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Abstract. This paper introduces two new algorithms, belonging to the class of Arnoldi-Tikhonov
regularization methods, which are particularly appropriate for sparse reconstruction. The main
idea is to consider suitable adaptively-defined regularization matrices that allow the usual 2-norm
regularization term to approximate a more general regularization term expressed in the p-norm,
p ≥ 1. The regularization matrix can be updated both at each step and after some iterations
have been performed, leading to two different approaches: the first one is based on the idea of
the Iteratively Reweighted Least Squares method and can be obtained considering Flexible Krylov
Subspaces; the second one is based on restarting the Arnoldi algorithm. Numerical examples are
given in order to show the effectiveness of these new methods, and comparisons with some other
already existing algorithms are made.
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1. Introduction. In this paper we consider large-scale linear ill-posed inverse
problems of the form

b = Ax+ e, (1.1)

where the matrix A ∈ RN×N typically has singular values that quickly decay to,
and cluster at zero; without loss of generality we assume A to be scaled so that
∥A∥2 = 1. It is assumed that b ∈ RN and A are known, and the aim is to compute
an approximation of x ∈ RN . The vector e ∈ RN represents error, such as noise,
that affects the data. Although e is not known, in this paper we consider problems
for which a good estimate of ∥e∥2 is known. Due to the ill-conditioning of A and the
presence of noise in the right-hand side, it is necessary to employ regularization in
order to compute a meaningful approximation of x.

There are several techniques to regularize the linear inverse problem given by
equation (1.1); see, for example, [11, 15, 26, 40]. One of the most well-known and well-
established is Tikhonov regularization, which, in its general ℓ2 formulation, computes
an approximation of x by solving the following minimization problem

min
x∈RN

{
∥Ax− b∥22 + λ∥L(x− x0)∥22

}
, (1.2)

where λ > 0 is called a regularization parameter, L ∈ Rq×N is called a regularization
matrix, and x0 ∈ RN is an initial guess for the solution (if no initial approximation
is available, we simply take x0 = 0). The choice of the regularization matrix and the
value of the regularization parameter can be crucial to obtain a good approximation
of x. For example, under-estimating λ can lead to highly oscillatory (noisy) approx-
imations of x, while over-estimating λ can cause the solution to be overly smooth.
Moreover, the regularization matrix enforces certain constraints on the solution; com-
mon choices for L are the N × N identity matrix, I, or a scaled finite-difference
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approximation of a derivative operator, such as the Laplacian. When L = I and
x0 = 0, the problem is said to be in standard form.

Another popular way to solve (1.1) is by iterative regularization. In this setting
an iterative method is applied directly to

min
x∈RN

∥Ax− b∥22

and regularization is achieved by early termination, i.e. by stopping the iterations
before the so-called inverted noise dominates the approximate solution. In this sense
the number of iterations plays the role of a discrete regularization parameter.

A third approach, which is referred to as a hybrid method, combines a direct
regularization scheme, such as Tikhonov, with an iterative Krylov subspace method.
O’Leary and Simmons [30] originally introduced the idea of hybrid methods using
Golub-Kahan (which is often called Lanczos) bidiagonalization. A hybrid approach
based on the Arnoldi algorithm, which is referred to as the Arnoldi-Tikhonov method,
was proposed in [7]. An advantage of using an Arnoldi based hybrid method is that
each iteration requires only a matrix product with A, whereas in the Golub-Kahan
based approaches, each iteration requires matrix vector multiplication with A and AT .
Various authors have considered computation and implementation issues of hybrid
methods, such as robust approaches to choose regularization parameters and stopping
iterations; see for example, [3, 5, 8, 10, 12, 13, 18, 20, 21, 23, 32].

However, employing 2-norm filtering schemes, as is done in these previous works,
is rather restrictive, and better approximations can be computed by considering more
general optimizations of the form

min
x∈RN

{J (x) + λR(x)} (1.3)

where J (x) is a fit-to-data term, and R(x) is a regularization term. For example, it
is known that solving

min
x∈RN

{
∥Ax− b∥22 + λ∥x∥pp

}
(1.4)

reconstructs a sparse approximation of x when p = 1. One can also consider changing
the norm on the fit-to-data term, and solve the general optimization problem

min
x∈RN

{
∥Ax− b∥qq + λ∥x∥pp

}
, (1.5)

where we assume 1 ≤ p < 2, 1 ≤ q < 2. If the goal is to preserve jumps (i.e. edges)
in x, then we may prefer to solve

min
x∈RN

{
∥Ax− b∥22 + λTV(x)

}
, (1.6)

where TV (x) is the total variation operator [35].
Nonlinear optimization methods are needed to solve problems (1.4)-(1.6), and

they are therefore more computationally demanding than simply solving the linear
least squares problem associated with the standard ℓ2 formulation of Tikhonov regu-
larization (1.2). A lot of work has been done to propose suitable and efficient algo-
rithms that can deal with the nonlinear problems; see, for example, [40] for problem
(1.6) and [42] for problem (1.5), and the references therein.
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In this paper, we describe a hybrid framework to solve these minimization prob-
lems. To simplify notation, we focus our discussion on problems (1.4) and (1.6),
but the approach we describe is fairly general, and can be used to solve (1.3) for a
variety of combinations of fit-to-data and regularization terms. Our approach is to
approximate the regularization term by means of a quadratic functional, similarly to
what is done in the iteratively reweighted least squares (IRLS) method (cf. [4], Ch.4).
Specifically, we adaptively define a suitable regularization matrix (or, using the IRLS
terminology, weighting matrix) L that allows us to approximate

∥Lx∥22 ≃ R(x) ,

where we focus on the cases R(x) = ∥x∥1 and R(x) =TV(x). The matrix L is adap-
tively defined since it is automatically updated at each iteration or when a convenient
number of iterations has been performed.

