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ABSTRACT

A group G is invariably generated by a subset S of G if G = 〈sg(s) | s ∈ S〉
for each choice of g(s) ∈ G, s ∈ S. Answering two questions posed by

Kantor, Lubotzky and Shalev in [8], we prove that the free prosoluble

group of rank d ≥ 2 cannot be invariably generated by a finite set of

elements, while the free solvable profinite group of rank d and derived

length l is invariably generated by precisely l(d− 1) + 1 elements.

1. Introduction

Following [2] we say that a subset S of a group G invariably generates G if

G = 〈sg(s) | s ∈ S〉 for each choice of g(s) ∈ G, s ∈ S. We also say that a

group G is invariably generated (IG for short) if G is invariably generated by

some subset S of G; when S can be chosen to be finite, we say that G is FIG. A

group G is IG if and only if it cannot be covered by a union of conjugates of a

proper subgroup, which amount to saying that in every transitive permutation

representation of G on a set with more than one element there is a fixed-point-

free element. Using this characterization, Wiegold [13] proved that the free

group on two (or more) letters is not IG. Kantor, Lubotzky and Shalev studied

invariable generation in finite and infinite groups. For example in [7] they proved

that every finite group G is invariably generated by at most log2 |G| elements.

In [8] they studied invariable generation of infinite groups, with emphasis on

linear groups, proving that a finitely generated linear group is FIG if and only

if it is virtually soluble.
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Let G be a profinite group. Then generation and invariable generation in G

are interpreted topologically. Just as every finite group is IG, every profinite

group G is also IG. Indeed every proper subgroup of a profinite group G is

contained in a maximal open subgroup M, and, since M has finite index, G

cannot coincide with the union ∪g∈GMg. On the other hand, finitely generated

profinite groups are not necessarily FIG. In fact by [7, Proposition 2.5], there

exist 2-generated finite groups H with dI(H) (the minimal number of invariable

generators) arbitrarily large. This implies that the free profinite of rank d ≥ 2

is not FIG. In [8] the following questions are asked: Are finitely generated

prosoluble groups FIG? Are finitely generated soluble profinite groups FIG?

We prove that the first question has in general a negative answer:

Theorem 1: The free prosoluble group of rank d ≥ 2 is not FIG.

We will deduce Theorem 1 from the following result (see Theorem 8). LetG be

a finite 2-generated soluble group and let p be the smallest prime divisor of |G|.
Then either dI(G) ≥ p or there exists a prime q > p such that dI(G) < dI(CqoG),

where Cq o G is the wreath product with respect to the regular permutation

representation of G.

In contrast, the second question has a positive answer. More precisely we can

adapt the arguments used in the proof of Theorem 1 to show:

Theorem 2: Let F be the free soluble profinite group of rank d and derived

length l. Then dI(F ) = l(d− 1) + 1.

Denote by d(G) the smallest cardinality of a generating set of a finitely gen-

erate profinite group G. Clearly if G is pronilpotent, then d(G) = dI(G).

More precisely, by [7, Proposition 2.4] a finitely generated profinite group G is

pronilpotent if and only if every generating set of G invariably generates G. But

what can we say about the difference dI(G) − d(G) when G is a prosupersol-

uble group? In this case G/Frat(G) is metabelian, so Theorem 2 implies that

dI(G) − d(G) ≤ d(G) − 1. Although supersolubility is a quite strong property

and in particular a metabelian group is not in general supersoluble, the previous

estimate is sharp.
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Theorem 3: Let F be the free prosupersoluble group of rank d. Then dI(F ) =

2d− 1.

2. Preliminaries

A profinite group is a topological group that is isomorphic to an inverse limit

of finite groups. The textbooks [11] and [14] provide a good introduction to the

theory of profinite groups. In the context of profinite groups, generation and

invariable generation are interpreted topologically. By a standard argument

(see e.g. [14, Proposition 4.2.1]) it can be proved that a profinite group G is

invariably generated by d elements if and only if G/N is invariably generated by

d elements for every open normal subgroup N of G. Therefore in the following

we will mainly work on finite groups.

