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Abstract 

 

In order to set up a subsequent optimization of the precoat filtration with 

body-feed cycles by supplying the slurry with a centrifugal pump, a fluid-dynamic 

analysis of the filter-pump system with variable supply pressure was performed. 

Consequently an ordinary differential equation was formulated. Then a 

closed-form solution was found to obtain an equation useful for both the 

optimization of the filtration and the filter design. The application of the new 

mathematical modelling was compared with the application of Carman equation, 

classically used in filtration, which assumes a constant pressure filtration. The 

simulation showed that, due to different permeability of the filter, some conditions 

of filtration can make unrealistic the results of the classic Carman equation. 

Therefore, in filtration practice it is confirmed the opportunity to have a more 

accurate equation for both the design and the optimization. 
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1. Introduction 
 

The precoat filtration with body-feed is an unit operation of agricultural and food 

engineering. Mostly it is implemented by using centrifugal pump, which pump 

curve has a partial horizontal trend. Classically, in filtration theory, this 

prerogative of the centrifugal pumps leads to the simplifying assumption that 

filtration occurs with constant pressure. Because of this, it is easy to integrate the 

Darcy’s differential equation [1, 2 and 3] for the precoat filtration with body-feed, 

obtaining the well known Carman equation [4]. This is the equation which relates 

the filtration time with the filtrate volume, the operating pressure, the filter area, 

and the solid-liquid suspension characteristics. The Carman equation is the start 

point for the subsequent optimization of the filtration cycles, e.g. by establishing 

the relationship between the filtration time and the filter cleaning time [5].  

A better optimization of the precoat filtration with body-feed could be obtain, 

with some economic benefits, if an integration of the Darcy ODE was developed 

starting from actual trend of the pressure produced by the centrifugal pump, that is 

if a variable pressure was considered, as expected from the pump curve. In this 

sense a proposal was done by Tiller and Crump [6] many years ago in accordance 

with a graphic method of integration of the Darcy ODE. However the graphic 

procedure is tedious since it is iterative and not computerizable. 

For this reason the aim of this work was to find an analytical solution to the  

Darcy ODE for the filtration with variable pressure in order to obtain a quick and 

easy-to-use equation for the subsequent optimization calculations of filtration 

cycles, even if more complex of the Carman equation. 

 

2. The mathematical problem 
 

2.1 Darcy ODE and Carman solution 

 

Darcy proposed the following equation to correlate the flow rate of filtrate to the 

geometric parameters (filter area and filtering layer thickness), functional 

parameters (operating pressure) and material parameters (filtrate viscosity and 

permeability of the filtering layer): 

 

 
K A p A p

V
l R

   
 

  
 (1) 

 

where: V dV dt  is the instant flow rate; A is the area of the filter; Δp is the 

pressure difference across the filtering layer;   is the viscosity of the filtrate; l is 

the thickness, increasing with the time, of the filtering layer; K is the specific permea- 
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bility of the filtering layer (m2); R=l/K (m-1) is the total resistance of the filtering 

layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 - Filtration layout of the precoat and body-feed. The filtration layer is 

consisting of the medium (woven fabrics), the precoat and the cake 

 

 

If the resistance of the medium (woven fabrics) and the precoat is neglected and a 

mass balance between the solids (including filter aid) of the slurry and the solids 

of the filter cake is considered, the Darcy ODE is obtained: 

 

 
2A p

V
c V

 


   
 (2) 

where: V (m3) is the volume of the filtrate; c is the concentration of the solids in 

the slurry mixed with the filter aid (kg/m3); α is the specific resistance (m/kg) that 

is considered constant due to the body-feed of the filter aid. 

If the pressure difference across the filtering layer Δp is constant, because a 

perfectly horizontal curve pump is considered, it is easy to integrate the ODE (2) 

to obtain the Carman equation: 

 

 
2 2

2

V A p
t

c 




 
 (3) 

 

where: t is the time (s). The quantity k

c
F

p

  



 is known as filterability. 

Therefore it is easy to find in scientific literature [5] the tern c   indicated as 

the product: kF p  . Then the (3) becomes: 
2 2

2 k

V A
t

F
 . Clearly if the filter is to  
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body-feed with a correct amount of filter aid, then c    is constant and if Δp is 

constant too during the filtration, even the filterability Fk will be constant. 

 

 

2.2 Mathematical modelling of centrifugal pump curve 

 

In practice the flow rate-pressure curves (V -Pp) of the centrifugal pumps used in 

the filters have often experimental values such as those shown in the figure 2.  

They are values of the classic monoimpeller centrifugal pump with exit blade 

angles typically between 30° and 40°. 

We imagined at this point to be able to represent the experimental data of figure 2 

with a parabola characterized by only two constants Ppmax and B: 

 

 

 2
maxp pP P B V    (4) 

 

In fact, it is missing the linear term of the flow rate V because, as it can be seen 

in the experimental values, the tangent in the point V =0 is horizontal. 

