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Abstract 

 

To study the possible ergonomic and energetic advantages on the use of a shovel 

with a flexible coupling, a dynamic analysis of the motion of the blade together 

with the lifted raw material was conducted. By this dynamic analysis, ordinary 

differential equations were set up. Therefore the closed-form solutions were found 

to obtain useful equations for simulation. The application of mathematical 

modeling both to the blade with elastic coupling and to the traditional one, 

allowed to quantify the zeroing of the operator effort in the second half of the 

blade lifting. However, in the first part of the lifting an effort increase occurs, but 

in this first phase the operator can take advantage from the support on the thigh, 

thus lightening the load on the spine. 

 

Keywords: Shovel; Mathematical modeling; ODE; Energy and work; Dynamic 

analysis; Ergonomics; Agricultural and forest engineering 
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1. Introduction 
 

Shovel are still widely used for manual work of digging and material transfer in 

agriculture, forest and construction industry [11]. It is a hard work with high 

energy consumption and high musculoskeletal stress, particularly for the spine.  

In a recent research [2] laboratory tests were carried out to simulate the conditions 

of work with the shovel. The musculoskeletal loads for the lifting work of 5 

different types of material (soil, sand, gravel, pebbles and mortar) were measured. 

First, however, masses shoveling, execution times and motion kinematics of 

workers were quantified. The mean value of lifted mass was 7.68±1.65 kg. The 

mean value of entire operation time was 2.99±1.07s.  

The kinematic analysis of worker movements allows to identify the average 

elevation time of mass by shovel equal to 0,8±0.16 s. Finally, the mean 

compression force on the inter-vertebral disc was 3,5÷ 6,25 kN.  

Considering these information, a shovel with a flexible joint in the handle was 

built and patented [3]. The flexible coupling have to flex in vertical plane but not 

in horizontal one (fig. 1).  

 

The aim of this paper is to study the motion dynamics of material mass lifted by 

the worker with the shovel. For a comparison, the dynamic analysis was 

conducted both for a shovel without spring and for one with the spring at two 

different stiffness. 

The dynamic analysis will be carried out by integration of ODE looking for closed 

solutions, as made in previous researches [4, 8, 12 and 13], having the same 

objective of obtaining equations to be easily implemented both in a control system 

and in spreadsheet for simulation. Finally the dynamic analysis will be also 

conducted with the aim to describe the energetic aspect.  

 

2. Dynamic analysis  
 

2.1 Shovel without flexible coupling  

 

The blade of figure 1 is equipped with a traditional handle (without flexible 

coupling). The operator moves the blade through the handle. Therefore the blade 

constitutes a mobile support for the mass m. It is assumed that the blade runs a 

vertical trajectory of the coordinate z with reference to ground (inertial frame) as 

shown in figure 1 (right). 

It is a sinusoidal trajectory vs. time, represented by the following equation: 

 

 

 t
zz

z cos
22

maxmax    (1) 
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Fig. 1 – Blade without the flexible joint (left). Vertical trajectory z vs. time t (right). 

 
By deriving, first we obtain the velocity z and after the acceleration z : 
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z 

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2

2

max   (3) 

 

From the experimental data [1 and 2], it is imposed that the lifting to height zmax 

equal to 1.3 m occurs in a time interval tmax of 0.8 s. Therefore the pulsation is 

max 3.925t    s-1. Furthermore it is assumed [2] that the average mass is m 

of 8.2 kg. Finally we neglect the mass of the blade mb and the air drag force Fd 

because of 0.05bm m   and 0.01dF mg  . 

 

 

 

 

 

 

 

  

 
 

 

Fig. 2 – Shovel, without the flexible coupling, loaded by m·g (left). Dynamic model (right). 

 

 

The mass m, previously collected from the pile on the ground, is now above the 

blade (Fig. 2). The blade constitutes an unilateral constraint for the mass m. Figure 

2 also shows the dynamic model with the inertial frame (ground) [5] and the 

no-inertial frame identified in the blade subjected to an acceleration z  described 

by eq. (3). The dynamics equation of the mass m, considered as a particle, with 

reference to the no-inertial frame, is: 

 

m·g 
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 t
z

mRmgym 


cos
2

2

max    (4) 

 

Where: y is the acceleration of the mass m with reference to the no-inertial frame 

(blade); mg is the gravitational force; R is the reaction force; t
z

m 


cos
2

2

max  is 

the fictious force due the accelerated motion of the no-inertial frame.  