We note that the IRLS approach has been previously used for these problems.
For example, in [41] the authors define a particular matrix W that can be used to ap-
proximate ∥·∥1 as well as the TV operator. A very similar approach is adopted in [31],
where it is shown that the algorithm can be regarded as a majorization-minimization
(MM) process [19]. However, to the best of our knowledge, the only published work
that adopts the IRLS strategy to deal with problems of the form (1.5) is [34]. All of
these approaches solve, at each iteration, a weighted least squares problem using the
conjugate gradient method applied to the normal equations. In particular, each IRLS
iteration generates a new Krylov subspace from scratch. Furthermore, to generate
each Krylov subspace it is necessary to compute matrix-vector multiplications with
both A and AT .

The approach described in this paper is designed to work in connection with the
hybrid Arnoldi-Tikhonov method. Specifically, we show that our approach can be
implemented very efficiently by interpreting the scheme as a flexibly preconditioned
Krylov subspace method. This means that we generate only one Krylov subspace.
Moreover, each iteration for our approach only requires one matrix-vector multipli-
cation with A. One disadvantage of our approach is that storage and computational
cost can become an issue in some cases, especially when the associated preconditioner
is not easily inverted. For these cases, a restarting strategy is suggested.

This paper is organized as follows. In Section 2 we briefly describe a generalization
of the Arnoldi Tikhonov method and we explain how to simultaneously choose the
regularization parameter and stop the iterations. In Section 3 we describe how to
solve the more general formulations (1.4)-(1.5) with an IRLS based approach. In
Section 4 we describe an algorithm to solve these problems that is based on flexible
Krylov subspaces, and in Section 5 we describe a second, storage efficient, algorithm
that uses suitable restarts of the underlying iterative method. In Section 6 we present
some numerical results and we make comparisons with already existing methods for
sparse reconstruction. Concluding remarks are given in Section 7.

2. Generalized Arnoldi-Tikhonov (GAT) Method. The Arnoldi-Tikhonov
(AT) method was proposed in [7] with the basic aim of reducing problem (1.2) to a
problem of much smaller dimension. In this section we describe a generalization of
the approach [12, 18], which we call the generalized Arnoldi-Tikhonov (GAT) method.
To describe this method, first consider the Krylov subspace

Km(A, r0) = span{r0, Ar0, . . . , Am−1r0}, r0 = b−Ax0, m ≪ N .
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The Arnoldi algorithm [37] can be used to construct a basis for this Krylov subspace,
which leads to the associated decomposition

AVm = Vm+1H̄m, (2.1)

where Vm+1 = [v1, ..., vm+1] ∈ RN×(m+1) has orthonormal columns that span the
Krylov subspace Km+1(A, r0), and v1 is defined as r0/ ∥r0∥2. The matrix H̄m ∈
R(m+1)×m is an upper Hessenberg matrix. Denoting by hi,j the entries of H̄m, in
exact arithmetic the Arnoldi process terminates when hm+1,m = 0, which means
Km+1(A, r0) = Km(A, r0).

The GAT method searches for approximations xm of the solution of problem (1.2)
belonging to x0 + Km(A, r0). Therefore, replacing x = x0 + Vmy (y ∈ Rm and Vm is
defined by (2.1)) into (1.2), yields the reduced minimization problem

ym = arg min
y∈Rm

{∥∥H̄my − V T
m+1r0

∥∥2
2
+ λ ∥LVmy∥22

}
, (2.2)

where we have used that V T
m+1Vm+1 = I and, since v1 = r0/∥r0∥2,

V T
m+1r0 = ∥r0∥2e1, where e1 = (1, 0, . . . , 0)T ∈ Rm+1.

At each step of the Arnoldi algorithm, instead of solving (2.2) directly, we consider
the following equivalent reduced-dimension least squares formulation

ym = arg min
y∈Rm

∥∥∥∥( H̄m√
λLVm

)
y −

(
c
0

)∥∥∥∥2
2

, (2.3)

where c = ∥r0∥2 e1. The coefficient matrix associated with (2.3) is typically tall, since
LVm ∈ Rq×m. Therefore, as suggested in [18], one could compute a QR factorization
LVm = QmRm (Qm ∈ Rq×m has orthonormal columns, Rm ∈ Rm×m is upper tri-
angular), and replace the matrix LVm in (2.3) by Rm. We also remark that, when
dealing with standard form problems, the Arnoldi-Tikhonov formulation considerably
simplifies thanks to the orthogonality of the columns of Vm and, instead of (2.2), we
can write

ym = arg min
y∈Rm

{∥∥H̄my − V T
m+1 b

∥∥2
2
+ λ ∥y∥22

}
. (2.4)

As a consequence, instead of (2.3) we can consider

ym = arg min
y∈Rm

∥∥∥∥( H̄m√
λI

)
y −

(
∥b∥2 e1

0

)∥∥∥∥2
2

. (2.5)

It should be noted that we consider Krylov subspaces Km(A, r0), and therefore the
approach we describe in this paper cannot be directly used for rectangular matrices
A ∈ RM×N , M ≥ N ; however, it might be possible to adapt our approach to use, for
example, the techniques proposed in [17] for least squares problem.

In the remaining part of this section we briefly review a discrepancy-principle
based strategy originally introduced in [12]: this approach can successfully be em-
ployed to define λ as well as a stopping criterion (i.e. the dimension m of the Krylov
subspace) when performing the GAT method. At each iteration we define the function

ϕm(λ) = ∥Axm − b∥2 (2.6)

= ∥H̄mym − c∥2, (2.7)
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where equality (2.7) is obtained exploiting relation (2.1) and the properties of its
associated matrices. Assuming that a fairly accurate approximation of the quantity
ε = ∥e∥2 is available, we say that the discrepancy principle is satisfied as soon as

ϕm(λ) ≤ ηε, where η ' 1 . (2.8)

If a good estimate of the noise level ε̃ = ∥e∥2/∥b∥2 is known, the discrepancy principle
reads ϕm(λ) = ηε̃∥b∥. By default we set η = 1.01.

At each iteration we approximate the discrepancy function (2.6) by the linear
function

ϕm(λ) ≃ ϕm(0) + λβm, (2.9)

where βm ∈ R is defined by the ratio

βm =
ϕm(λm−1)− ϕm(0)

λm−1
. (2.10)

In the above expression, ϕm(λm−1) is obtained by solving the m-dimensional problem
(2.3) using the parameter λm−1, which is obtained at the previous step (λ0 must be
set to an initial value by the user); we also remark that ϕm(0) is the norm of the
GMRES residual at the m-th iteration of the Arnoldi algorithm.