If G is a finite soluble group, the minimal number of generators for G can be

computed in term of the structure of G-modules of the chief factors of G with

the following formula due to Gaschütz [4].

Proposition 4: Let G be a finite soluble group. For every irreducible G-

module V define rG(V ) = dimEndG(V ) V , set θG(V ) = 0 if V is a trivial G-

module, and θG(V ) = 1 otherwise, and let δG(V ) be the number of chief factors

G-isomorphic to V and complemented in an arbitrary chief series of G. Then

d(G) = max
V

(
θG(V ) +

⌈
δG(V )

rG(V )

⌉)
where V ranges over the set of non G-isomorphic complemented chief factors of

G and dxe denotes the smallest integer greater or equal to x.

There is no similar formula for the minimal size of the invariable generating

sets. The best result in this direction is a criterion we gave in [1] to decide

whether an invariable generating set of a group G can be lifted to an extension

over an abelian normal subgroup. To formulate this result, we need to recall

some notation from [1].

Let G be a finite group acting irreducibly on an elementary abelian finite

p-group V . For a positive integer u we consider the semidirect product V uoG:

unless otherwise stated, we assume that the action of G is diagonal on V u, that

is, G acts in the same way on each of the u direct factors. In [1, Proposition 8]

we proved the following.
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Proposition 5: SupposeG acts faithfully and irreducibly on V and H1(G,V ) =

0. Assume that g1, . . . , gd invariably generate G. There exist some elements

w1, . . . , wd ∈ V u such that g1w1, g2w2, . . . , gdwd invariably generate V u o G if

and only if

u ≤
d∑
i=1

dimEndG(V ) CV (gi).

The assumption H1(G,V ) = 0 in the case of soluble groups is assured by the

following unpublished result by Gaschütz (see [12, Lemma 1]).

Lemma 6: Let G 6= 1 be a finite soluble group and let V be an irreducible

G-module. Then H1(G,V ) = 0.

In the following we will use this straightforward consequence of Proposition

5.

Corollary 7: Let G 6= 1 be a finite soluble group and let V be an irreducible

G-module. Assume that x1, . . . , xd invariably generate V uoG, where xi = vigi

with vi ∈ V u and gi ∈ G. Then g1, . . . , gd invariably generate G and

u ≤
d∑
i=1

dimEndG/CG(V )(V ) CV (gi).

Proof. Clearly, g1, . . . , gd invariably generate G. Denote by gi the image of gi

in the quotient group G/CG(V ). By Lemma 6 and Proposition 5 we have

u ≤
d∑
i=1

dimEndG/CG(V )(V ) CV (gi).

Since dimCV (gi) = dimCV (gi), the result follows.

3. Proof of Theorem 1

If G is a finite group, π(G) is the set of primes dividing the order of G.

Theorem 8: Let G be a 2-generated finite soluble group. Either dI(G) ≥
minπ(G) or there exists a finite soluble group H having G as an epimorphic

image and such that

• d(H) = 2;

• dI(H) > dI(G);
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• minπ(H) = minπ(G).

Proof. By Dirichlet’s theorem on primes in arithmetic progressions, there exists

a prime q such that the exponent of G divides q− 1. Let F be the field of order

q. By a result of Brauer (see e.g. [3, B 5.21]) F is a splitting field for G so

V := FG = V n1
1 ⊕ · · · ⊕ V nr

r

where the Vj are absolutely irreducible FG-modules no two of which are G-

isomorphic, and nj = dimF Vj . Consider the semidirect product H = V o G;

note that H is isomorphic to Cq o G with respect to the regular permutation

representation of G. By [9, Corollary 2.4], as Cq and G have coprime orders,

d(Cq oG) = max(d(G), d(Cq) + 1) = 2.

