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Abstract 

 

To calculate the sterilizing value U, and hence, the microbial lethality F in thermal 

processes of the canned food, starting from the knowledge of heating time B, a 

mathematical modeling was carried out. Therefore it’s useful to verify the desired 

microbial destruction (check problem) and it was obtained by reversing the 

mathematical approach carried out in a previous work [23] for the design problem, 

namely to calculate the retort heating time B, starting from a desired lethality F and, 

hence from the fh/U parameter. A comparison between the predicted fh/U, related to 

the lethality F calculated with the mathematical model of the present work and the 

desired Stumbo’s values of fh/U, provided the following statistical indices: a mean 

relative error MRE=1.18±2.11%, a mean absolute error MAE=1.61±11.7 and a 

determination coefficient R2=0.991, better than ANN models. The mathematical 

procedure, quickly usable also with a spreadsheet, replaces the 57 Stumbo’s tables 

and 18512 data sets in the Ball formula method. 

 

Keywords: Mathematical modeling, Thermal process check, Canned food, Food 

engineering 

 

 

1. Introduction 
 

Among the various methods for lengthening the food shelf life, the canned food is 

the best compromise between food safety, nutritional value and costs [1 and 2]. 

The two mathematical laws introduced by Bigelow [3], describing the destruction 

of a microbial population and the alteration of the constituents (enzymes, proteins  
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and vitamins) by using the couple temperature-time, are insufficient for modeling 

and subsequent calculating the thermal processes of canned food. In fact it’s 

necessary to complete the two Bigelow laws by the mathematical one, describing 

the heat penetration in the mass of canned food. 

The same Bigelow [3], proposed a graphical method (known as general method), 

by combining the two laws on microbial destruction and the experimental heat 

penetration curve, to determine the optimum heating time (B) of the canned food 

to obtain a given sterilization. 

The general method was improved during more steps by various authors [4, 5, 6, 

and 7], achieving an excellent result [8]. 

As an alternative to general method, Ball [9] proposed a method (known as 

formula method) by combining the two Bigelow laws and some equations of heat 

penetration. The same Ball [10] improved his method, but a great expansion to 

cover the whole range of thermal death parameters was made by Stumbo [11]: 57 

tables of Stumbo vs. 1 table of Ball.      

A comparison of the Ball-Stumbo formula method with other formula methods 

later developed [12 and 13], was conducted by Smith and Tung [14]. They 

established the most accurate results by using the first. 

Unfortunately the consultation of 57 Stumbo's tables with 18,513 datasets poses 

serious problems on its computerization. In last years, a third method was also 

proposed by using computational thermo-fluid dynamics. These CFD methods 

proved to be a valuable tool to ensure food safety and nutritional quality [15, 16, 

17, 18]. Nevertheless for this third numerical approach, a high computing power 

and long calculation times are necessary [19]. Besides, many input data like the 

heat transfer coefficient of the heating and cooling medium, thermal diffusivity of 

the food product, can shape and dimensions, processing conditions and a good 

practice in the use of the CFD (right choice of mesh, etc.) are required. 

As an alternative, in recent years, ANN method (artificial neural networks) was 

proposed [19, 20 and 21]. It consists in a high number of algebraic equations 

solved by an information processing system (black box) that learns from 18,513 

Stumbo's datasets. 

In a previous work [22], the 18,513 Stumbo's datasets, were also transformed into 

a mathematical model, based on ten equations for the computerized solution of 

check problem, that is the verification of desired microbial lethality F. 

Instead for the design problem, i.e. the calculation of the g value, necessary to 

compute directly the thermal process time B with Ball’s formula, known a priori 

the process lethality F, a mathematical approach, which consisted of only three 

equations, was proposed [23].  

Considering the need to simplify and to improve the previous mathematical model 

of ten equations [22], proposed for the solution of the check food thermal process 

problem and considering the new type of mathematical solution found for the 

design problem [23], the overall objective of this paper was to develop a new 

mathematical procedure, that solves the check problem i.e. to furnish more 

quickly and precisely the microbial lethality F for a given heating time (B) of the 

canned food. 
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2. The mathematical problem 
 

For a given constant temperature (i.e. 121.1°C) and for a given number of decimal 

reductions n of viable microorganisms, the heating time that needed for the 

thermal death of microorganisms is known as F (first Bigelow law): 

 

 121.1F n D 
 

(1) 

 

where D121.1 is the decimal reduction time at reference temperature 121.1°C, 

experimentally known as function of the target microorganism and where F is 

known as process lethality. 