To select λm for the next step of the generalized Arnoldi-Tikhonov algorithm we
impose

ϕm(λm) = ηε (2.11)

and we force the approximation

ϕm(λm) = ϕm(0) + λmβm . (2.12)

Substituting in (2.12) the expression derived in (2.10), and using the condition (2.11),
we obtain

λm =

∣∣∣∣ ηε− ϕm(0)

ϕm(λm−1)− ϕm(0)

∣∣∣∣λm−1 , (2.13)

where the absolute value has been considered in order to guarantee the positivity of
λm; indeed, in early iterations, typically αm ≫ ηε and discarding the absolute value
would produce a negative value for λm. Numerically, formula (2.13) is very stable, in
the sense that after the discrepancy principle is satisfied, λm is almost constant for
growing values of m. We finally remark that this strategy is also very robust with
respect to the initial choice of λ; we use the default value λ0 = 1.

3. Iteratively Reweighted Least Squares (IRLS) Method. The Iterative
Reweighted Least Squares (IRLS) method was originally introduced in a statistical
framework to approximate the solution of

min
x

∥Ax− b∥pp, 1 ≤ p < 2 , (3.1)

where an ℓp norm estimator is employed instead of the usual ℓ2 norm because it can
lead to a more robust solution when recovering certain parameters in a linear model.
The basic idea of IRLS is to reduce the minimization (3.1) to a sequence of least
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squares problems involving a weighted ℓ2 norm. That is, a sequence of problems of
the form

min
x

∥L(Ax− b)∥22 (3.2)

is solved, where L is a diagonal weighting matrix that is updated at each step using
the solution obtained at the previous iteration.

In the following we describe how the Arnoldi-Tikhonov method can be employed
to approximate the solution of the sparse reconstruction problem (1.4) and the total
variation reconstruction problem (1.6). Specifically, using the same idea underlying
the IRLS method, we adaptively define a suitable regularization matrix by means of
the information obtained at the previous steps.

3.1. Sparse Reconstruction. We first consider choosing preconditioners L so
that ∥Lx∥22 approximates ∥x∥pp, 1 ≤ p < 2. Of course, the best choice would be to
take

L = diag

((
|[x]i|

p−2
2

)
i=1,...,N

)
, (3.3)

where we use the notation [·]i to denote the i-th element of the vector inside the
brackets1. But this is not possible in real problems, because it would require the
exact solution x. However, it is natural to define, at iteration m, the matrix

Lm = diag

((
|[xm−1]i|

p−2
2

)
i=1,...,N

)
, (3.4)

where xm−1 = x0 + Vm−1ym−1 is the solution obtained at the previous step of the
Arnoldi-Tikhonov method. When the first iteration is performed (i.e. when m = 1)
we simply take L1 = I. Typically, as the iterations proceed, the term ∥Lmxm∥22
increasingly better approximates (3.3) and, therefore, it increasingly better approxi-
mates the quantity ∥x∥pp. Since we are particularly interested in treating the case of
∥x∥1, we explicitly write the matrix (3.4) for p = 1

Lm = diag

( 1√
|[xm−1]i|

)
i=1,...,N

 . (3.5)

We remark that, when p < 2, care is needed when defining (3.4), because division by
0 may occur if [xm−1]i = 0 for some i = 1, . . . , N . Therefore it is safer to set a small
threshold τ > 0 and take

Lm = diag
(
(fτ ([xm−1]i)i=1,...,N

)
, (3.6)

where

fτ (χ) =

{
|χ|(p−2)/2 if χ > τ

τ (p−2)/2 if χ ≤ τ
. (3.7)

1In this paper we generally use the notation xm to be the vector at the m-th iteration of the
GAT method. To avoid confusion between iteration index and element of a vector, we therefore use
the notation [·]i to denote the i-th element of the vector inside the brackets. Thus, [x]i is the i-th
element of the vector x, xm is the vector at iteration m, and [xm]i is the i-th entry of the vector xm.
Analogous notation will be used when referring to a matrix entry; that is, [W ]ij denotes the (i, j)
entry of the matrix W .
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3.2. TV Reconstruction. We now focus on approximating the TV regulariza-
tion operator (1.6), which is often used in image restoration problems. If an image
is represented in the discrete setting by a vector x, and Dh and Dv denote the finite
difference approximations of the horizontal and vertical first derivative operators, re-
spectively, then the TV functional is defined as

TV(x) =
N∑
i=1

√
[Dhx]2i + [Dvx]2i = ∥

√
d∥1 , (3.8)

where d = (Dhx)
2 + (Dvx)

2, and the squaring operation is done element wise. Be-
fore approximating the ℓ1 norm in (3.8), it is convenient to provide an alternative
expression for the vector d. Consider the matrix

D =

 1 −1
. . .

. . .

1 −1

 ∈ R(n−1)×n ,

which is a scaled finite difference approximation for the one-dimensional derivative.
If x is obtained from a discrete image by stacking its columns, then it is not difficult
to show that [20]

Dhx = (D ⊗ I)x ∈ RN̄

Dvx = (I ⊗D)x ∈ RN̄ , where N̄ = (n− 1)n = N − n .

Now, if we set

Dhv =

[
Dh

Dv

]
∈ R2N̄×N (3.9)

then we obtain

N̄∑
i=1

[Dhx]
2
i + [Dvx]

2
i = ∥Dhvx∥22 .

Consider now the diagonal weighting matrix W = diag([W̃ , W̃ ]) ∈ R2N̄×2N̄ , where

W̃ = diag

(((
[Dhx]

2
i + [Dvx]

2
i

)−1/4
)
i=1,...,N̄

)
∈ RN̄×N̄ .