If the acceleration y  is assumed to be zero, through the equation (4) it may 

obtain the reaction force R, which coincides with the force that the blade (and thus 

the operator) must exert on the mass m to lift it up to zmax.  

 

 

 

Fig. 3  

 

 

 

 

 

 

 

 

 
Fig. 3 – Reaction force R coinciding with the force exerted by the operator through the blade on 

the mass m: vs. time t (left); vs. the lifting z coordinate of both the blade and of the mass m (right). 

 

 

Figure 3 (left) shows R=f(t) obtained by (4), while figure 3 (right) shows R=f(z)  

as a result of the combination of (4) with (1). It is easy to see that the area under 

the graph R=f(z) is the work done by the reaction force on the mass m and 

therefore is the work done by the operator. Given the linear trend of R=f(z), such 

work is max max0.5 0.5 160 1.3 104W R z       J. It coincides with the potential 

energy acquired by mass m to reach the maximum height hmax=zmax=1.3 m: 

max 80 1.3 104W mg z     J. This is an obvious result, because it is assumed the 

presence of only conservative forces. However the diagram in Figure 3 is useful to 

understand how the force applied by the operator is distributed along the vertical 

coordinate z. 
 

2.2 Shovel with flexible coupling  
Figure 4 shows the blade with handle with flexible coupling [4]. Both the force of 

gravity and the force of inertia may cause a deformation of the spring of the 

coupling. Figure 4 also shows the dynamic model, completed with both inertial 

frame (ground) and the no-inertial frame, identified in the blade of the shovel 

imagined without the flexible joint. Therefore the no-inertial frame is still subject 

to acceleration z  as described by eq. (3) and its vertical trajectory z as described  
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by eq. (1) and figure 1. The equation of the dynamics of mass m, suspended by the 

spring of stiffness k, with reference to the no-inertial frame, is: 

 

 t
z

mkymgym 


cos
2

2

max  (5) 

 

Where: y is the acceleration of the mass m with reference to the no-inertial frame 

(blade); mg is the gravitational force; ky is the elastic force; t
z

m 


cos
2

2

max  is 

the fictious force due the accelerated motion of the no-inertial frame; y is the 

vertical coordinate of the mass m with reference to the no-inertial frame. It is also 

visible in figure 4 (left) and it is such that the height h of the mass m with 

reference to the inertial frame is algebraically: h z y  . 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 – Shovel, with the flexible coupling, loaded by m·g (left). Dynamic model (right). 

 

A particular integral of the ODE (5) can be found by placing tC
k

mg
y cos  

that introduced in (5) provides:

2

2

max

1

5.0



n

z
C



 . Where ωn is the natural pulsation 

(frequency) [6, 7, 9 and 10]: n

k

m
  . Therefore, the particular integral is: 
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The general solution of related homogeneous differential equation is: 

 

 tBtAy nn  sincos   (7) 

 

Therefore the general solution of the ODE (5) is: 
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To determine the integration constants A and B, it must be considered that there is 

a time range (fig. 5) during which the no-inertial frame lifts, according to the law 

(1) compressing the spring, but the mass remains fixed ( 0 yzh ). The mass 

will begin lifting when the spring force kykz   reaches and exceeds the mg 

value. 

 

 

 

 

 

 

 

 
Fig. 5 – Dynamic model during the time range 0-t* in which the mass is fixed, but the operator 

lifts the handle by applying an increasing force R to load the spring. 

 

To find such a time range 0-t* we impose, recalling the equation (1), that 
*

maxmax cos5.05.0 tkzkzmg  : 
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1

kz

mg
t


 (9) 

 

Therefore the initial conditions of motion ( 0 yzh ) and ( 0 yzh  ), 

essential to find the value of the constants A and B, are applied at time t*. A 

system of two equations in two unknowns A and B, is obtained:  
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Solving the system (10): 
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3. Results and conclusive discussion  
 

Considering the case of the mass m is integral (bilateral constraint) with blade of 

the shovel equipped with a stiffer spring in the flexible coupling, the height h of 

the mass in motion, obtained by adding y of (8) with z of (1), is shown in figure 6 

(left). If the mass m is only put on the blade (unilateral constraint), when h 

exceeds z, for t=tD (in this case tD is 0.407 s), then the mass m detaches from the 

blade. 
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Fig. 6 - Height h (- - -) of the mass m in motion with bilateral constrain on the shovel with stiffer 

spring and height z (----) of m on the shovel without springy coupling (left). Their respective 

velocity h  and z  (right). 