During food thermal processes (sterilization, cooking, pasteurisation etc.), the 

temperature inside the canned food is not constant. It slowly increases over the 

heating time and then slowly decreases over the subsequent cooling time (Fig. 1). 

The alteration in temperature T vs. time t in the coldest point of the canned food 

causes a modification in the decimal reduction time, now called TD instead 121.1D . 

Accordingly the process lethality F becomes [23]: 

 

 

121.1 121.1

121.1

0 0

10 10

t BT T

z zF n D dt dt

 

      (2) 

Equation (2) summarizes the two Bigelow’s laws. For its integration up to total 

heating time B, it needs the relationship between the coldest point temperature T 

and the time t (also known as temperature-time history or heat penetration 

curves). 

Excluding a possible initial lag period, the temperature-time equation considered 

by Ball [9] was:  

  
2.3

0( ) h

t

f
R R chT T T T J e




      (3) 

 

where TR (°C) is the retort temperature, T0 (°C) is the initial food temperature, Jch 

is the heating rate lag factor at the can center (coldest point), and fh (min) is the 

heating rate index. 

Ball and Olson [10] and Stumbo [11], used also the equation (3) to obtain the 

relationship among  R gg T T 
 
(°C), that is the difference between the retort 

temperature TR and coldest point temperature Tg(°C) at the end of the heating 

process (figure 1) and the total heating time B: 

 

 
 0

log
ch R

h

J T T
B f

g

 
   

  
 (4) 

 

If the retort temperature TR is not equal to the conventional 121.1°C, preferably a 

higher value for improving exergetic efficiency [24], the time required to obtain a 

given F value, is known as the sterilizing value U:  
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121.1

10



 

RT

zU F  (5) 

 

In the design problem, it is required the prediction of process time B to obtain a 

given lethality (F or U) [25]. On the contrary, in the check problem it needs the 

verification of lethality (F or U) for a given heating time B. 

In any case a preliminary experimental assessment of the parameters of the 

heating and cooling curves (fh, Jch, fc, Jcc), is needed. 
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FIGURE 1 Heat penetration curve or temperature-time history of the coldest point of the 

canned food during the entire thermal process from a first heating period to a second 

cooling period 

 

In the heating phase, with the retort temperature considered constant, combining 

equations (3) and (2) and then by integrating, Ball and Olson obtained [10]: 

 

 

121.1
2.3

10 Ei
2.3

RT

h z
h

f g
F

z


   

     
  

 (6) 

 

where Ei is the Exponential integral function and Fh is the lethality during the 

heating phase. Equation (6) is valid under Ball condition: z 15 C  . 

Recalling equation (5), the sterilizing value Uh becomes: 

 

 

2.3
Ei

2.3

  
    

 

h
h

f g
U

z
 (7) 

During the subsequent cooling phase (fig. 1), Ball represented the 

temperature-time history with a hyperbola and an equation similar to the function 

(3). Both equations are valid under the Ball conditions: z 15 C 

 
and Jcc =1.41 (Jcc 

is cooling lag factor). 

Then, integrating equation (2), Ball obtained the equation for cooling process 

lethality Fc. It was more complicated than that of the heating process lethality Fh 

and it is indicated briefly as follows: 
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where  , ,c wF g z T

 

represents the influence of the g value, z value and the cold 

water temperature Tw, used in the retort during cooling.  

Considering Tw constant and equal to 21.1°C (70°F) and the cooling rate index 

c hf f  [11], the sterilizing value Uc, during the cooling phase, is then: 

 

 
 ,

2.3
  h

c c

f
U F g z  (9) 

 

The sum of Uh and Uc, is the sterilizing value U of the whole thermal process: 
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 For each value of z 15 C  , equation (10) can be summarized:  

 

 
 hf f g

U
 (11) 

Because of f(g) contains the Ei function, that is tabulated, Ball obtained a table 

that furnished g value, in correspondence of each hf

U
values between 0.3 and 1000, 

and each z values between 3.3 and 15°C. 

With z value outside these limits and the cooling lag factor Jcc different to 1.41, 

the values of fh/U are different. 