We can verify that the optimal regularization matrix to choose in (1.2) in order to
recover the TV regularization operator is L = WDhv ∈ R2N̄×N since

∥Lx∥22 =

N̄∑
i=1

(
[W̃ ]2ii

(
(Dhx)

2
i + (Dvx)

2
i

))

=
N̄∑
i=1

((
[Dhx]

2
i + [Dvx]

2
i

)−1/2 (
[Dhx]

2
i + [Dvx]

2
i

))

=
N̄∑
i=1

(
[Dhx]

2
i + [Dvx]

2
i

)1/2
= TV(x) .
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We remark that, so far, all the computations have been carried out assuming that the
exact x is known. In real problems we do not know the exact x, so we have to exploit
the iterative setting of the Arnoldi-Tikhonov method and consider, at step m,

Lm = WmDhv, (3.10)

where

Wm = diag([W̃m, W̃m])

and

W̃m = diag
((

[Dhxm−1]
2
i + [Dvxm−1]

2
i

)−1/4
)
.

As before, we denote by xm−1 the solution obtained at the end of the previous step
of the Arnoldi-Tikhonov method and, to avoid division by zero when both [Dhxm−1]i
and [Dvxm−1]i are null for some i = 1, . . . , N̄ , we set a small threshold ν > 0 and we
instead consider

W̃ (k) = diag
(
gν
(
[Dhxm−1]

2
i + [Dvxm−1]

2
i

))
,

where

gν(χ) =

{
χ−1/4 if χ > ν

ν−1/4 if χ ≤ ν
. (3.11)

4. Flexible-AT Method. In this section we describe the first strategy to prac-
tically implement the Generalized Arnoldi-Tikhonov method in connection with the
regularization matrices just defined.

First of all, we recall that, at step m, the matrix associated with the least squares
problem given by equation (2.3) is made of two blocks: the first one, H̄m, is a Hes-
senberg matrix of size (m + 1) × m while the second one, LVm, is typically a tall
rectangular matrix of size N ×m. From a computational point of view this implies
that, as long as m ≪ N is small, we can solve the regularized least squares problem
(2.3) without much effort, for instance computing the so-called “skinny”QR factoriza-
tion; however, as the number of iterations m increases, solving directly the projected
problem (2.3) becomes computationally demanding. On the other hand, if we are
able to cheaply transform the original problem (1.2) into standard form, the matrix
associated to the least squares problem (2.5) is altogether of dimension (2m+1)×m
and therefore the computational effort to solve the direct problem is no longer very
demanding, even when the number of iterations increases.

When we are dealing with the problem described in Section 3.1, the regularization
matrices are square and nonsingular. In this case, transformation into standard form
is formally rather simple, since it suffices to set x̂ = Lx, x̂0 = Lx0, Â = AL−1, solve
the problem

min
x̂∈RN

{
∥Âx̂− b∥22 + λ̆∥x̂− x̂0∥22

}
, (4.1)

and come back to the solution of the original problem taking x = L−1x̂. Computing
the inverse of the matrices (3.4) and (3.5) is not an issue because they are diagonal.

In general, when we want to apply the Arnoldi-Tikhonov method to the trans-
formed system (4.1), we build the Krylov subspace Km(AL−1, b) and therefore the
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inverse of the regularization matrix acts as a right-preconditioner for the original
system. However, since we want to adopt the IRLS approach, the matrix L must
be updated at each step and, as a consequence, the preconditioner in Km(AL−1, b)
changes at each iteration. For this reason we must consider particular Krylov sub-
spaces that allow variable preconditioning: the so-called Flexible Krylov subspaces.
We remark that, in this framework, the preconditioner is not used to accelerate con-
vergence (as is typically done for well posed problems), but instead it is used to enforce
some specific regularity conditions on the reconstructed solution. This interpretation
of preconditioning for ill-posed problems is not new; see, for example, [9, 16].

Flexible Krylov subspaces [39] were introduced in various frameworks in order to
incorporate an increasingly improved preconditioner into the original Krylov subspace:
a typical situation is when the preconditioning matrix is itself obtained by iteratively
solving a linear system, even employing a Krylov subspace method. In this case an
inner-outer iterative scheme is established since not only the solution of the main
linear system, but also the system defining the preconditioning, are updated at each
iteration [38].

When we consider the Arnoldi-Tikhonov method with the regularization matrices
(3.4), (3.5), (3.10) we are basically operating as described above, since at each iteration
we update the regularization matrix exploiting the intermediate solutions computed
at the previous steps and in this way we can approximate the optimal regularization
matrix (3.3). In the following we explain how the Arnoldi-Tikhonov method can be
used in connection with Flexible Krylov subspaces: we call this strategy Flexible-
Arnoldi-Tikhonov (Flexi-AT) method. Formally this derivation is very similar to the
one described in Section 2.

Let us consider a sequence of problems of the kind (4.1), where Â = AL−1
i and

Li is a regularization matrix that is updated at each step of the Arnoldi algorithm.
At the mth step we want to find a solution of the form

xm = x0 + Zmy̆m, where Zm = [L−1
1 v̆1, . . . , L

−1
m v̆m] ∈ RN×m. (4.2)

This is equivalent to saying that the vector xm−x0 is given by a linear combination of
the columns of Zm. Again, to compute the vector v̆i and zi = L−1

i v̆i we can consider
a procedure similar to the Arnoldi algorithm (cf. [36]), which in matrix form can be
written as

AZm = V̆m+1H̆m , (4.3)

where now only the matrix V̆m+1 ∈ RN×(m+1), whose first vector is r0/∥r0∥2, has
orthonormal columns; H̆m ∈ R(m+1)×m is still upper Hessenberg. We emphasize that
the preconditioning is implicitly defined into the columns of Zm. More details about
the implementation of this procedure are given in Algorithm 1 at the end of this
section. Relation (4.3) leads to the following regularized projected problem that must
be solved at each iteration

y̆m = argminy∈Rm

{∥∥∥H̆my − ∥r0∥2e1
∥∥∥2
2
+ λ̆ ∥y∥22

}
= argminy∈Rm

∥∥∥∥∥
(

H̆m√
λ̆I

)
y −

(
∥r0∥2 e1

0

)∥∥∥∥∥
2

2

.