 

 

Figure 6 (right) shows the m mass velocity yzdtdhh   , obtained by 

summing y , deduced by deriving the equation (8), with the z  by the equation 

(2). It provides the speed value 
Dh  at the time tD. Therefore the motion of the 

mass m after the instant tD results from the integration of the ODE: mh mg  , 

with initial condition: 
Dhh    and 

Dhh   for 
Dtt  : 

 

   25.0 DDDD ttgtthhh     DD ttghh     (13) 

 

Therefore in the time range 0-tD, the h values of the mass m unilaterally 

constrained, are obtained by yzh   (fig. 6), while, after tD, the value of h is 

provided by equation (13). Figure 7 (left) shows the h values vs. time, while 

figure 7 (right) shows the corresponding speed. 
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Fig. 7 - Height h (- - -) of the mass m in motion with unilateral constrain on the shovel with stiffer 

spring and height z (----) of m on the shovel without springy coupling (left). The corresponding 

velocities h  and z  (right). 
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Fig. 8 – Force R(t) (- - -) exerted by the operator through the shovel with stiffer spring vs. the R(t) 

(----) exerted through the shovel without flexible coupling (left); Force R(z) (- - -) exerted by the 

operator through the shovel with stiffer spring vs. the R(z) (----) exerted through the shovel without 

flexible coupling (right). 

 

 

For reasons of balance, figure 5 (right) shows that the blade (no-inertial frame) 

handled by the operator, exerts a reaction force R coinciding with the elastic force 

-ky. Therefore R coincides with the force that the operator must exert and it can be 

calculated by multiplying the stiffness k for the equation (8), obtaining R=f(t) (fig. 

8-left). Combining (8) with (1) we get the reaction force R (Fig. 8-right) vs. the 

height z of handling of the operator, coinciding with the height of the non-inertial 

frame. 

As already seen with figure 3, also in this case the area under the diagram R=f(z) 

is the work done by the reaction force R on the mass m and therefore is the work 

done by the operator. Also in this case, due to the presence of only conservative  
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forces, it coincides with the potential energy acquired by the mass m to the 

achievement of the maximum height hmax: 114424.180max  hmgW J. 

The diagrams in figure 8 allow to understand that the force R, in presence of the 

flexible coupling (stiffer spring), is exerted by the operator only in the first section 

of the lifting, but with a peak value (275 N) greater than that of the shovel without 

flexible coupling (160 N). This is because of the need to load the spring. However, 

two advantages are obtained: first, a 10% increase of the height reached by the 

mass m; second, the reaction force R is exerted within the first 0.64 m from the 

ground (about zmax/2) when the operator can leverage the thigh as a support for the 

handle of the shovel, with a presumable less load on the spine than the shovel 

without spring. 

In case of a shovel with semi-stiff spring, an increase of total height hmax  

reached by the mass m of 29% (1.675 vs. 1.3 m) and a peak value of the reaction 

force R slightly lower (268 vs. 275 N) are obtained. Conversely the operator effort, 

represented by R, will be exerted within the first 0.8 m from the ground, instead of 

0.64 m, but always lower than 1.3 m of the blade without spring.  

It is interesting to compare the trajectories of the mass m, if the operator produces 

a horizontal initial speed of 2 m/s of m at the time when m leaves the blade, by 

manoeuvring the handle. Figure 9 shows how the horizontal distance that the mass 

m can cover before falling to a final height of 1 m (hypothetical height of the 

flatcar). It grows from 0.49, for the shovel without spring, at 1.37 m for the shovel 

with stiffer spring, with an increase of 180%. 
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Fig. 9 – Trajectories of the mass m under the effect of a horizontal initial speed 0 2x  m/s, in the 

three cases of shovel: without spring; with stiffer spring; with semi-stiff spring. 
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