To confirm the correctness of the choice represented by the (4) in the figure 2, 

even the corresponding curve was drawn, which is practically overlapped to the 

experimental values (R2=0.999). When V =0, the constant Ppmax is equal to Pp 

and the constant B is obtained imposing for maxV  the Pp=0: 
max

2
max

pP
B

V
 . 

 

In order to determine the equation (4) of the curve of the commercial centrifugal 

pumps used coupled with the filter, it is sufficient to know the Ppmax and the maxV . 

During filtration the pressure drop in the pipeline can be considered negligible 

compared to the pressure difference across the filtering layer Δp. Then we can say 

that the pressure produced by the pump Pp is equal to the pressure difference 

across the filtering layer Δp, (Pp≈Δp).  

 

 

Consequently, at the beginning of the filtration (t=0), when the filtering layer 

consists only of the medium and the precoat, the reduced pressure drop produced 

by the latter (Δp0 equal to few tenths of bar) moves the operating point of the 

pump curve far to the right (fig. 2), that is in an area where the efficiency is low 

and there is a high risk of cavitation. 
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Fig. 2 – Experimental characteristic points (■) V -Pp of a commercial 

monoimpeller centrifugal pump (Lowara). Pump curve (------) as parabola with 

only two constants. Load losses curve (- - - -) of the valve located in the pipe 

between the pump and the filtering layer. It is adjusted so that when t=0, the 

pressure of the pump Pp0 is about 2 bar for a specific flow rate β0= 0V /A≈2 

m3/(h∙m2) 

 

To avoid these negative effects, the filters are equipped by a valve located in the 

pipe between the pump and the filtering layer, in order to create an additional load 

loss to that of the precoat. The valve must be regulated, at the beginning of the 

filtration, by closing the shutter, until the pressure of about 2÷2,5 bar, measured 

before the valve, is reached, value equal to the pressure drop of the valve PRv.  

In this new situation, always at the beginning of the filtration, it must be written: 

 0 0 2 2.5 2 2.5pP p      bar. The operating point of the pump is no longer 

dangerously right, but approximately near to the design conditions (fig. 2). More 

broadly, that is with reference to any instant of filtration, it must be written that 

the pressure produced by the pump has to be equal to the sum of the pressure drop 

induced by the filtering layer Δp (increasing with the filtration time) and the 

pressure drop produced by the valve PRv: 

 

 2
maxp p RvP P B V p P        (5) 

 

As regards the load losses produced by the valve, being able to consider the 

turbulent flow, we can write: 2
RvP k V  . 

By introducing the last one in the (5), gathering in a single constant kB B k  , 

and pointing out the pressure drop of the filtering layer, Δp, we obtain:  

 

Ṽmax Ṽ0 

Pp0 

Ppmax 
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 2
maxp kp P B V     (6) 

In the practice of the design of the most diffused filters (pressure chamber), Ppmax 

ranges between 6 and 7 bar, while the constant Bk is determined by the (6) at the 

initial time t=0, that is when the filter pressure drop Δp=Δp0≈0, and by 

considering the rule of thumb, that is the initial flow rate of the filter area unit β0 

ranges between 1,5 and 2,5 
3

2

m

h m
, with a better value of: 

3
0

0 2

m
2

h m

V

A
 


 : 

 

 
max

2 2
0

p

k

P
B

A



 (7) 

In conclusion the (6) becomes: 

 

 
2

max 2 2
0

1p

V
p P

A

 
     

 (8) 

 

3. Mathematical solution of Darcy ODE with variable pressure 
 

By introducing the Darcy’s equation (2) in the (8), we obtain: 

 

 

2

2
max max

0

0p p

A
P p p P

c V

 
     

    
  (9) 

  

By solving the second degree equation (9), we obtain: 

 

 

22
max0

max 0

21
1 1

2

p

p

P Ac V
p

P A c V

 
                     

  

  
 (10) 

 

By introducing the (10) in the Darcy ODE (2), we obtain: 

 

 

22
max0

max 0

2
1 1

2

p

p

P Aμcα V β
V

P μcα V β

 
               

 (11) 

 

The quantity 
max

2
0

2 pP

μcα β
, constant during the filtration, has the dimension of a time 

and for convenience we call it t0. Instead the quantity
max

0

2 pP A

μcα β
  has the 

dimension of a volume and we call it V0. The (11) becomes: 
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2

0

2
0 0 0

1
VV V

V
t t V

     (12) 

 

If we apply the (12) to the initial time t=0, where the filtrate volume is still zero 

(V=0) and the flow rate is the initial one 0V , it can be simplified: 0
0

0

V
V

t
 , by 

signaling the physical meaning of V0 and t0: their rate is equal to the initial flow 

rate 0V  and therefore their subscript is explained. The same result can be 

obtained by dividing the amounts 
max

0
0

2 pP A
V

μcα β



 and 

max

0 2
0

2 pP
t

μcα β



. In fact β∙A 

is obtained, that is the initial flow rate 0V . 