(4.4)

To choose the regularization parameter λ̆ at each step we can apply a strategy analo-
gous to the one described in Section 2, since from the previous scheme we obtain an
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expression for the projected discrepancy that is formally equivalent to (2.7). Indeed,
thanks to relation (4.3), we can write the projected discrepancy as

ϕ̆m(λ̆) =
∥∥∥H̆my̆m − ∥r0∥2e1

∥∥∥
2

(4.5)

and consider the approximation

ϕ̆m(λ̆) = ϕ̆m(0) + λ̆β̆m,

where ϕ̆m(0) can now be regarded as the norm of the residual associated with the
Flexible GMRES (FGMRES, [36]) method and, similarly to (2.10),

β̆m =
(ϕ̆m(λ̆m−1)− ϕ̆m(0))

λ̆m−1

.

Therefore we can update the regularization parameter at the m-th iteration of the
Flexi-AT method by the following formula:

λ̆m =

∣∣∣∣∣ ηε− ϕ̆m(0)

ϕ̆m(λ̆m−1)− ϕ̆m(0)

∣∣∣∣∣ λ̆m−1. (4.6)

We remark that, since the only preconditioners involved when performing the Flexi-
AT method are the inverse of the matrices (3.4), we do not have to worry anymore
about division by zero and therefore it is not necessary to set a threshold as in (3.6).
We summarize this approach in the following

Algorithm 1
Flexible Arnoldi-Tikhonov (Flexi-AT) method

Input: A, b, x0, λ̆0, ε, η
Initialize: r0 = b−Ax0 and v̆1 = r0/∥r0∥2.
For i = 1, 2, . . . until ∥b−Axi∥ ≤ ηε
1. Compute zi = L−1

i v̆i and w = Azi.

Compute h̆j,i = wT v̆j for j = 1, . . . , i and set w = w −
∑i

j=1 h̆j,iv̆j

2. Compute h̆i+1,i = ∥w∥2 and, if h̆i+1,i ̸= 0, take v̆i+1 = w/h̆i+1,i.

3. Compute the solution y̆i of (4.4) with λ̆ = λ̆i−1.

4. Compute ϕ̆i(λ̆i−1) by (4.5).

5. Update the value of λ̆ by (4.6).

In the above algorithm, the first two points are meant to expand the Flexible Krylov
subspace at each iteration, while the remaining points are devoted to perform regu-
larization.

5. The Restarting Strategy. As said in the previous section, the approach
based on the transformation of problem (1.2) into standard form is particularly con-
venient when the regularization matrix is cheaply invertible: this is not the case when,
for instance, we want to approximate the total variation regularization (1.6) as de-
scribed in Section 3.2. In this section we describe an approach, again based on the
Generalized Arnoldi-Tikhonov method, that is alternative to Algorithm 1 and that,
beside being still valid to solve problems like (1.4), can be also used in the case (1.6).
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This strategy is essentially based on restarting the Arnoldi algorithm: at each
restart the regularization matrix L, the initial guess x0 and the initial parameter
λ0 are updated employing the last values computed when the discrepancy principle
is satisfied; the first set of iterations is performed simply taking L = I, x0 = 0
and λ0 = 1. Waiting until the discrepancy principle is satisfied before restarting
the Arnoldi algorithm guarantees that the solution employed to update L and x0 is
quite accurate even if, especially during the first restarts, we are solving intermediate
problems that roughly approximate the original (1.4) and (1.6). We remark that the
quantities L, x0, λ0 depend on the restart we are performing; however, not to overload
the notations, we omit the index indicating the number of the performed restarts.

About the number of iterations for each restart, it is well-known that the approx-
imate solutions computed by the Arnoldi-Tikhonov method can very quickly fulfill
the discrepancy principle and deliver a regularized solution belonging to a Krylov
subspace of dimension m ≪ N , even for problems of huge dimension [12], [32]. There-
fore, considering both the standard form (2.4) and the general form (2.2) problems,
the computational cost for each restart is kept low. Furthermore, as the number of
restarts increases, the number of iterations required to satisfy the discrepancy princi-
ple decreases: this is due to the stable behavior of the GAT method, which after some
restarts can compute solutions of similar quality. As a consequence, the regularization
matrices L and the Krylov subspaces generated by A and r0 tend to be the same and
the discrepancy principle continues to be satisfied; eventually, the discrepancy princi-
ple continues to be satisfied after only one step of the Arnoldi-Tikhonov method has
been performed, resulting in very cheap computations. In this situation, although
the quality of the reconstruction may not be substantially improved, performing ad-
ditional restarts could still be useful in order to keep updating the regularization
matrix with slightly better approximations of the solution and, as a consequence,
obtain slightly more accurate reconstructions (cf. Figure 6.7, upper frame). In the
following we will denote by mD the number of iterations required to fulfill the discrep-
ancy principle at every restart; mD is different at each restart, but not to overload
the notations we omit the dependence on the number of restarts.

Determining when to exactly stop the restarts is not a crucial issue, mainly for
two reasons: first of all, as the iterations proceed, the behavior of the solution is very
stable and, secondly, because the cost of each restart is lower and lower. However
we can employ some heuristic to set a stopping criterion: looking at the performed
tests (cf. Section 6) it can be noted that, when the discrepancy is satisfied at the end
of each restart, the values of the discrepancy function (2.6) keep decreasing and this
can be regarded as a sign that we are computing a more accurate solution; therefore,
we can decide to stop the iterations after reaching a pre-specified decrease of the
discrepancy function. We can also choose to continue the iterations until a fixed
maximum number of restarts has been carried out. In the following we will denote by
mR the total number of restarts.

A variant of the approach just described is to restart the Arnoldi algorithm taking
always x0 = 0 and exclusively updating the regularization matrix. Although some
improvements can be achieved with the restarts, the reconstructions are worse than
the ones obtained when updating also x0, and the behavior of the error is extremely
non-monotone. Moreover, even if we do many restarts, the number of steps required
to fulfill the discrepancy principle, after each restart, is almost constant. We can
conclude that taking into account an initial guess both in the formulation (1.2) and
in the definition of the Krylov subspaces are beneficial in order to improve the quality
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of the solution.
The method described in this section is quite similar to the ones outlined in [31]

and [41]; however, as mentioned in Section 1, in these papers the normal equations
corresponding to (1.2) are considered and the resulting linear system, whose matrix is
symmetric and positive definite, is solved by performing a limited number of Conjugate
Gradient iterations.

