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Abstract

Background: Robustness is a recognized feature of biological systems that evolved as a defence to environmental
variability. Complex diseases such as diabetes, cancer, bacterial and viral infections, exploit the same mechanisms
that allow for robust behaviour in healthy conditions to ensure their own continuance. Single drug therapies, while
generally potent regulators of their specific protein/gene targets, often fail to counter the robustness of the disease
in question. Multi-drug therapies offer a powerful means to restore disrupted biological networks, by targeting the
subsystem of interest while preventing the diseased network from reconciling through available, redundant
mechanisms. Modelling techniques are needed to manage the high number of combinatorial possibilities arising in
multi-drug therapeutic design, and identify synergistic targets that are robust to system uncertainty.

Results: We present the application of a method from robust control theory, Structured Singular Value or μ-
analysis, to identify highly effective multi-drug therapies by using robustness in the face of uncertainty as a new
means of target discrimination. We illustrate the method by means of a case study of a negative feedback network
motif subject to parametric uncertainty.

Conclusions: The paper contributes to the development of effective methods for drug screening in the context of
network modelling affected by parametric uncertainty. The results have wide applicability for the analysis of
different sources of uncertainty like noise experienced in the data, neglected dynamics, or intrinsic biological
variability.

Background
Biological systems are hierarchically organized, from
genes to proteins up to the organism level. At the cellu-
lar level, complex interconnected networks include
metabolic signalling, signal transduction, and transcrip-
tional regulatory networks [1]. Some general features of
biological networks have been explored computationally,
such as robustness [2], modularity [3], control coeffi-
cients [4], and connectivity properties [5]. Robustness is
defined as the ability to maintain functional perfor-
mance in the presence of uncertainty [2,6], and it is par-
ticularly relevant in therapy design as drug effectiveness
should be independent from predictable sources of
variability.

Complex diseases often exploit the same strategies
present in healthy networks to gain a robust status [2].
Diseases such as diabetes, cancer, bacterial and viral
infections, represent multiple disruptions within the
host network structure rather than single events, such
as a DNA point mutation [7]. Signalling redundancy,
feedback, and other network strategies adopted by the
disease, ensure that it will be robust to disturbances
within its architecture. Hence, single-target therapies fail
in many cases because network characteristics are not
accounted for during target identification [8,9]. On the
other hand, multi-drug therapies (MDT) have been pro-
ven to be effective for many complex diseases [10,11].
Network-based design of MDTs can improve current
drug regimes [11-14] by identifying targets that both
moderate the immediate characteristics of the disease
while disarming its robustness strategies [7].
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Furthermore, synergy within MDTs may reduce the
required drug load, hopefully minimizing side effects
[15,16].
Some MDTs are currently used to treat chronic dis-

eases and to boost antibiotic potency. AIDS infections
routinely require a drug regimen of reverse-transcriptase
inhibitors and protease inhibitors [17]. Oncological che-
motherapeutic regimens often involve the combination
of cyclophosphamide, hydroxydaunorubicin, oncovin,
and prednisone, abbreviated as CHOP [18]. Augmentin,
an amoxicillin-based antibiotic, contains clavulanic acid
to inhibit a known mechanism of amoxicillin degrada-
tion [19]. In comparison to their single-perturbation
counterparts, these MDTs often show an order of mag-
nitude greater efficacy [17]. Most MDTs to date have
been identified in an ad hoc fashion, relying on observa-
tional studies of previously available drug lines. Many
pharmaceutical companies are now embracing the idea
of a priori design of MDTs using in silico modelling and
analysis to rapidly identify candidate targets [20].
Optimizing drug combinations and concentrations

produces an unmanageable number of possible therapies
to explore, demanding efficient computational methods
of screening [11]. Furthermore, it is unreliable to extra-
polate the therapeutic efficacy from the necessarily few
conditions tested. For example, a potential concentra-
tion-dependent synergistic behaviour may occur at
intermediate concentrations not considered during
experimentation. This situation is not unlikely consider-
ing that strongly nonlinear behaviours have been recog-
nized in biological systems, such as switching or
bistabilities [21].
For drug screening to succeed, additional insight into

