Cazorla, E. Quiñones, T. Vardanega, Measurement-based prob-
abilistic timing analysis and i.i.d property. White Paper., 2013 . http://www.

proartis-project.eu/publications/MBPTA-white-paper .

[19] M. Ziccardi , E. Mezzetti , T. Vardanega , J. Abella , F.J. Cazorla , EPC: extended path
coverage for measurement-based probabilistic timing analysis, 36th IEEE Real–

Time Systems Symposium (RTSS), 2015 .
20] J. Reineke , B. Wachter , S. Thesing , R. Wilhelm , I. Polian , J. Eisinger , B. Becker ,

A definition and classification of timing anomalies, International Workshop On
Worst-Case Execution Time Analysis (WCET 2006), 2006 .

[21] L. Kosmidis , T. Vardanega , J. Abella , E. Quiñones , F.J. Cazorla , Applying mea-

surement-based probabilistic timing analysis to buffer resources, International
Workshop On Worst-Case Execution Time Analysis (WCET), 2013 .

22] L. Kosmidis , E. Quiñones , J. Abella , T. Vardanega , F. Cazorla , Achieving tim-
ing composability with probabilistic timing analysis, Symposium on Ob-

ject/Component/Service-oriented Real-time Distributed Computing (ISORC),
2013 .

23] J. Jalle , L. Kosmidis , J. Abella , E. Quiñones , F. Cazorla , Bus designs for time-prob-
abilistic multicore processors, in: Design Automation and Test in Europe

(DATE), 2014 .

[24] M. Paolieri , E. Quiñones , F. Cazorla , G. Bernat , M. Valero , Hardware support for
WCET analysis of hard real-time multicore systems, International Symposium

on Computer Architecture (ISCA), 2009 .
25] M. Paolieri, E. Quiñones, F. Cazorla, M. Valero, An Analyzable Memory Con-

troller for Hard Real-Time CMPs., Embedded System Letters (ESL), 2009.

http://www.proxima-project.eu
http://www.eetimes.com/electronics-news/4207377/Automotive-chip-content-growing-fast
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0005
http://www.proxima-project.eu
http://dx.doi.org/10.1109/SIES.2015.7185039
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0009
http://www.RapitaSystems.com/RapiTime
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0014
http://www.proartis-project.eu/publications/MBPTA-white-paper
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0021

300 L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302

[

[26] M. Slijepcevic , L. Kosmidis , J. Abella , E.Q. nones , F. Cazorla , Time-analysable
non-partitioned shared caches for real-time multicore systems, in: Design Au-

tomation Conference (DAC), 2014 .
[27] L. Kosmidis , C. Curtsinger , E. Quiñones , J. Abella , E. Berger , F. Cazorla , Proba-

bilistic timing analysis on conventional cache designs, Design Automation and
Test in Europe (DATE), 2013 .

[28] L. Kosmidis , et al. , Containing timing-related certification cost in automo-
tive systems deploying complex hardware, in: Design Automation Conference

(DAC). (Best Paper Award), 2014 .

[29] P. Benedicte , L. Kosmidis , E. Quinones , J. Abella , F. Cazorla , A confidence as-
sessment of WCET estimates for software time randomized caches, in: Inter-

national Conference on Industrial Informatics (INDIN), 2016 .
[30] http://www.gaisler.com/cms/index.php?option=com _ content&task=view&id=

13&Itemid=53 , Leon3 Processor, Cobham Gaisler,
[31] L. Kosmidis , J. Abella , E. Quiñones , F. Cazorla , A cache design for probabilis-

tically analysable real-time systems, Design Automation and Test in Europe

(DATE), 2013 .
[32] J. Poovey, Characterization of the EEMBC Benchmark Suite, North Carolina State

University, 2007.
[33] L. Kosmidis , J. Abella , E. Quiñones , F. Cazorla , Efficient cache designs for prob-

abilistically analysable real-time systems, IEEE Trans. Comput. 63 (12) (2014) .
[34] I. Agirre, M. Azkarate-Askasua, C. Hernandez, J. Abella, J. Perez, T. Vardanega,

F. Cazorla, Iec-61508 sil 3 compliant pseudo-random number generators for

probabilistic timing analysis, in: Digital System Design (DSD), 2015 Euromicro
Conference on, 2015, pp. 677–684, doi: 10.1109/DSD.2015.26 .