We remark that, even if the matrix is easily invertible and the Flexible Krylov
subspace strategy can be applied, one can also choose not to update the regularization
matrix at each step and to rather employ the method described in this section. Pro-
vided that we apply the restarting strategy to the standard form problem (2.5) and
that, at each restart, we update the matrix L and we build the right-preconditioned
Krylov subspaces Km(AL−1, r0), the results are similar to the ones obtained applying
the Flexi-AT method. We summarize the approach so far outlined in the following:

Algorithm 2
Restarted GAT (ReSt-GAT) method

Input: A, b, ε, η
Initialize: λ0 = 1, L = I and x0 = 0;
For k = 1, 2, . . . ,mR

1. For m = 1, . . . ,mD

Compute the decomposition (2.1) and solve (2.3) or (4.1) taking, as in-
puts, L, λ0, x0. Employ the relation (2.13) to choose the regularization
parameter at each step.

2. Take λ0 = λmD , x0 = xmD .
3. Define L as (3.4) or (3.10), employing x0.

In the above algorithm, the computations in the first step inside the iteration loop
aim to expand the Krylov subspace and to solve the regularized least squares problem
(2.3). The task of the remaining steps is to set the new quantities employed when
restarting the Krylov subspace.

In many applications, for instance in image restoration problems, the solution
is known to be nonnegative; however, methods based on Krylov subspaces are not
guaranteed to compute nonnegative solutions. Finding a way to force nonnegativity
can greatly improve the quality of the approximate solution [6], [29]. In the framework
of the algorithm just described we can enforce nonnegativity at each restart, employing
an approach very similar to one of those described in [6]. Referring to Algorithm 2,
after the first step inside the iteration loop has been completed, and before updating
the solution at step 2, we can project xmD

into the set

P = {x ∈ RN : [x]i ≥ 0 ∀ i = 1, . . . , N} (5.1)

of nonnegative vectors. In this way, at each restart we can consider an initial guess
that is nonnegative even if, especially during the first restarts, this nonnegative vec-
tor is not guaranteed to satisfy the discrepancy principle. However, thanks to the
stable behavior of the GAT method, after some restarts we can obtain a solution
that is nonnegative and which also fulfills the discrepancy principle. We emphasize
that our approach does not properly solve a constrained minimization problem whose
constraint set is P; it is a rather heuristic approach that forces nonnegative solutions
by imposing proximity to a nonnegative initial guess at each iteration. The numerical
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results reported in the next section clearly show the improvements obtained applying
the strategy just described.

Using MATLAB-like notation, we describe the nonnegative version of Algorithm 2
in the following:

Algorithm 3
Nonnegative Restarted GAT (NN-ReSt-GAT) method

Input: A, b, ε, η
Initialize: λ0 = 1, L = I and x0 = 0;
For k = 1, 2, . . . ,mR

1. For m = 1, . . . ,mD

Compute the decomposition (2.1) and solve (2.3) or (4.1) taking, as in-
puts, L, λ0, x0. Employ the relation (2.13) to choose the regularization
parameter at each step.

2. Project xmD
into the space P by taking xmD

(xmD
< 0) = 0.

3. Take λ0 = λmD
, x0 = xmD

.
4. Define L as (3.4) or (3.10), employing x0.

6. Numerical Experiments. In this section we show the results of some nu-
merical tests that contribute to validate the strategies described in this paper. Along
with the reconstruction obtained using the new algorithms, we present some compar-
isons with other well-known methods to recover sparse solutions or to perform total
variation regularization. All the tests were performed using MATLAB 7.10 (double
precision) on a single processor, Intel Core i3-550, computer.

Example 1. For the first test we focus on sparse reconstruction and we take, as a test
image, a synthetic astronomical image of size 256×256 pixels, characterized by a very
sparse pattern: only the 0.7% of its elements corresponds to non-black pixels, i.e. can
be considered different from zero (cf. Figure 6.3, upper left frame). We assume that
the available image is corrupted by a spatially variant blur and it is divided into 25
different regions: the point spread function (PSF) is spatially invariant in each region.
Gaussian white noise is added and we consider two successive noise levels: the first
one is equal to 10−2 (cf. Figure 6.3, upper right frame), the second one is equal to
10−1. We refer to [27] for background on the solution of this kind of problem. Further
information on this test problem, as well as the associated data, can be obtained from
the MATLAB package Restore Tools [28].

In Figure 6.1 we plot the values of the relative error, the discrepancy function, and
the regularization parameter (all displayed in logarithmic scale) versus the number of
iterations. These results are obtained applying Algorithm 1; the noise level in the data
is ε̃ = 10−2. As said in Section 2, we choose as starting value for the regularization
parameter λ0 = 1 and, to define the discrepancy principle (2.8), we take the scalar
η = 1.01. The value of the truncation parameter in (3.7) is set to τ = 10−8. In
this case the stopping criterion determines an approximate solution that belongs to a
Flexible Krylov subspace of dimension 23. We can note that, for this problem, all the
quantities in Figure 6.1 exhibit a quite stable behavior after the discrepancy principle
(and the stopping criterion) is satisfied: in particular we can observe that the relative
error does not deteriorate as the iterations proceed. This feature is typical of the
AT methods applied to ill-posed problems since, after the first iterations, the largest
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singular values of the Hessenberg matrices H̄m (2.1) and H̆m (4.3) approximate the
largest singular values of the original matrix A; by solving the projected problem by
means of Tikhonov regularization (which can also be regarded as a spectral filtering
method [14]) the computed quantities essentially depend on the decay of the singular
values of the Hessenberg matrices, and therefore they tend to have a similar behavior
after a certain number of iterations have been completed.
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Fig. 6.1. Values of the relative error (upper frame), the discrepancy function (middle frame)
and the regularization parameter (lower frame) versus the number of iterations. These plots are
obtained applying Algorithm 1 to the first test problem with ε̃ = 10−2. The circle at the iteration 23
highlights the quantities obtained when the discrepancy principle is satisfied; we continue to iteration
100 to illustrate the stable behavior of our algorithms. The horizontal line in the second frame marks
the threshold under which the discrepancy principle is satisfied.

