

UNIVERSITY OF PADOVA (ITALY)

DEPT. OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING, DICEA

DALLA GASSA SRL

Geotechnical Engineering, Cornedo Vicentino (Vicenza, Italy)

ZABEZPIECZENIE OSUWISK PRZY POMOCY KOTEW SIRIVE®

LANDSLIDE PROTECTION USING SIRIVE® ANCHORS

MSc Ryszard Murzyn (Geo-Inz-Bud, Poland)

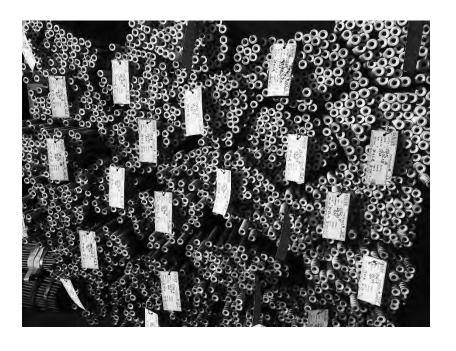
Dr Eng Alberto Bisson (Dept. ICEA, University of Padova, Italy)

COMPANY PROFILE

Main activities:

□ Excavation support systems: Soil Nailing, Micropiles

□ Landslide stabilization, rockfall protection



Foundations engineering

SIRIVE® PRODUCTION

□ PRODUCTION

Dalla Gassa is the first Italian producer of self-drilling bars (since 2001)

□ CERTIFICATIONS

RINA Certificate in accordance with UNI EN ISO 9001:2008

Internal certificate
of the complete
Bar-Nut-Coupling system

SIRIVE® QUALIFICATION

- Qualification as Official Producer of Sirive® Self Drilling Bars in accordance with the Italian Ministerial Decree 14/01/2008
- Certificate of qualification nr. 002/14-AM for the production of "Self-drilling hollow bars \$460J0 with continuous threading, nominal diameter 28 to 38 mm, for passive anchors for geotechnical use"
- Date: September 9, 2014
- Internal laboratory

RESEARCH & DEVELOPMENT DIVISION

- Advanced landslide monitoring
- □ Sirive®-1 technical validation: a «green» Soil Nailing
- PhD on Sirive® Floating Anchor for landslide stabilization
- Research & Development of Sirive® Special Composite
 Anchor
- Partnership with University of Padua (Italy), Polytechnic University of Turin (Italy) and University of Agricolture in Krakow (Poland)

AWARDS AND PRIZES

Bisson A., Dalla Gassa G. (2013)
 SIRIVE® FLOATING ANCHOR: PATENT AND RESEARCH PROJECT

Galileo Innovactors' Festival 2013 - European exhibition on innovation and technology transfer

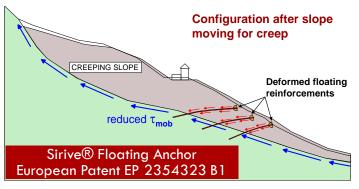
Special mention at the Micro-Innovation Marathon (2013)

□ Bisson A., Cola S. (2014)

FLOATING ANCHORS FOR THE STABILIZATION OF SLOWMOVING LANDSLIDES

CNG 2014: The geotechnical engineering in the defense of land and infrastructure from natural disasters, XXV National Geotechnical Congress, Baveno (Italy), Vol. 2, pp. 327-334 ISBN: 9788897517054

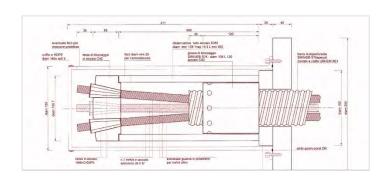
Italian Geotechnical Association Award: best paper for technical-scientific content (2014)

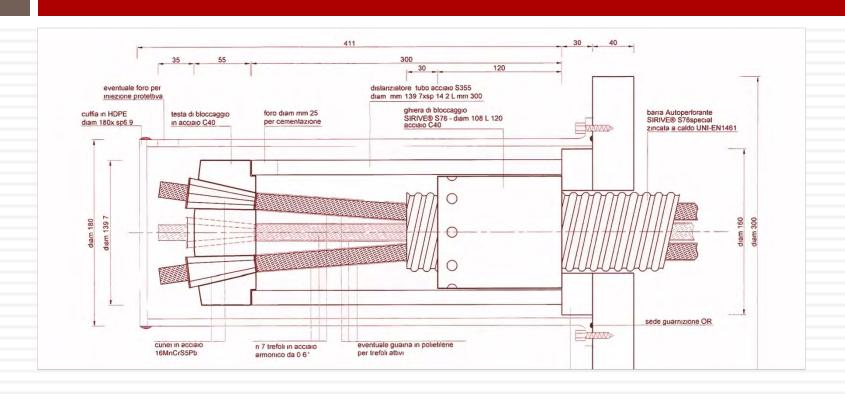

EUROPEAN PATENTS

□ SIRIVE® FLOATING ANCHOR

European Patent EP 2354323 B1

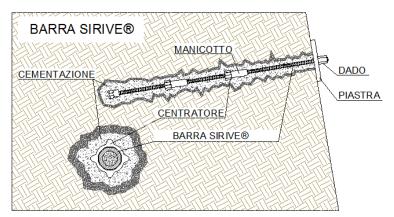
Date of publication and mention of the grant of the patent: April 1, 2015