the biological mechanisms of drug action at the cellular
level is needed to increase the predictability of the ther-
apy. High-throughput experimental techniques are pro-
viding the data required to understand the connections
between the biochemical nodes in the cellular sub-net-
works underlying specific functions. The causal relation-
ships between these components are being explored by
dynamic modelling through a continuous process of
expansion and refinement. The most widely-used repre-
sentation of the biochemical reaction network is a
dynamic and continuous description, based on a system
of ordinary differential equations (ODEs) [22], where the
variables represent the concentrations of the compo-
nents, and their change over time is simulated. Many
ODE models are currently under development to gain
insight into complex diseases, such as diabetes [23-25],
and will be invaluable for future drug discovery, as
reviewed elsewhere [26-28]. More than 200 network
models from the literature have been curated and
included in publicly accessible databases, such as Bio-
models, BioPax and the CellML Model Repository.

Systems Biology Markup Language (SBML) was created
to standardize the description of biochemical networks,
enabling communication between people and software
[29], and paving the way for a biochemically detailed
artificial organism reconstruction [30]. ODE models can
be interrogated to test hypotheses of cellular response
to drug combinations, considering whole sets dosage
permutations and used to discover optimal points of
manipulation within the network [13,16]. These models
have the potential for in silico testing MDTs at reduced
cost and time [11]. Despite improvements in the accu-
racy of biological models, their reliability is often limited
by parameter uncertainty. Even at best, parameter values
can be inferred by experimental data as a range of
values, rather than a fixed one. While increasingly pre-
cise experimental measurement methods are being
developed, cell-cell heterogeneity in tissues and stochas-
tic noise, the consequence of the small copy number of
some intracellular components, are intrinsic sources of
uncertainty and require ad hoc methods of analysis.
We propose the use of Structured Singular Value

(SSV) analysis as a powerful tool for drug target discri-
mination in biological models also accounting for uncer-
tainty. This technique was developed in the control
theory field [31], but has already been successively
applied in the analysis of biological systems [32-35]. In
the proposed methodology, SSV allows the discrimina-
tion of highly effective MDTs from a large pool of
potential candidates, according to the robust response of
the diseased network in the face of known or inferred
sources of uncertainty (Figure 1). For illustration pur-
poses, we explain the methodology through a case
study, given by a negative feedback network motif.
Moreover, we discuss strengths, limitations, and exten-
sions (Figure 1) of the proposed method and its applica-
tion, with respect to other existing ones.

Results
Case study description
A schematic description of the case study used to illus-
trate the proposed methodology is shown in Figure 2A.
The component X is converted to Y through an enzy-
matic reaction, catalyzed by U, that includes the inter-
mediate production of the complex UX. The production
of X and the degradation of X and Y are also consid-
ered. All reaction rates are modelled by mass action.
The product Y regulates its own production via autoin-
hibition. This negative feedback mechanism is modelled
as a multiplicative factor dependent on the concentra-
tion of Y. Negative feedback is a widespread strategy in
biological networks that strongly contributes to their
spatial and temporal complexity [36]. The equation sys-
tem is shown in Figure 2B, and the arbitrary set of nom-
inal parameter values are provided in the figure caption.
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The first requirement for any drug investigation is to
identify the appropriate inputs and outputs of the sys-
tem. These choices depend on which components (such
as cytokine concentration, mRNA level, marker expres-
sion, etc.) are significant for defining the healthy and
diseased states, and are measurable by available biologi-
cal assays. This example analyzes a single-input single-
output system. We assume the input is the total concen-
tration of enzyme, utot, constant over time. A disease
state emerges when the input has a high concentration,
utot,d, compared to the basal healthy state, utot,h. As a
consequence, the output concentration, y, is up-regu-
lated in this condition (Figure 3A). The goal is to re-
parameterize the diseased model to obtain a therapeuti-
cally treated model that, with a diseased input utot,d,
allows recovery from the diseased output to the healthy
one, even in presence of uncertainty.