In Figure 6.2 we display the history of the relative errors obtained when consid-
ering different versions of Algorithm 2, including the nonnegative one described in
Algorithm 3. The test problem and the parameters are as the ones above specified; in
this example we consider 20 restarts. It is interesting to note that, when we restart
the right-preconditioned Arnoldi scheme with an initial guess that has been projected
into the space P (see equation (5.1)) we typically need slightly more iterations than
when taking as initial guess the last computed intermediate solution. In particular,
in this experiment, the number of inner iterations during the very first restart is dif-
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ferent. Indeed, when we restart for the first time modifying the initial guess, the
newly generated Krylov subspace can be pretty different to the old one and therefore
we need some additional iterations to satisfy the discrepancy principle. We can also
remark that, when restarts are performed taking simply x0 = 0, the same number of
iterations are needed at each restart and the quality of the computed solution does not
significantly improve with each restart. In Figure 6.3 we show the images obtained
applying the methods just considered.

0 5 10 15 20 25 30 35 40

10
−2

10
−1

10
0

0 5 10 15 20 25 30
10

−2

10
−1

10
0

0 20 40 60 80 100 120 140 160 180
10

−2

10
−1

10
0

Fig. 6.2. Behavior of the relative error versus the number of iterations obtained applying
three variants of the restarting strategy. In the upper frame we force nonnegativity at each restarts
(Algorithm 3), in the middle frame we take as initial guess the last solution computed at the end of
the previous restart (Algorithm 2) and in the lower frame we take as initial guess x0 = 0 at each
restart. The bigger asterisks highlight the iteration at which a restart happens.

We now make some comparisons with other well-established and recently designed
methods. In particular we focus on NESTA [1], SpaRSA [42], TwIST [2] and l1 ls

[22]: these methods can efficiently handle a wide class of minimization problems
whose objective function is the sum of a fit-to-data term and a regularization term.
We also consider the method IRN-BPDN described in [34], which employs cyclically
updated weighting matrices and therefore is quite close to the algorithms described
in this paper. Most of the methods just mentioned basically require the user to set
a suitable value for the regularization parameter: looking at the graph displayed in
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(a) (b)

(c) (d)

Fig. 6.3. Images considered in the first example: (a) exact image; (b) blurred and noisy image,
with ε̃ = 10−2; (c) solution obtained at iteration 23 of Algorithm 1, i.e. when the discrepancy
principle is satisfied; (d) solution obtained at the end of Algorithm 3, after 20 restarts have been
performed.

the lower frame of Figure 6.1 we can assume that a good value for this parameter
relative to the problem at hand should be λ = 10−4 because, going on with the
number of iterations m, the λm values stabilize around this point. In addition, we
also consider the performance of the standard Arnoldi-Tikhonov method [12], and of
its range-restricted version RR-AT [24]. In Figure 6.4 we show the behavior of the
relative errors versus the number of iterations for many of the methods cited above;
in Table 6.1 we report the value of the relative errors obtained when the stopping
criterion of each method is fulfilled or when a maximum number of iterations has
been performed, along with the total and average (per iteration) running time. In
order to keep the comparisons fair, we decide to stop the iterations as soon as the
relative change of the error drops below a certain threshold; moreover, we basically use
the published version of each method along with the pre-specified parameters (except
for λ): therefore, a more accurate tuning of all the parameters can possibly result in
a better performance of some of the methods. Looking at the results displayed in
Table 6.1 we can state that, for this example, the newly proposed algorithms exhibit
excellent performance both in terms of quality of the results and computational time.
The primary reason is that, adopting a Krylov subspace approach, at each iteration we
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Fig. 6.4. Behavior of the relative error versus the number of iterations for different optimization
methods. The last computed value is highlighted with a different marker and corresponds to the one
reported in Table 6.1..

Method Relative Error Iterations Total Time Average Time

SpaRSA 2.2365 · 10−2 94 24.76 0.26
NESTA 1.7800 · 10−2 248 306.17 1.23
TwIST 1.1089 · 10−2 104 28.02 0.27
l1 ls 2.2257 · 10−2 298 683.55 2.29

IRN-BPDN 2.2294 · 10−2 103 35.72 0.35
AT 1.8512 · 10−2 12 0.91 0.08

RR-AT 1.9171 · 10−2 18 3.77 0.21
Flexi-AT 1.1345 · 10−2 23 2.44 0.11
ReSt-GAT 1.1033 · 10−2 51 5.95 0.12

NN-ReSt-GAT 3.7530 · 10−3 60 6.25 0.10

Table 6.1
Comparisons of the performances of some algorithms developed to solve problem (1.4). The

Relative Error reported is the one computed at the iteration displayed in the third column. The
number of iterations is the minimum between the iterations required to fulfill the stopping criterion
and the maximum number of allowed iterations. Both the Total Time and the Average Time are
expressed in seconds.

deal with projected quantities and therefore all the main computations are executed
in reduced dimension. However some of the considered methods, such as NESTA
and SpaRSA, can deal with much more general minimization problems - for instance
involving a nonlinear fit-to-data functional: in this situation the algorithms described
in the present paper cannot be straightforwardly applied.

Finally, in Figure 6.5 we show the same quantities displayed in Figure 6.1, but
this time the noise level is ε̃ = 10−1.

Example 2. We now consider another example regarding an image restoration prob-
lem and we apply the restarted GAT method in order to approximate the total varia-
tion regularization. As a test image we take a computer simulation of how a satellite
can be detected by ground based telescopes; in this case the PSF is spatially invariant
and models an atmospheric blur. This image is of size 256×256 pixels and we further
corrupt the blurred image adding white noise, in such a way that the noise level is
ε̃ = 10−2; as in the previous example, the safety factor for the discrepancy principle
is η = 1.01 and the threshold considered in (3.11) is ν = 10−8. Both the exact image
and the PSF are available in the MATLAB package Restore Tools [28].