□ SIRIVE® COMPOSITE ANCHOR

European Patent application EP 20130157515.1

Date of application: March 1,2013
The opposition process is still ongoing (2015)



SIRIVE® SELF-DRILLING BARS

- Self-drilling hollow bars cemented along the entire profile (nails)
- Passive reinforcements (not pretensioned)
- Advantages:
 - □ Simple and fast execution
 - Increasing of the diameter of the cemented bulb
 - Low cost

SELF-DRILLING BARS

PRODUCTION PROCESS

- Mild steel
- Large ultimate elongation (A_{gt}=25-30%)
- $f_t/f_y = 1.4-1.6$

Smooth bar

Threading

Cold rolling

- Increase in tensile strength
- Increase in yield strength
- Increase in stiffness

Hardening

Decrease in ductility

- Reduction of plastic strength reserve (f_t/f_y=1.2)
- Reduction of A_{gt} (5-8%)

STRANDS

PRODUCTION PROCESS

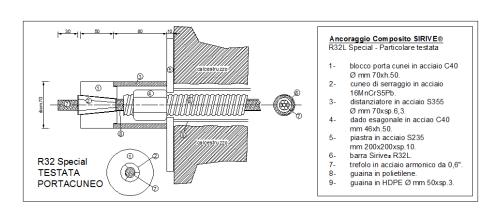
• Harmonic silicon steel with high carbon content (0.8-0.9%)

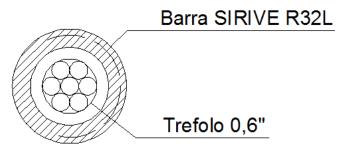
> Harmonic steel

Heat treatments

- Annealing
- Normalizing
- Hardening

- High strenght
- Large deformability in the elastic range
- High yield strength
- f_t/f_y lower than mild steel (1.05-1.25)
- Low relaxation


Strand


BASIC IDEA

□ Goals:

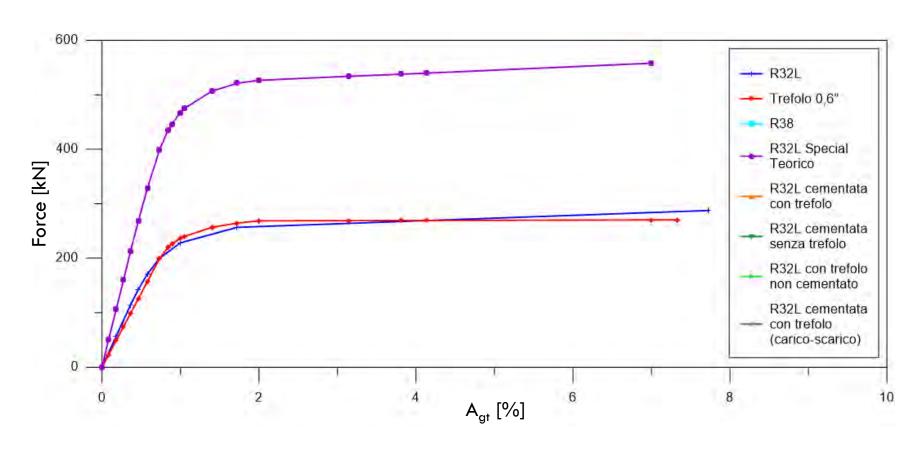
- Serviceability limit state: increase of the admissible load at constant elongation in the elastic domain;
- □ **Ultimate limit state**: decrease of the plastic deformations at constant elongation.
- □ Basic idea:

SELF-DRILLING BAR + STRANDS = SIRIVE® COMPOSITE ANCHOR

ANALYTICAL MODEL

- □ Main hypotheses:
 - □ Congruence of the coupled system

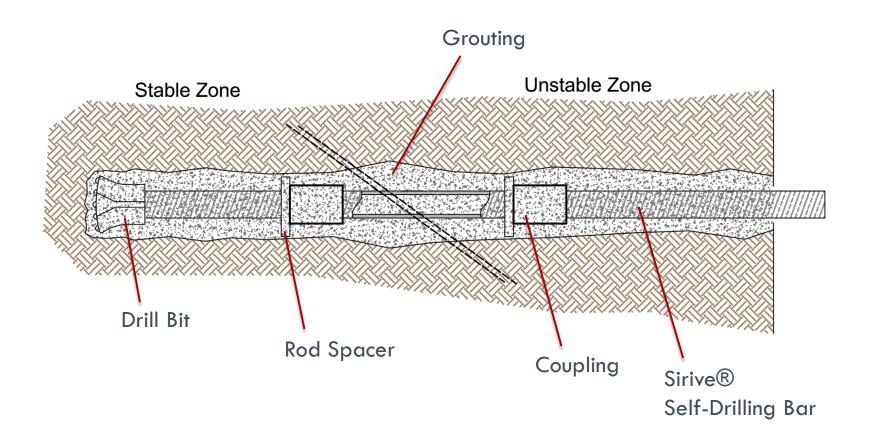
$$\frac{F_b(\sigma)}{E_b(\sigma) \cdot A_b} = \frac{F_t(\sigma)}{E_t(\sigma) \cdot A_t} = \frac{F(\sigma)}{(EA)_{eq}(\sigma)} \quad dove: \ A = A_b + A_t$$