Healthy performance and potential therapies
Due to biological variability, the healthy performance is
given by an envelope that defines upper, yub, and lower,

ylb, bounds on the output, rather than an idealized,
nominal single trajectory (Figure 3A). Thus, the system
meets the requirements for healthy performance when:

y y ylb ub≤ ≤ . (1)

In practice, the performance bounds are derived by
the standard deviation of the experimental data. In this
work, the system “noise” is artificially generated simulat-
ing the system with the Stochastic Simulation Algo-
rithm, SSA [37]. A smooth performance envelope is
then defined to approximately contain the concentration
profiles resulting from these simulations, as shown in
Figure 3A and explained in the Methods section.
Multiple therapeutic approaches can be investigated

that aim at restoring the normal output concentration
in the presence of a diseased input condition. A drug
effect on the system can be modelled as a parameter
perturbation, i.e., modifying a component’s rate of
synthesis, degradation, or interaction with other ele-
ments in the network. We first inferred the set of

Figure 1 Range of applicability of SSV analysis for robust therapy design. Once a model has been established that satisfactorily explains
the dynamics of the diseased state, SSV analysis can be used to identify potent and robust multi-drug therapy candidates. SSV analysis first
identifies which therapies can best manipulate the protein(s) of interest. Then, the candidate list is further filtered to therapies which are robust
to known or perceived uncertainty affecting the treatment. The uncertainty may include parameter uncertainty and uncertainty generated
during model development, but also disturbances occurring during the actual treatment, such as failure to properly adhere to a drug regimen
schedule.
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potential therapies by fitting the healthy output curve in
the presence of a diseased input, utot,d, targeting up to 4
parameters at a time. Thus, each therapy model is in
the form of the equation system presented in Figure 2B,
with a diseased input, utot,d, and a different parameter

set obtained solving a least-square optimization problem
that minimizes the deviation of its output from the
healthy one. A total of 56 possible therapies, i.e.

n

ii

⎛

⎝
⎜

⎞

⎠
⎟

=
∑

1

4
combinations of the n = 6 parameters, were

Figure 2 Case study model. (A) Topology of the network. U is the enzyme catalyzing the conversion of X to product Y, through the
intermediate UX. The open arrows indicate the chemical reactions, and the oval arrow a negative regulation. k’s represent the parameters
involved in each step. Ø is the null component to indicate production and degradation. Input to the system is given by the total enzyme, Utot,
concentration, constant over time and given by utot = u+ux (lower-case component names indicate the corresponding concentrations). Output
of the system is y. Inputs and outputs are highlighted in red. (B) Nonlinear model equations. The reaction rates are given by mass-action,
negative feedback is described by the multiplicative term containing k5. The nominal values of the parameters are: k1 = 1, k2 = 2, k3 = 10, k4 =
0.5, k5 = 0.5, k-1 = 3, k-3 = 1.

Figure 3 Performance envelopes and therapeutic fitting. (A) Temporal simulation of the nonlinear model in Figure 2B with nominal
parameters, under healthy conditions (utot,h = 0.2, and initial conditions given by the healthy steady-state), and diseased conditions (utot,d = 2,
and initial conditions given by the diseased steady-state). Performance envelopes are generated to contain the stochastic envelopes, resulted by
the Stochastic Simulation Algorithm (mean ± standard deviation). Nominal results are also shown in dashed lines. (B) Comparison between the
performance envelopes and the results obtained from the nonlinear model, starting from the diseased steady-state, with parameter values
modified according to the 56 therapies (blue curves).
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obtained. A comparison between the outcome, ydt, from
each therapy and the performance envelopes is shown
in Figure 3B, where the simulations were performed
starting from the diseased steady-state in absence of any
source of uncertainty.

Selection of therapies for nominal performance
According to the definition in (1), the criterion for nom-
inal performance requires that the output of a therapeu-
tic model does not cross the boundaries of the healthy
performance envelope, when using the healthy steady-
state as initial condition. It is formally convenient to re-
formulate the problem defining an upper bound for the
absolute deviation of the therapy output from the
healthy one:

y t y t
y y

dt h
ub lb( ) ( ) .− ≤ −

2
(2)

We applied this preliminary screening method, based
on direct trajectories comparison, to our case study. A
total of 41 therapies, out of 56 potential, were selected
as giving a healthy nominal performance in the presence
of a diseased input, utot,d, i.e., their output without any
parametric uncertainty falls within the healthy perfor-
mance envelope (Figure 4).