Clearly dI(G) ≤ dI(H). Assume dI(G) = dI(H) = d. By Corollary 7 applied

to each homomorphic image V
nj

j oG, it follows that there exists an invariable

generating set g1, . . . , gd of G such that, for any j

nj ≤
d∑
i=1

dimF CVj (gi).

Multiplying by nj we get

n2
j ≤

d∑
i=1

nj dimF CVj (gi).

It follows that:

|G| =
∑

j=1,...,r

n2
j ≤

∑
i=1,...,d
j=1,...,r

nj dimF CVj
(gi) =

∑
i=1,...,d

dimF CFG(gi).

On the other hand, by Lemma 9 below,

dimF CFG(gi) =
|G|
|gi|

and therefore

1 ≤
d∑
i=1

1

|gi|
.

Since d = dI(G) we have gi 6= 1 for every i, hence |gi| ≥ p = minπ(G). Therefore

1 ≤
d∑
i=1

1

|gi|
≤ d

p

which implies that p ≤ d, as required.
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Lemma 9: If g ∈ G, then dimF CFG(g) = |G : 〈g〉|.

Proof. Let t1, . . . , tr be a left transversal of 〈g〉 in G. Assume that x ∈ CFG(g).

As every element of G can be uniquely written in the form tig
j , we can write

x =
∑
i,j atigj tig

j , where atigj ∈ F, and, since xg = x, we have in particular

atigj = atigj+1

for every i and j. Hence x =
∑
i biti(1 + g + · · · + g|g|−1), for some bi ∈ F.

Conversely, every F-linear combination of the elements ti(1 + g+ · · ·+ g|g|−1) is

centralized by g. In other words the elements ti(1 + g+ · · ·+ g|g|−1), 1 ≤ i ≤ r,
are a basis for CFG(g).

Corollary 10: For every d ∈ N, there exists a finite 2-generated soluble group

G with dI(G) ≥ d.

Proof. Let p be a prime number with d ≤ p and consider the set Ωp of the

finite 2-generated soluble groups whose order is divisible by no prime smaller

than p. Assume by contradiction, that dI(G) < d for every G ∈ Ωp and let G∗

be a group in Ωp such that dI(G
∗) = maxG∈Ωp

dI(G). Since dI(G
∗) ≤ d and

d ≤ p, by the Theorem 8 there exists H in Ωp with dI(G
∗) < dI(H), and this

contradicts the maximality of dI(G
∗).

Proof of Theorem 1. Let F be the d-generated free prosoluble group, with d ≥
2. Assume that F is FIG. In particular dI(H) ≤ dI(F ) for every 2-generated

finite soluble group H, but this contradicts Corollary 10.

4. Proof of Theorem 2

We need, as a preliminary result, a formula for the minimal number of generators

of a G-module.

Lemma 11: Let G be a finite group. Assume that A is a direct product

A = An1
1 × · · · ×Anr

r

where, for each i, Ai is a finite elementary abelian pi-group for a prime number

pi, Ai is an irreducible FpiG-module and Ai is not G-isomorphic to Aj for i 6= j.

Then the minimal number of elements needed to generate A as G-module is

dG(A) = max
i∈{1,...,r}

(⌈
ni

rG(Ai)

⌉)
,
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where dxe denotes the smallest integer greater or equal to x.

Proof. If Ji is the Jacobson radical of FpiG, then FpiG/Ji is semisimple and

Artinian, hence we can apply the Wedderburn-Artin theorem (see e.g. [6,

Lemma 1.11, Theorems 1.14 and 3.3]) and we conclude that Ai occurs pre-

cisely dimEndG(Ai)(Ai) = rG(Ai) times in FpiG/Ji. Then, by [5, Lemma 7.12],

A can be generated, as G-module, by

dG(A) = max
i∈{1,...,r}

(⌈
ni

rG(Ai)

⌉)
elements.

Proposition 12: Let G be a finite soluble d-generated group of derived length

l. Then dI(G) ≤ l(d− 1) + 1.