Equilibrium of the coupled system

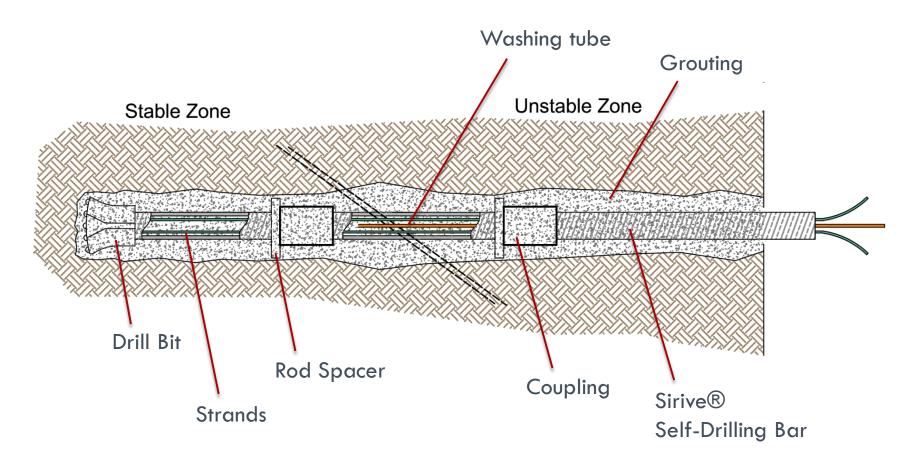
$$F_b(\sigma) + F_t(\sigma) = F(\sigma) = (EA)_{eq}(\sigma) \cdot \frac{\Delta l(\sigma)}{l_0}$$

- Negligible thermal variations
- Axial stiffness and elastic modulus equivalence:

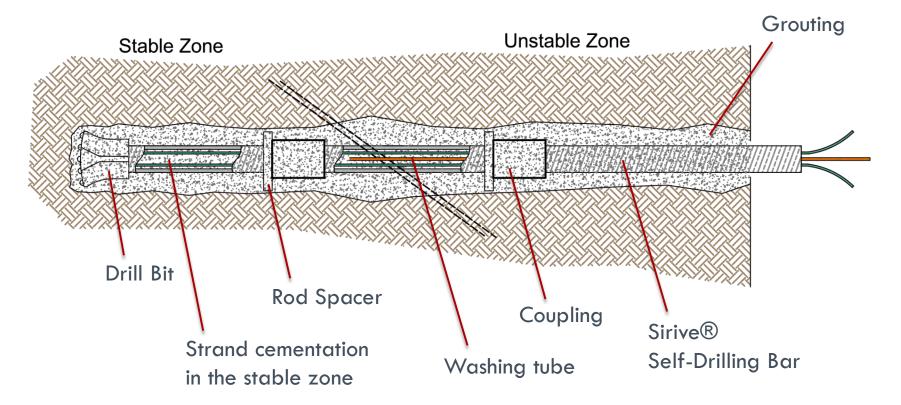
$$(EA)_{eq}(\sigma) = [E_b(\sigma) \cdot A_b + E_t(\sigma) \cdot A_t] \qquad E_{eq}(\sigma) = \frac{[E_b(\sigma) \cdot A_b + E_t(\sigma) \cdot A_t]}{A_b + A_t}$$


EXPERIMENTAL TESTS

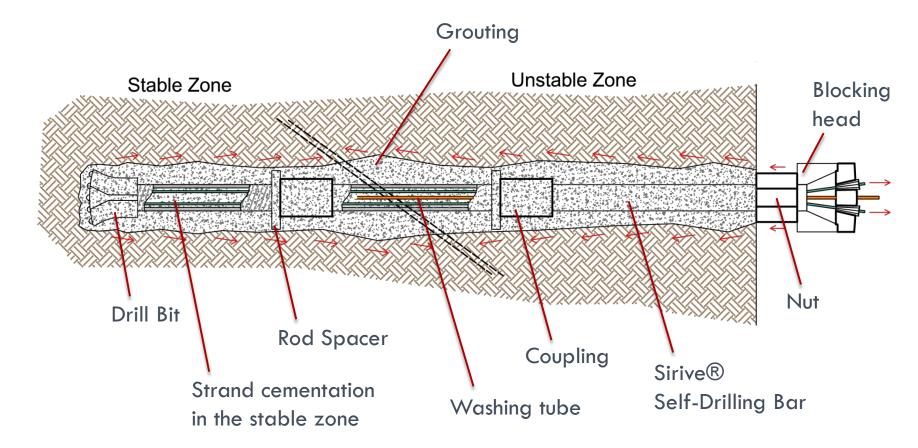
Mechanical behaviour of **R32L Sirive® Self-drilling** traditional bar (blue), a 0,6" strand (red) and Sirive® Special R32S Composite Anchor (violet).