By integrating [7] the ODE (12), we obtain:  

 

 
2 2 2

2 2 2
0 0 00 0 0

1 1
1 ln 1

2 2

t V V V V V

t V VV V V

   
         
   
   

 (13) 

 

If we define the dimensionless volume 
0

V
g

V
  and the dimensionless time 

0

t

t
 , the integral (13) can be rewritten: 

 

  2 21 1
1 ln 1

2 2
g g g g g      

  
  (14) 

 

With the previous definitions, the Carman solution (3) obtained in par. 2.1 

becomes: 

 
2

2

2
0 0

t V
g

t V
    (15) 

 

4. Results and concluding discussion 
 

The figure 3 shows the comparison between the volume of the filtrate calculated 

with the Carman equation (3), obtained with a constant Δp approximation, and the 

volume of the filtrate calculated with the equation (13) obtained from the exact 

solution of the Darcy ODE with a variable Δp. Both equations were applied with 
910c   Pa·s/m2, max 650,000pP  Pa and 36A m2. We can observe that the 

higher the filtration time the closer are the curves and the lower is the error using 

the simplified Carman equation (fig. 4). If the values of the filter area A are 

changed, the result of the figure 4 doesn’t change. Instead when a filter aid with a 
larger particle size – and therefore with a higher permeability - is used, the specific 
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resistance α decreases so much, and also c  . As shown in figure 4, in particular 

with a 10-fold reduction of c   (108 Pa·s/m2), a clear worsening of the error 

committed using Carman equation occurs, even if, increasing the filtration time, 

some improvement can be obtained. However, the filtration time cannot be as 

high as you want. There are two reasons that lead to its limitation. The first one is 

due to the limit in the available space in the filter above the precoat that can be 

occupied by the cake, usually about 20 mm. 
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Fig. 3 – Filtrate volume vs. filtration time: comparison between Carman equation 
(3) and equation presented in this work (13). Both the equations are applied with 

910c   Pas/m2, max 650,000pP  Pa and 36A m2 
 

 

The second one is that a maximization of the average flow rate of the filtrate is 

needed in order to reduce the costs of the operation. This means we need to 

optimize the cycles of filtration-cleaning. As you will see in the second part, this 

can be done finding a relationship between the cleaning time θ and the filtration 

time t. Since the first one is slightly variable, a quite accurate filtration time will 

be defined depending on the boundary conditions of the filtration. As you will see, 

we can easily be in the optimized condition with filtration time of the order of few 

hours for which, therefore, the use of the Carman equation (3) becomes 

unacceptable for the big mistake introduced by it. 

Finally the figure 5 shows the dimensionless volume vs. dimensionless time as 

provided by the equations (14) and (15). 
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Fig. 4 – Error due to the use of the approximate Carman equation. The 

quantity c  is expressed in Pa·s/m2 
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Fig. 5 –Dimensionless τ time vs. dimensionless volume g  
 

 

References 
 

[1] Lihong Du, Xu Chen, Wenping Li, Qixin Zhu, A study on enhancement of 

filtration process with filter aids diatomaceous earth and wood pulp cellulose, 

Chinese Journal of Chemical Engineering, 19 (2011), no. 5, 792-798. 

http://dx.doi.org/10.1016/s1004-9541(11)60058-x  

 

 

http://dx.doi.org/10.1016/s1004-9541%2811%2960058-x


7366                    Dario Friso, Lucia Bortolini and Emanuele Cerruto 

 

 

[2] T. Imankulov, D. Lebedev, K. Aidarov, O. Turar, Design of HPC system for 

analysis the gel-polymer flooding of oil fields, Contemporary Engineering 

Sciences, 7 (2014), no. 27, 1531-1545.  

http://dx.doi.org/10.12988/ces.2014.410187 

 

[3] S. Men-La-Yakhaf, K. Gueraoui, M. Driouich, M. Sammouda, Numerical and 

mathematical modelling of reactive mass transfer and heat storage 

installations of palms waste, Applied Mathematical Sciences, 9 (2015), no. 

102, 5055-5063. http://dx.doi.org/10.12988/ams.2015.49730 

 

[4]  J.G. Brennan, J.R. Butters, N.D. Cowell, A.E.V. Lilley, Food Engineering 

Operations, Elsevier Applied Science, London, 1990. 

 

[5]  P. Mafart, E. Beliard, Genie Industriel Alimentaire, Techniques Separatives, 

Lavoisier TEC & DOC, Paris, 2004. 

 

[6]  F.M. Tiller, J.R. Crump, Solid-liquid separation: an overview, Chemical 

Engineering Progress, 73 (1977), no. 10, 65- 75.  

 

[7] D. Friso, C. Baldoin, F. Pezzi, Mathematical Modelling of the Dynamics of 

Air Jet Crossing the Canopy of Tree Crops during Pesticide Application, 

Applied Mathematical Sciences, 9 (2015), no. 26, 1281 - 1296.  

http://dx.doi.org/10.12988/ams.2015.5145 
 

 

Received: October 12, 2015; Published: December 20, 2015 

 

http://dx.doi.org/10.12988/ces.2014.410187
http://dx.doi.org/10.12988/ams.2015.49730
http://dx.doi.org/10.12988/ams.2015.5145