Proof. The proof is by induction on l. If l = 1, then G is abelian and dI(G) =

d(G) ≤ d = 1(d− 1) + 1.

Assume l > 1 and let A be the last non-trivial term of the derived series of G.

Then dl(G/A) = l−1. Since dI(G) = dI(G/Frat(G)), without loss of generality

we can assume Frat(G) = 1. Then A is a direct product of complemented

minimal normal subgroups of G and we can write

A = An1
1 × · · · ×Anr

r

where each Ai is an elementary abelian pi-group, for a prime number pi, Ai is an

irreducible FpiG-module and Ai is not G-isomorphic to Aj for i 6= j. Therefore

by Lemma 11

(4.1) dG(A) = max
i∈{1,...,r}

(⌈
ni

rG(Ai)

⌉)
.

On the other hand, by Proposition 4,

(4.2) d ≥ d(G) = max
V

(
θG(V ) +

⌈
δG(V )

rG(V )

⌉)
where V ranges over the set of non G-isomorphic complemented chief factors of

G. Note that θG(Ai) = 1 for every i. Indeed, if we assume that Ai is a trivial

G-module, then, as Frat(G) = 1, we have G = Ai ×H for a complement H of

Ai in G. Hence G′ = H ′ and G′ does not contain Ai, contradicting the fact

that Ai is a subgroup of the last term of the derived series of G.
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Since ni ≤ δG(Ai), by equations 4.1 and 4.2 we deduce that

d ≥ max
i∈{1,...,r}

(
1 +

⌈
ni

rG(Ai)

⌉)
= 1 + dG(A)

hence dG(A) ≤ d−1. Let a1, . . . , ad−1 be a set of generators for A as G-module

and let g1, . . . , gt be invariable generators for G modulo A with t = dI(G/A).

Then it is straightforward to check that the the elements

g1, . . . , gt, a1, . . . , ad−1

invariably generate G, hence

dI(G) ≤ t+ (d− 1) = dI(G/A) + (d− 1).

Since dl(G/A) = l − 1, by inductive hypothesis we have that

dI(G/A) ≤ (l − 1)(d− 1) + 1,

and we conclude that

dI(G) ≤ (l − 1)(d− 1) + 1 + (d− 1) = l(d− 1) + 1,

as required.

Denote by dl(G) the derived length of a soluble group G. It follows from the

previous proposition, that if G is a finitely generated solvable profinite group,

then dI(G) ≤ dl(G)(d(G)− 1) + 1. In order to complete the proof of Theorem

2 it suffices to prove the following result:

Theorem 13: Let d be a positive integer and let p be a prime number. For

every positive integer l < p−1
d−1 + 1 there exists a finite soluble group Gl such

that

• p = minπ(Gl),

• dl(Gl) = l,

• d(Gl) = d,

• dI(Gl) = l(d− 1) + 1.

Proof. We prove the theorem by induction on l. If l = 1, then we can take

G1 = Cdp . So suppose that a group Gl, with the desired properties, has been

constructed for l < p−1
d−1 . As in the proof of Theorem 8, if we take a prime q
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such that the exponent of Gl divides q − 1 and we consider the field F be the

field of order q, then

V := FGl = V n1
1 ⊕ · · · ⊕ V nr

r

where the Vj are absolutely irreducible FG-modules no two of which are G-

isomorphic, and nj = dimF Vj . Consider the semidirect product Gl+1 = V d−1 o
Gl. It can be easily seen that dl(Gl+1) = dl(Gl) + 1 = l + 1 and that Gl+1 is

isomorphic to the wreath product Cd−1
q oGl with respect to the regular permu-

tation representation of Gl. In particular, by [9, Corollary 2.4], as Cd−1
q and Gl

have coprime orders,

d(Gl+1) = d(Cd−1
q oGl) = max(d(Gl), d(Cd−1

q ) + 1)) = d.