INSTALLATION STEPS FOR ROCK SLOPE STABILIZATION

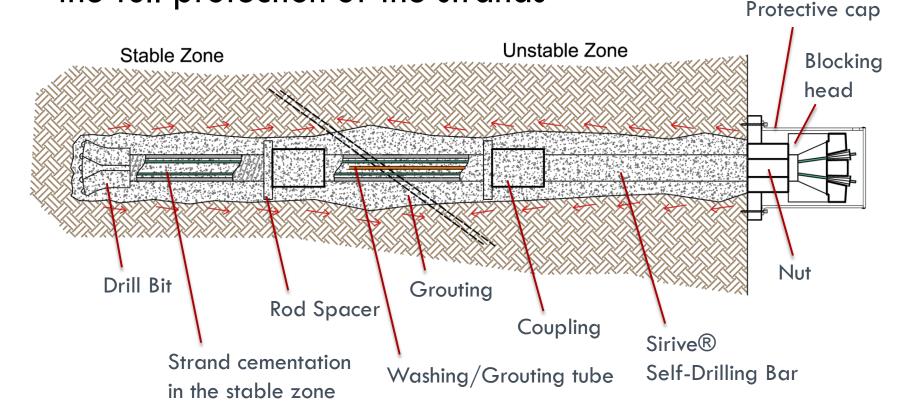
□ **STEP 1:** Installation of the self-drilling bar


INSTALLATION STEPS FOR ROCK SLOPE STABILIZATION

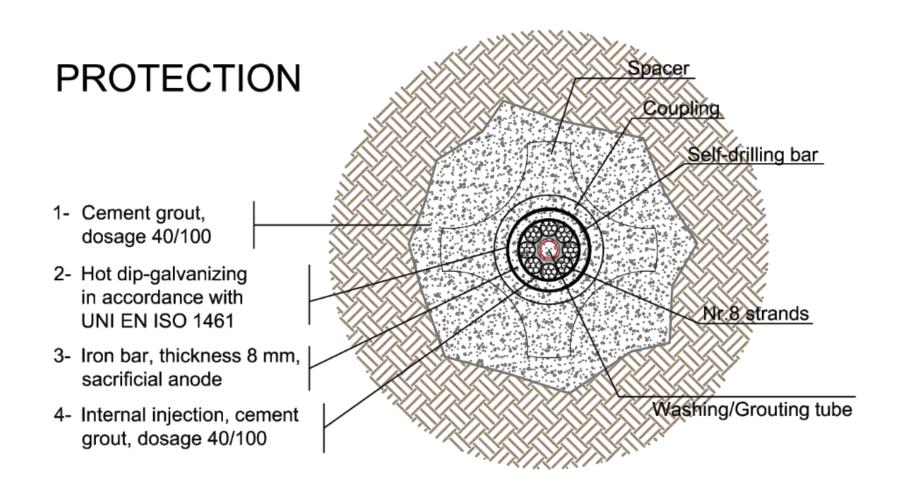
□ STEP 2: Installation of strands and washing tube


INSTALLATION STEPS FOR ROCK SLOPE STABILIZATION

□ STEP 3: The anchor active zone is washed (with water) and the inner cementation removed (only in the active/unstable part of the anchor)


INSTALLATION STEPS FOR ROCK SLOPE STABILIZATION

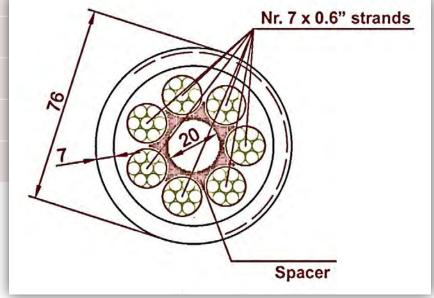
STEP 4: After the grout full maturity, the strands are tensioned at the design load



INSTALLATION STEPS FOR ROCK SLOPE STABILIZATION

STEP 5: Injection of cement mixture and complete cementation of the strands within the bar to restore the full protection of the strands

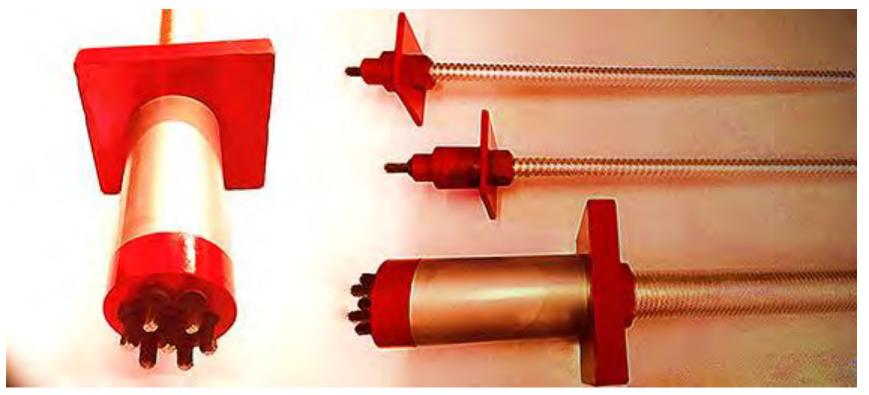
PROTECTION



ULTIMATE TENSILE LOADS

Anchor bar Ultimate	
type	tensile load (*)
	[kN]
R32 Special	550
R38 Special	700
R51 Special	1100
S60 Special	2000
S76 Special	3000
S90/A Special	4000
S90/B Special	5000