[35] G. Box , D. Pierce , Distribution of residual autocorrelations in autoregressive-in-
tegrated moving average time series models, J. Am. Stat. Assoc. 65 (332) (1970)

1509–1526 .
[36] J. Abella , J. del Castillo , M. Padilla , F. Cazorla , Extreme value theory in com-

puter sciences: The case of embedded safety-critical systems, in: International

Conference on Risk Analysis (ICRA), 2015 .
[37] M. DeGroot , M. Schervish , Probability and Statistics, Addison-Wesley, Reading

MA., 2002 .
[38] F. Wartel , L. Kosmidis , C. Lo , B. Triquet , E. Quiñones , J. Abella , A. Gogonel ,
A. Baldovin , E. Mezzetti , L. Cucu , T. Vardanega , F. Cazorla , Measurement-based

probabilistic timing analysis: Lessons from an integrated-modular avionics
case study, International Symposium on Industrial Embedded Systems (SIES),

2013 .
[39] J. Gustafsson , A. Ermedahl , Experiences from applying WCET analysis in in-

dustrial settings, Symposium on Object/Component/Service-Oriented Realtime
Distributed Computing (ISORC), 2007 .

[40] S. Altmeyer , R. Davis , On the correctness, optimality and precision of static

probabilistic timing analysis, in: Design Automation and Test in Europe (DATE),
2014 .

[41] R. Davis , L. Santinelli , S. Altmeyer , C. Maiza , L. Cucu-Grosjean , Analysis of prob-
abilistic cache related pre-emption delays, in: Euromicro Conference on Real–

Time System (ECRTS), 2013 .
[42] J. Abella , D. Hardy , I. Puaut , E. Quiñones , F. Cazorla , On the comparison of de-

terministic and probabilistic WCET estimation techniques, in: Euromicro Con-

ference on Real-Time System (ECRTS-14), 2014 .
[43] Z. Stephenson , J. Abella , T. Vardanega , Supporting industrial use of probabilistic

timing analysis with explicit argumentation, in: 11th IEEE International Confer-
ence on Industrial Informatics (INDIN), 2013 .

44] L. Kosmidis , J. Abella , E. Quiñones , F. Cazorla , Multi-level unified caches for
probabilistically time analysable real-time systems, Real-Time Systems Sympo-

sium (RTSS), 2013 .

[45] J. Reineke , Randomized caches considered harmful in hard real-time systems,
Leibniz Trans. Embed. Syst. 1 (1) (2014) 03:1–03:13 .

[46] L. Yue , I. Bate , T. Nolte , L. Cucu-Grosjean , A new way about using statistical
analysis of worst-case execution times, in: ACM SIGBED Review, 2011 .

[47] F.J. Cazorla , T. Vardanega , E. Quiñones , J. Abella , Upper-bounding program exe-
cution time with extreme value theory, International Workshop On Worst-Case

Execution Time Analysis (WCET), 2013 .

http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0025
http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=13&Itemid=53
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0027
http://dx.doi.org/10.1109/DSD.2015.26
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30097-7/sbref0041

L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302 301

p at Barcelona Supercomputing Center (BSC), Spain. Leonidas joined BSC in 2009 and

 Systems in 2011 from Universitat Politècnica de Catalunya (UPC), Spain. He holds a BSc
 worked as an intern at ARM Cambridge and École Centrale Paris. Leonidas participates

 hardware and software design for real-time embedded systems.

d member of HiPEAC. He received his MS degree in 2003 and his PhD. in 2008 at the

 high performance compiler techniques. He is involved in several FP7 European projects
ell as some bilateral ESA-BSC projects. He spent one year as an intern at Intel Research

oup at BSC and member of HIPEAC. He received his MS (2002) and PhD. (2005) degrees

 Center (20 05–20 09) in the design and modeling of circuits and microarchitectures for
e joined the BSC in 2009 where he is in charge of hardware designs for FP7 PROARTIS

is also involved in two ESA-BSC bilateral projects and FP7 parMERASA. He has authored
nd journals in the area. He is (has been) co-advisor of ten MS and PhD students.