Starting from this problem, Stumbo [11] enlarged the initial Ball table to 57 tables 

of :hf U g, valid for a wide range of z values (5.5°-111.1°C; 10°-200°F) and 

cooling lag factor Jcc values (0.4-2), keeping valid the hypothesis that the cooling 

rate index c hf f . 

Therefore, Stumbo expanded the applicability of Ball’s formula method for any 

kind of thermal process (z value) and for any canned food (Jcc value). 

Unfortunately, the method is unsuitable for its computerization. Rather, Stumbo 

has worsened this problem because the Ball’s table has turned into 57 Stumbo’s 

tables representing the function: 

 
 , ,h

cc

f
f g z J

U
 (12) 

 

3. Proposal of a solution method 
 

The indirect problem, that is the check problem, consists in the attainment of 

lethality F for a given heating time B of the canned food. 

By reversing the Ball’s formula (4), g value, that is the difference between the 

retort temperature TR and coldest point temperature Tg at the end of the heating 

process, is obtained: 
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In a previous work [23], about the thermal processes design, an equation 

correlating g value with the thermo-physical and geometrical parameters of 

canned food (z, Jcc and fh) and the sterilizing value U, was obtained: 

 

 
2.3

exp
2.3 h

z U
g H K

f

 
      

 
  (14) 

 

where γ was Euler’s constant (γ=0.5772…); H was the product of two 

polynomials, understood as the first correction factor, 

   3 2 3 2       H au bu cu d Ay By Cy D ; K was a second polynomial correction 

factor      2 21 0.4         
  ccK J pu qu r Pz Qz R ;  ln hu f U ,  lny z .  

Now, if we consider Jcc=0.4, then K=1 and if we reverse the equation (14), we 

obtain: 
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ln
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 (15) 

 

Where G is also a correction factor and it coincides with the product of two 

polynomials; the second polynomial is a function of  lny z , like the previous H, 

but the first one is a function of  ln 1v g  , instead of  ln hu f U used in H: 

 

    DCyByAydcvbvavG  2323  (16) 

 

The equation (16), as a double polynomial, is a result of a careful analysis of the 

data in Stumbo’s tables and as a consequence of a trial-and-error approach. 

By developing the product of two polynomials, the products of the coefficients a, 

b, c, d, A, B, C and D were obtained through a multiple analysis [26] using 

Stumbo’s datasets relating fh/U, g and z, with Jcc=0.4, 3.0Ufh  and 

Cz  11110 . The results is shown in table 1 and the regression analysis was 

characterized by a R2=0.9998. 

For a better fitting of Stumbo’s datasets a second regression was carried out. In 

this case using always the values of Jcc=0.4 and only the values of fh/U, g and z 

that satisfied the following inequality: 
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error of the first regression represented by equation (16), can easily produce, by 

equation (15), negative values of sterilizing value U. So, a second polynomial G’ 

was arranged: 

 

    ''''''''' 2323 DyCyByAdvcvbvaG   (18) 

 

Similarly to the equation (16), the products of the coefficients a’, b’, c’, d’, A’, B’, 

C’ and D’, obtained by multiple regression with R2=0.99999, are shown in table 1.  

Therefore the second polynomial G’ must substitute the first one G, only 

when 055.1
3.2





eg

Gz
. To solve this problem, a combination of G and G’ by 

using the hyperbolic function tanh, was studied and here proposed: 

 

 'GGG     (19) 

 

Where: 
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The functions τ+ and τ-  vs. 
2.3

z G
x

g e



 

 is shown in figure 2. 
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the relationship ccJg : is continuous and monotonically increasing. Therefore, to 

extend the use of equation (15) for Jcc>0.4, it’s necessary to modify the g value, 

obtained from equation (13), before introducing it in equation (15). For this reason 

a function    4.04.0  cccc JgJg  was developed, starting from Stumbo’s 

datasets. For greater convenience  4.0ccJg  was indicated with symbol g, like 

in equation (13), and  4.0ccJg  with symbol gm (g modified). In fact, after a 

careful analysis of Stumbo’s datasets, it was observed that 

 399.05  ccm Jggg , where the increment g was depending only of gm 

and z through polynomials: 

 

      399.05232  ccmmm JSRzQzPzqgpggg  (22) 

 

By developing the product of two polynomials, the previous equation 

symbolically becomes: 

 

 
mm ggg   2  (23) 

Where: 

 

    399.0523  ccJpSpRzpQzpPz  (24) 

 

     1399.0523  ccJqSqRzqQzqPz  (25) 

 

Solving equation (23), gm was obtained: 

 

 




2

42 g
gm


  (26) 

 

Therefore, it needs to pay attention in equation (15), that becomes:  

 

 ln ln
2.3 2.3 2.3 2.3

h h

m m

f fz G z G
U

g g e

    
       
        


  (27) 

 

Where G in equation (16), (17), (18), (19), (20) and (21) must be correlated to 

 ln 1 mv g   instead of  ln 1v g  . 