(*) Minimum warranted load


Sirive® Special Composite Anchor \$76 CROSS SECTION

ACCESSORIES

□ Sirive® Special Head Blocks

(custom-made for both active and passive anchor configuration)

Sirive® Special Composite Anchor S76

COST ANALYSIS

	COST [€/meter]			
DESCRIPTION	Self-drilling bar	Anchor with 12 Ø0,6"strands	Composite bar Ø76 8mm thick +8 Ø0,6"strands	
Bar, Fe55, steel section 1800 mm²			21.06	
Nr. 8 strands, diameter 0.6"			8.00	
Bar, Fe55, steel section 5455 mm²	63.83			
Nr. 12 strands, diameter 0.6"		12.00		
Accessories and installation	67.00	69.00	42.85	
Subtotal production costs	130.83	81.00	<i>7</i> 1.91	
General costs: 8%	10.47	6.48	5.75	
Subtotal	141.30	87.48	77.66	
Profit for the enterprise: 30%	42.39	26.24	23.30	
TOTAL COST	183.69	113.72	100.96	
Saving with composite anchor %	45.0	11.2	-	

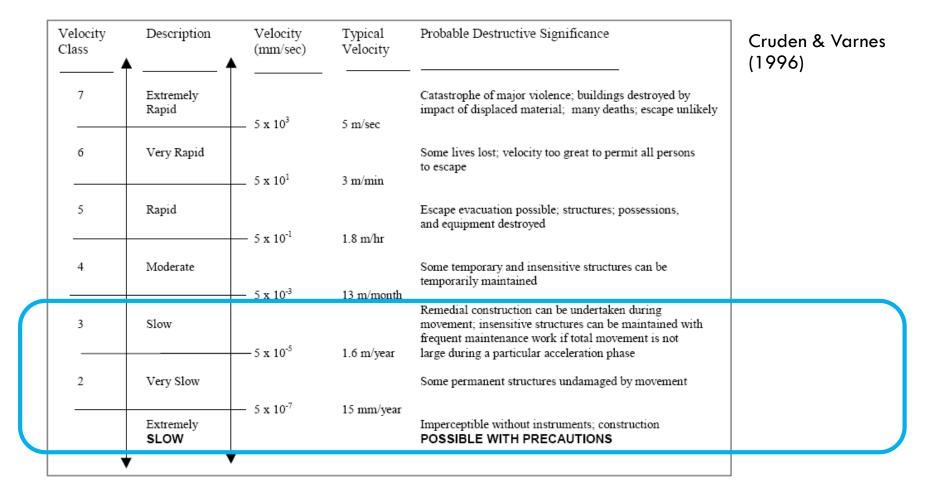
Comparison of the cost of 3 alternative anchoring systems for a ultimate tensile strength of 3000 kN

ADVANTAGES

- Minor cost at constant mechanical properties;
- High ultimate tensile streight and low elongation (serviceability);
- Durability (minor cracking, better protection from corrosion);
- Easy transport and quick installation;

- Anchorage length is adaptable to different geological and geotechnical conditions found in situ;
- Increased flexural inertia and continuity given by strand to the full reinforcement (improved if compared to simple coupling sleeve).

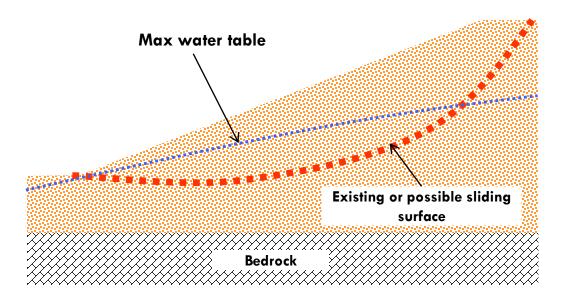
SEARCH FOR NEW SOLUTIONS


- □ Lack of economic resources available to meet the emergency.
- Search for new types of intervention:
 - Low cost;
 - Quick installation;
 - Environmental care.
- Conting Anchor Project: partnership between University of Padova, Province of Vicenza and Dalla Gassa s.r.l.
- Stabilization of slopes subject to landslides with low to medium depth (up to 25 m deep).