Now let t = dI(Gl+1) and suppose that w1g1, . . . , wtgt, with wi ∈ V d−1 and

gi ∈ Gl, invariably generate Gl+1. By Corollary 7, for any j ∈ {1, . . . , t}

(d− 1)nj ≤
t∑
i=1

dimF CVj (gi).

As in the proof of Theorem 8, this implies

(4.3) d− 1 ≤
t∑
i=1

dimF CFGl
(gi)

|Gl|
.

Notice that g1, . . . , gt must invariably generate Gl so t ≥ dI(Gl) = l(d− 1) + 1

and in particular we may assume gi 6= 1 for every i ≤ l(d − 1) + 1. Therefore,

by Lemma 9,
dimF CFGl

(gi)

|Gl|
≤ 1

p
if i ≤ l(d− 1) + 1.

Since the trivial bound dimF CFGl
(gi)/|Gl| ≤ 1 holds for all i = l(d−1)+2, . . . , t,

it follows from (4.3) that

d− 1 ≤ l(d− 1) + 1

p
+ t− l(d− 1)− 1

i.e.

t ≥
⌈

(l + 1)(d− 1) + 1− l(d− 1) + 1

p

⌉
.

Since we are assuming l < p−1
d−1 , we have l(d−1)+1

p < 1 and consequently dI(Gl+1) =

t ≥ (l + 1)(d − 1) + 1. On the other hand, since dl(Gl) = l + 1, by Propo-

sition 12 we have dI(Gl+1) ≤ (l + 1)(d − 1) + 1 and therefore the equality

dI(Gl+1) = (l + 1)(d− 1) + 1 has been proved.
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5. Proof of Theorem 3

Proposition 14: For every d ∈ N there exists a finite supersoluble group G

such that d(G) = d and dI(G) ≥ 2d− 1.

Proof. Let K = Cd2 . There are α := 2d − 1 different epimorphisms σ1, . . . , σα

from K to C2 (σi : K → C2 is uniquely determined by Mi = kerσi, a (d − 1)-

dimensional subspace of K). To any i, there corresponds a K-module Vi defined

as follows: Vi ∼= C3 and vki = vi if k ∈ Mi, v
k
i = v2

i otherwise. Let Wi = V d−1
i

and consider G =
(∏

1≤i≤αWi

)
o K. The group G is supersoluble and, by

Proposition 4, it is easy to see that d(G) = d. Now assume that g1, . . . , gr

invariably generate G. We write gi = (wi1, . . . , wiα)ki with ki ∈ K and wij ∈
Wj . In particular k1, . . . , kr generate K and, up to reordering the elements

g1, . . . , gr, we can assume that the first d-elements k1, . . . , kd are a basis for K.

Let M = 〈k−1
1 k2, . . . , k

−1
d−1kd〉. It can be easily checked that M is a maximal

subgroup of K, so M = Mj for some j ∈ {1, . . . , α}. Moreover ki /∈Mj for every

i ∈ {1, . . . , d}, in particular CVj (ki) = 0 for every i ∈ {1, . . . , d}. On the other

hand w1jk1, . . . , wrjkr invariably generate G, so, by Corollary 7,

d− 1 ≤
∑

1≤i≤r

dimF3 CVj (ki) =
∑

d+1≤i≤r

dimF3 CVj (ki) ≤ r − d.

Hence r ≥ 2d− 1.

Proof of Theorem 3. Let F be the free prosupersoluble group of rank d ≥ 2.

By Proposition 14, there exists a finite supersoluble d-generated group G such

that dI(G) ≥ 2d− 1. Hence dI(F ) ≥ 2d− 1.

To prove the converse, since dI(F ) = dI(F/Frat(F )), it suffices to consider

G = F/FratF. By [10, Proposition 3.3], G′ is abelian hence dl(G) ≤ 2 and it

follows from Proposition 12 that dI(G) ≤ 2d−1. Therefore dI(F ) = 2d−1.
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