 
TABLE 1 Coefficients of polynomials G and G’ 

a·A -0.03117 a’·A’ -0.06892 

a·B 0.40441 a’·B’ 0.31714 

a·C -1.81641 a’·C’ 0 

a·D 2.83278 a’·D’ 0 

b·A 0.03365 b’·A’ -0.05119 
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TABLE 1 (Continued): Coefficients of polynomials G and G’ 

 

 

b·B -0.49036 b’·B’ -0.57530 

b·C 2.48951 b’·C’ 0 

b·D -4.32509 b’·D’ 0 

c·A 0.00394 c’·A’ 0.60785 

c·B 0.12946 c’·B’ 0 

c·C -1.41272 c’·C’ 0 

c·D 3.41010 c’·D’ 0 

d·A -0.05496 d’·A’ -0.61067 

d·B 0.48405 d’·B’ 0 

d·C -1.45712 d’·C’ 0 

d·D 2.32634 d’·D’ 3.39600 

 

 
TABLE 2 Coefficients of polynomial Δg of equation (22) 

 

 

p·P -3.47449·10-08 

p·Q 6.42525·10-07 

p·R 2.14817·10-05 

p·S 2.51153·10-04 

q·P 4.19566·10-08 

q·Q 2.15151·10-05 

q·R 2.86640·10-03 

q·S 5.17551·10-02 

 

 

 

4. Results and discussion 
 

The calculated fh/U values, obtained by 2.3

ln
2.3

h

m

f

U z G

g e


 
 
   



, deduced from  

equation (27), and by using the other equations (16), (18), (19), (20), (21), (24), 
(25) and (26) proposed in present mathematical model, were compared to the 

desired fh/U values obtained from Stumbo’s tables (fig. 3).  
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FIGURE 3 - Predicted 𝑓h/𝑈 values using the mathematical model versus desired Stumbo’s 

values of 𝑓h/𝑈. 

 

 

Table 3 also shows the statistical indices: mean relative error MRE, mean absolute 

error MAE and determination coefficient R2.  

The results of this work are better with respect to the previous mathematical 

model [22] and to the ANN models of Sablani & Shayya [20] and Mittal & Zhang 

[21]. 

 

 

 
TABLE 3 Comparison of MRE and MAE obtained as difference between predicted fh/U by 

various authors and desired fh/U from Stumbo’s tables 

 

 

 fh/U 

 MRE S.D. MAE S.D. R2 in Fig. 2 

Sablani & Shayya [20] 2.42 3.90 3.21 20.76 0.979 

Friso[22] 2.46 3.38 3.38 20.49 0.982 

Mittal & Zhang [21] 1.41 3.40 2.43 15.97 n.d. 

This work 1.18 2.11 1.61 11.27 0.991 

MRE = Mean Relative Error, MAE = Mean Absolute Error, S.D. = Standard Deviations 
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5. Conclusions 
 

Among the various methods for food thermal calculations, the Ball’s formula 

method is still interesting for the cannery industry. In its complete version, it is 

associated with 18,512 Stumbo’s datasets which are to be consulted both for the 

check problem as well as for the design problem. 

In this work, for a faster solution of the microbial lethality check, it was proposed 

a mathematical model, made of nine equations to be sequentially solved.  

In this way it’s possible to eliminate the consultation of 57 Stumbo’s tables both 

manual as well as through the computerized storage and interpolation of 18,512 

Stumbo's datasets. 

 

The process lethality F and, hence, the sterilizing values U and, finally, the fh/U 

values, which could be called number of Ball, calculated by applying the 

mathematical approach of this work, were closer to the Stumbo fh/U values, 

compared to those obtained by a previous mathematical model [22] and by ANN 

models [20 and 21].  
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