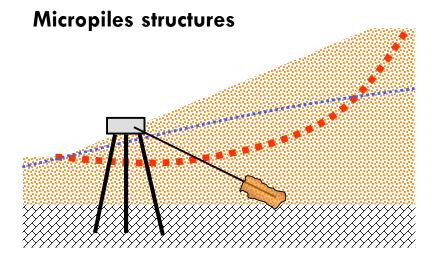
□ SUMMARY:

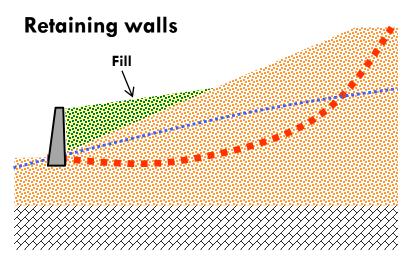
- Technical/economical comparison between most commonly used strengthening intervention works;
- The "floating anchor" tecnique;
- Advantages.

THE BASIC IDEA


□ What type of landslides? Slow/Very slow

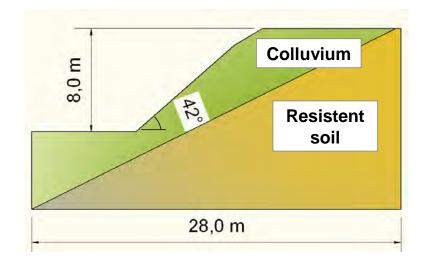
THE BASIC IDEA


Slope stabilization with reinforcement provides for increasing shear strength or reducing the sliding actions along the slip surface with various types of structures:


- Retaining walls
- Dowels
- Micropiles
- Anchors
- Soil nailing

THE BASIC IDEA

- Alternative to rigid techniques normally used, which have some disadvantages:
 - Need for an accurate assessment of the acting forces (collapse);
 - High stiffness, poor adaptability to any movement of the slope;
 - High internal stresses;
 - Lack of modularity;
 - □ High costs ...

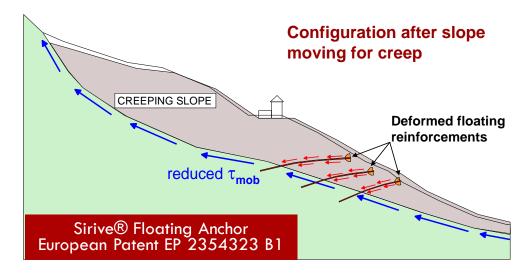


TRADITIONAL REMEDIATION WORKS

A COST-EFFECTIVENESS COMPARISON

- Stabilization of a generic slope with a limited height.
- □ **Design** of the intervention according to Italian NTC 2008.
- Limit equilibrium (LE) analysis.
- Assessment of the global safety factor for the rotational instability.
- Assessment of the intervention cost per linear meter.

Formation	Type of soil	γ [kN/m³]	c' [kPa]	φ [°]
Colluvium	Silty clayey sand	18	0	28
Bedrock	Gravel	19	0	38


TRADITIONAL REMEDIATION WORKS

A COST-EFFECTIVENESS COMPARISON

N.	Type of intervention	Characteristics of intervention	FS	Price ⁽¹⁾ (Euro/m)	Price/ΔFS ⁽¹⁾ (Euro/m)
а	Cantilever wall	Height = 5.0 m; Width = 3.5 m; Depth of tooth = 0.7 m	1.29	1694	5841
b	Gabion wall	Height = 5.0 m ; Width = 4.5 m ; base dip = 6°	1.30	2614	8713
С	Reinforced earth wall	Height = 5.0 m ; Width = 3.5 m	1.39	1360	3487
d	Dowels	Height = 2,0 m; Depth = 7,0 m; 1 lines of piles with 0,4 pile/m; D=60 cm; reinforcement rods $16\varnothing26$	1.58	1781	3071
е	Wall founded on micropiles	Height = 2,8 m; Depth = 4,0 m; 2 micropile lines with spacing i=0,2; 0,66 micropile/m; $D_{\rm ex}$ =114,3 mm; s=6,3 mm; passive anchor R38 spacing 1,5 m; L = 10 m; a = 25°	1.60	1420	2367
f	Anchored micropile sheet-wall	Height = 2,5 m; Depth = 4,2 m; 2 micropile lines with spacing i=0,5; 2 micropile/m; $D_{\rm ex}$ =127 mm; s=8 mm; passive anchor R38 spacing 2,5 m; L = 12 m; α = 30°	1.46	1584	3443
g	Passive nails	$L=6$, 6, 6, 9 m; $i_x=i_z=1$,6 m; $\alpha=15^\circ$; facing with steel net	1.39	883	2264

"Reinforcement works for the slope stabilization: standard and new approaches for the use of micropiles and anchors" S. Cola, A. Bisson, C. Pilati, S. Frasson, G. Stevan, G. Tessari, ISM 2012: International Workshop on Micropiles, Milan, 2012

- Nails are designed to absorb significant horizontal stresses, thus reducing the stresses that induce the viscous motion, in order to slow down the evolution process of the landslides
- As opposed to active anchors, the floating anchor absorbs a part of the shear stresses induced by the landslide movement by mean of the friction forces activated along its profile
- In this way, it transfers to the external plate a small tension: it does not require a continuous facing, but only a small head plate