 Italy. He holds a MSc in Computer Science from the University of Pisa, Italy, and a PhD
ft, Netherlands. He worked at European Space Agency (ESA) from July 1991 to December

earch in the areas of high-integrity distributed real-time systems and advanced software

and international research collaborations. He has co-authored 90+ refereed papers and
d bodies, for ESA, the European Commission, ISO, IEEE and Ada-Europe.

nications and PhD in computer sciences from Universitat Politcnica de Valncia, in 2006
cher at the Barcelona Supercomputing Center. His area of expertise includes network-on

s (has participated) in NaNoC, parMERASA, PROXIMA IP7 and VeTeSS ARTEMIS projects.
 technology developments in the Leon3 processor. In 2012 he was intern at Intel Mobile

r experienced in digital development on FPGA (Xilinx, Altera), Computer Science graduate

cus on system-level integration and hardware architectures. Experienced in on-chip and

ernet, SGMII, DDR2.
Leonidas Kosmidis is a PhD. student in the CAOS grou

received his MSc in Computer Architecture, Networks and
in Computer Science from University of Crete, Greece and

in FP7 PROARTIS and PROXIMA projects. His main focus is

Eduardo Quiñones is a senior PhD. Researcher at BSC an

UPC. His area of expertise is in safety-critical systems and
(parMERASA, PROARTIS, PROXIMA and P-SOCRATES), as w

Labs (2002 – 2003).

Jaume Abella is a senior PhD. Researcher in the CAOS gr

from the UPC. He worked at the Intel Barcelona Research
fault-tolerance and low power, and memory hierarchies. H

and PROXIMA, and BSC tasks in ARTEMIS VeTeSS. Jaume
more than 15 patents and 60 papers in top conferences a

Tullio Vardanega currently is at the University of Padua,
in Computer Science from the Technical University of Del

2001. At the University of Padua, he teaches and leads res

engineering methods. He has a vast network of national
held organizational roles in several international events an

Carles Hernandez received the M.S. degree in telecommu
and 2012, respectively. He is currently senior PhD. Resear

chip and reliability-aware processor design. He participate
In the context of PROXIMA he is in charge of probabilistic

Communications Munich.

Andrea Gianarro is a hardware engineer at Cobham Gaisle

with honors. Proficiency in VHDL programming with a fo

off-chip interconnects: AMBA AHB, APB, CAN, RapidIO, Eth

302 L. Kosmidis et al. / Microprocessors and Microsystems 47 (2016) 287–302

 Ltd. He earned his PhD in 2003 at the Real-time Systems group of University of York
on. He has been involved in significant real-time research projects involving scheduling

and fault tolerance. He has a valuable mix of academic and industrial experience of real-

e transfer of research technologies to practical industrial uses in the domain of reliable

BSC and member of HIPEAC Network of Excellence. He has led projects funded by in-

ace Agency (ESA) and public-funded projects (FP7 PROARTIS project and FP7 PROXIMA
cts (MERASA, VeTeSS, parMERASA). His research area focuses on multithreaded for both

 co-advising several PhD theses. He has co-authored 3 patents and over 100 papers in
Ian Broster is a founder and director of Rapita Systems
for work on the timing analysis of realtime communicati

analysis, predictable multi-core, real-time communication

time and embedded systems. He is actively involved in th
embedded systems.

Francisco J. Cazorla is the leader of the CAOS group at

dustry (IBM and Sun Microsystems), by the European Sp
project). He has participated in FP6 (SARC) and FP7 Proje

high-performance and real-time systems on which he is
international refereed conferences and journals.

	Fitting processor architectures for measurement-based probabilistic timing analysis
	1 Introduction
	2 Context within PROXIMA
	3 MBPTA requirements on hardware design
	3.1 Taxonomy of timing analysis techniques
	3.2 Requirements
	3.3 Execution time profiles

	4 Probabilistically modelling the timing behaviour of processor resources
	4.1 Probabilistic timing analysis process
	4.2 Taxonomy of hardware resources for canonical MBPTA compliance
	4.3 MBPTA compliance via padding
	4.4 ETP of several execution components
	4.5 Dependence across ETP
	4.6 More complex single-core processor architectures
	4.7 Multicore processor architectures

	5 Software-only alternatives
	5.1 Software-only random placement
	5.2 Software vs hardware solutions

	6 Case study
	6.1 Designing a MBPTA-compliant processor architecture
	6.2 Hardware modifications
	6.3 Deriving ETP
	6.4 Checking the i.i.d. hypothesis
	6.5 pWCET
	6.6 MBPTA-compliant architectures performance

	7 Related work
	8 Conclusions and future work
	 Acknowledgment
	 References