In Figure 6.6 we show the exact image, the blurred and noisy one and the recon-
struction obtained applying Algorithm 3 to enforce nonnegativity: at each restart the
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Fig. 6.5. Values of the relative error, the discrepancy function and the regularization parameter
versus the number of iterations. These plots are obtained applying Algorithm 1 to the first test
problem with ε̃ = 10−1. The circle at the 15th iteration highlights the quantities obtained when the
discrepancy principle is satisfied.

regularization matrix, defined by (3.10), is updated and the intermediate problems
are solved using the Generalized Arnoldi Tikhonov method (2.3), since in this case
the matrix (3.10) is not easily invertible. The fundamental difference between this
test and the ones so far described is that in this case the solution belongs to the
Krylov subspace Km(A, b) defined taking into account exclusively the matrix A while
in the previous examples it belonged to the right-preconditioned Krylov subspace
Km(A(L)−1, b), where the matrix L was updated at each restart. We perform 200
restarts: this choice is supported by the fact that the discrepancy principle is satisfied
after 9 iterations at the beginning, 3 iterations after the first restart and immediately,
i.e. after just 1 iteration, in the following restarts. In this way the computational cost
of each restart is very low. Moreover, evaluating the error, we see that it is always
slightly decreasing.

Finally we examine the performance of the NN-ReSt-GAT Algorithm with re-
spect to some other regularization methods. The first set of comparisons involves
the standard Arnoldi-Tikhonov method and its generalized version applied with the
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(a) (b)

(c)

Fig. 6.6. Images considered in the second example: (a) exact image; (b) blurred and noisy im-
age, with ε̃ = 10−2; (c) reconstruction obtained applying Algorithm 3 to approximate total variation
regularization, after 200 restarts are performed.

fixed regularization matrix (3.9). In Figure 6.7 we display the behavior of the relative
errors, of the discrepancy function and of the regularization parameter versus the
number of iterations: looking at the upper frame we can clearly see that the approach
based on total variation regularization can deliver better results than the other ones
(this is not unexpected for image restoration problems, cf. [31]). It is also interest-
ing to remark that, for this particular test problem, the standard Tikhonov method
slightly outperforms the GAT method.

The second set of comparisons involves three methods that have been designed
to iteratively deal with total variation regularization and that are closely related to
the algorithms described in this paper, since they both adopt an IRLS procedure to
linearly approximate the TV functional. The first one is the Adaptive Majorization-
Minimization approach to total variation described in [31] (in the following we will
refer to it as aMM-TV): this method is adaptive in the sense that a parameter selection
strategy based on Bayesian considerations is derived. The second one is the algorithm
IRN-TV derived in [33]: although in [25] the authors propose a strategy, based on
statistical considerations, to automatically set the regularization parameter, we assign
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Fig. 6.7. Comparison of the relative errors, the values of the discrepancy function and the
values of the regularization parameter obtained when restoring the image of Example 2 with different
methods. The solid line refers to Algorithm 2, the dashed line refers to the standard Arnoldi-
Tikhonov method, and the dash-dot line refers to the Generalized Arnoldi-Tikhonov method with the
regularization matrix Dhv defined in (3.9). For both the AT and the GAT method the discrepancy
principle is satisfied at the 9th iteration and in all the plots we mark it with a square and a circle,
respectively.

to it a fixed value: looking at the plot in the lower frame of Figure 6.7, we choose
λ = 10−5. Moreover, even if the authors do not seem to suggest it, we take as initial
guess at each restart the last computed approximation. The third one is NESTA [1]
and we still consider, as regularization parameter, λ = 10−5.

In Figure 6.8 we display the history of the relative errors for the aMM-TV, IRN-
TV, NN-ReSt-GAT, ReSt-GAT and NESTA methods. Some comparisons regarding
all the above listed methods used to solve the present test problem are summarized
in Table 6.2, whose layout is identical to that of Table 6.1. Looking at Table 6.2 we
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Fig. 6.8. Behavior of the relative error versus the number of iterations for the NN-ReSt-GAT,
ReSt-GAT, aMM-TV, NESTA and IRN-TV algorithms. The last computed value is highlighted with
a different marker and corresponds to the one reported in Table 6.2.

Method Relative Error Iterations Total Time Average Time

aMM-TV 2.7056 · 10−1 1025 2159.35 2.10
IRN-TV 3.2141 · 10−1 190 14.67 0.08
NESTA 2.8382 · 10−1 887 69.57 0.08

ReSt-GAT 3.4138 · 10−1 108 12.87 0.12
NN-ReSt-TV 3.0556 · 10−1 110 13.37 0.12

AT 3.4176 · 10−1 9 0.34 0.04
GAT 3.4809 · 10−1 9 0.70 0.08

RR-AT 3.5321 · 10−1 14 1.39 0.10

Table 6.2
Comparisons of the performances of some algorithms developed to solve the problem (1.6). The

Relative Error reported is the one computed at the iteration displayed in the third column. The
number of iterations is that required to fulfill the stopping criterion or a fixed maximum number of
allowed iterations. Both the Total Time and the Average Time are expressed in seconds.

can state that the aMM-TV algorithm surely is the best one in terms of quality of
the reconstruction, but it is also the most expensive one: indeed the parameter choice
strategy proposed in [31] requires the method to perform a lot of iterations and a
lot of restarts before determining a reasonable value for the regularization parameter,
resulting in an overall slow convergence. We further remark that, among all the
algorithms listed in the above table, NN-ReSt-GAT is the only one that produces
nonnegative solutions.

7. Concluding Remarks. In this paper we have proposed two new methods
to solve linear ill-posed problems by employing the Generalized Arnoldi-Tikhonov
approach and approximating the ℓ1 and the total variation regularization terms by
means of a weighted ℓ2 norm. Since these two strategies are based on Krylov subspace
techniques, they are particularly efficient when dealing with large-scale problems. At
each iteration the regularization parameter is chosen by adopting a simple scheme
based on the discrepancy principle. A comparison with some well-established meth-
ods for ℓ1 and TV regularization shows that the new strategies are computationally
much cheaper, especially for what concerns the parameter choice. Some experiments
regarding image restoration problems attest that the quality of the reconstructions
achieved applying the new approaches is comparable to other well-known methods.
Therefore we believe that these strategies can be regarded as valid alternatives to deal
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with sparse reconstruction problems.
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