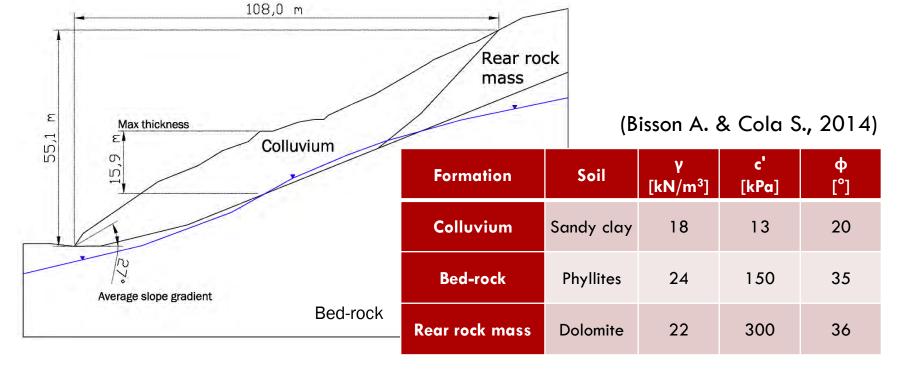
- External concrete plate (floating element) + nail (passive)
- □ The set is an "energy dissipator" that activates by friction within the moving slope (viscous medium)
- If the slope deforms and the ground moves, the plate may be englobed into the soil

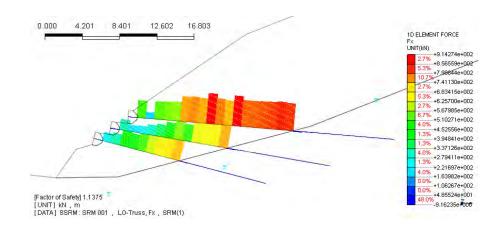
- Single reinforcing elements,
 each of them designed to
 absorb a fraction of the
 shear stress
- Total ultimate pullout resistance for one element:

$$Q_a = Q_p + \int_L \pi D \, \tau_u dx$$
 Head force (external plate) (passive bar)

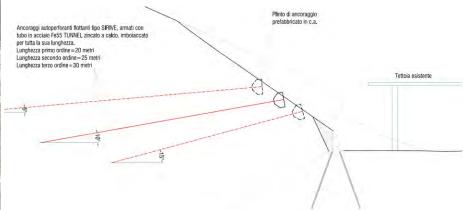
- The system activation occurs with relative displacements at the soil-concrete interface. It may produce:
 - □ Complete stabilization of the slope: the axial force remains less than the maximum available axial strength;
 - Only deceleration of the slope: activation of the maximum available axial strength;
 - □ In any case: no structural failure of reinforcements.

ADVANTAGES


- □ Flexible, not rigid
- Modularity, calibration of the intervention work in progress
- Easy and quick to install
- Good protection againstcorrosion of the bars
- Low environmental impact (facing ratio about 5-6%)
- □ Low cost


GISBENTI LANDSLIDE

- Location Gisbenti, district of Valli del Pasubio (Vicenza, Italy).
- Stabilization work placed at the foot of a landslide (autumn 2010), replacing a retaining wall collapsed by slippage due to the landslide.
- □ 3 rows of floating anchors (Sirive® Special Composite Anchor S60, ultimate strength 2000 kN), 3 m horizontal spacing, 20 to 40 m long.



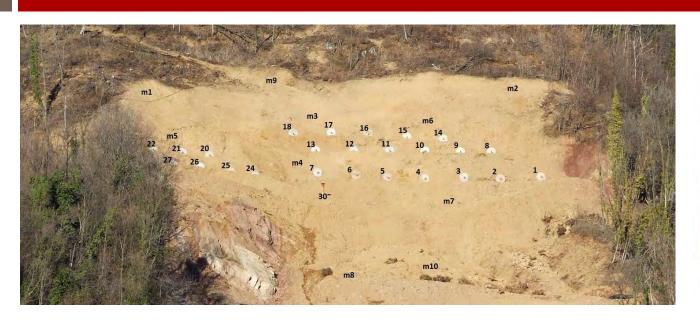
GISBENTI LANDSLIDE

- Maximum traction force
 mobilized at the sliding surface
 to resist to destabilizing actions.
- Low axial force behind the plates, due to the balance of tangential shear stresses developed along the soil-grout interface along the bar.

- Location Val Maso, district of Valli del Pasubio (Vicenza, Italy).
- Landslide reactivated in 2010 due to an extreme rainfall
- Roto-translational collapse of about 200,000 m³ that threatened the stability of a road and produced a small earth-flow that damaged some houses
- Eluvial/colluvial deposits and past landslide debris
- Slope mean inclination angle of about 40°
- Landslide retrogression by multiple rotational slides, with a sliding surface 20 m deep

SIRIVE® SPECIAL COMPOSITE ANCHORS/SIRIVE® FLOATING ANCHORS

Adopting Sirive® Special S60 Composite anchor bars (60 mm diameter bars with 3x0.6" diameter strands and a minimum tensile strength of 2000 kN) anchored to the bedrock, 3 rows of floating anchors spaced 6.0 m and 6.0 m respectively in horizontal and vertical direction were built.


SIRIVE® SPECIAL COMPOSITE ANCHORS/SIRIVE® FLOATING ANCHORS

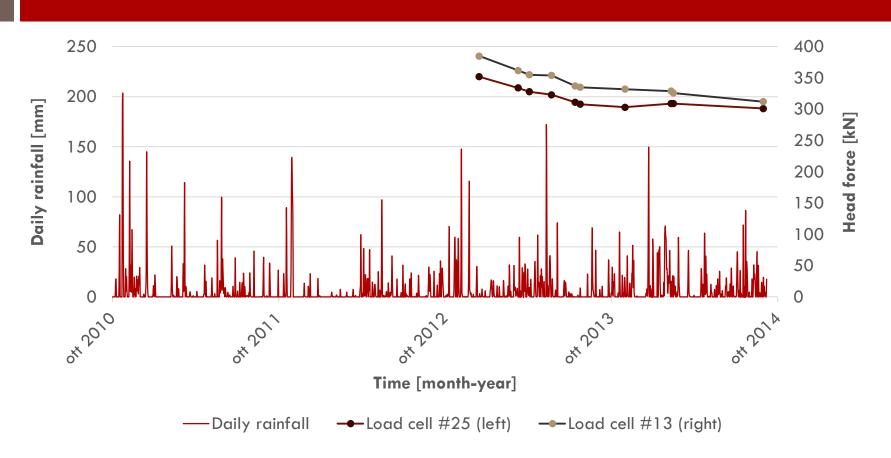
Adopting Sirive® Special S60 Composite anchor bars (60 mm diameter bars with 3x0.6" diameter strands and a minimum tensile strength of 2000 kN) anchored to the bedrock, 3 rows of floating anchors spaced 6.0 m and 6.0 m respectively in horizontal and vertical direction were built.

MONITORING SYSTEM: DISPLACEMENTS

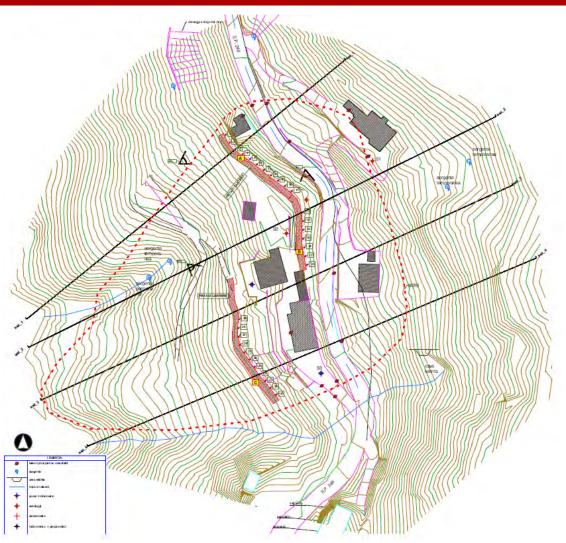
Topographical survey:

- Determine displacements of 10 points selected on the slope and 30 on the plate of each anchor
- Landslide medium displ. rate = 2.6 cm/year (post) vs

 160 cm/year (pre)


Anchor medium displ. rate = 1.6 cm/year

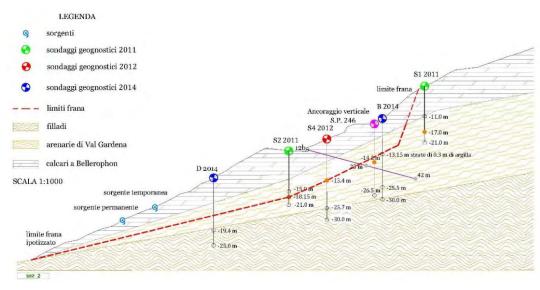
Leica TCRA1101 Total Station


Precision in distance measurements = ±2 mm

MONITORING SYSTEM: HEAD FORCE

The load cells indicate a small decrease of the head-forces in time (14.5-18.9%), which may denote a sort of **asymptotic adjustment** of the soil close to the concrete plates.

CISCHELE LANDSLIDE



- Cross and longitudinal extent: 120 and 180 m
- Medium slope gradient: 24°
- Houses cracked and damaged

CISCHELE LANDSLIDE

- Slow-moving translational landslide
- Displacements are strongly correlated with the change in pore pressure
- □ 2 inclinometers: slip surface 18-20 m deep
- 33 floating anchors (Sirive® Special S76 Composite Anchors), 40 to 50 m long, 3000 kN ultimate tensile strength, 5 m horizontal spacing, frustoconical concrete plates (1.5 m diameter)

CISCHELE LANDSLIDE

THANK YOU

www.dallagassa.com www.sirive.it www.ancoraggioflottantesirive.com

Dalla Gassa s.r.l.

Geotechnical Engineering
Cornedo Vicentino (Vicenza, Italy)

University of Padova

Department of Civil, Environmental and Architectural Engineering