Uncertainty description and robust performance
A mathematical approximation of a complex biophysical
system must account for multiple sources of uncertainty,
due to stochastic noise, experimental error, or other
possible fluctuations induced by the interaction of the
system with its surrounding. A confidence interval can
be assigned to each parameter, during the procedure of

experimental data fitting, as a lumped measure of these
multiple sources of uncertainty. Thus, each parameter in
the model is represented in the following form:

k k rmean k k= + ⋅( ),1  (3)

where k Î [kmin, kmax] is a generic parameter of the
model, kmean = (kmin + kmax)/2, rk = (kmax - kmin)/(kmax

+ kmin), and δk Î ℝ and |δk| ≤ 1. In this case study, we
assume that all parameters have a relative fluctuation of
45% about their mean value (i.e., rk = 45%).
The conditions for nominal performance (without

uncertainty) can be extended to the case of an uncertain
model. Specifically, a therapy meets the criterion for
robust performance if, for any set of parameters within
the defined uncertainty range, no output trajectory
crosses the healthy performance envelope boundaries,
when using the healthy steady-state as initial condition.
A direct comparison between each therapy’s output tra-
jectories and the healthy performance envelope, as in
the previous section, is not feasible for all the values of
the uncertain parameters. The advantage of employing
SSV analysis becomes apparent in this situation.

Rearrangement of the model in M-Δ form
SSV analysis is a tool developed in control theory to
study the performance of systems affected by uncer-
tainty [31]. We provide here an intuitive understanding
of how it works, and refer to textbooks in the field for a
more technical explanation [38]. Before SSV application,
some preliminary steps are needed to recast the model
in a suitable form, including model Jacobian lineariza-
tion, and Laplace transforms. They are well-known tech-
niques in control theory and numerical algorithms to

Figure 4 Nominal performance analysis results. Trajectories obtained with the nonlinear deviation model for each of the 56 therapies
without parametric uncertainty. Green and red lines denote therapies that pass and do not pass the nominal performance selection criterion,
respectively. The performance envelope is shaded in light green.
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perform them are readily available in technical software
such as Matlab.
We defined a deviation model as the difference

between a therapy model and the healthy one, and we
normalized the output by a weighting factor, wp, repre-
senting the performance specification. The criterion for
robust performance can now be expressed in terms of
ratio between the normalized deviation model output,
(ydt - yh)/wp, and its input,(utot,d - utot,h), i.e.:

y y w

u u
dt h P

tot d tot h

−( )
−

<
, ,

.1 (4)

The performance weighting factor, wp, is related to the
performance envelope bounds by the following relationship:

w
y y

u uP
ub lb

tot d tot h

=
−( )
−

2

, ,

. (5)

Now the model includes parametric uncertainty. It is
always possible, through a linear fractional transforma-
tion (LFT), to pull out the uncertain elements from
the nominal model, and to recast it in a M-Δ form
(Figure 5), where M is the matrix describing the nominal
model and Δ the matrix containing all the uncertainty,
namely the δk’s defined above, and the performance spe-
cification. The Δ-matrix has a particular structure, due to
the presence of a number of zeros in some positions,
dependent on the specific starting model. As |δk| ≤ 1 and
the output is normalized by wp, Δ is also normalized.
From a control theory standpoint, putting the system in
this form converts the performance analysis problem to
the study of the stability of the loop in Figure 5.

General aspects on SSV
SSV is a worst-case analysis that excludes a therapy if,
even for a single parametric combination within the

defined uncertainty ranges, it fails to meet the perfor-
mance specifications defined by the envelope. It is based
on the calculation of the structured singular value, μRP
(where RP stands for robust performance), by solving
the following minimization problem:

RP m mM k I k M( ) min{ | det( )= − =
Δ

Δ 0for structured and normalized ΔΔ)}( )−1
(6)

where I is the identity matrix, and km a scalar factor.
A result well-known in control theory, simplistically sta-
ted here, is that, when det(I - MΔ) = 0, then the loop in
Figure 5 becomes unstable, i.e., in our case, the perfor-
mance is not fulfilled. As Δ is a matrix whose elements
are uncertain, the above minimization problem is solved
over all possible Δ’s that are normalized and have the
structure that we mentioned in the previous section.
The value min(km) represents the smallest perturba-

tion that destabilizes the system, and μRP is its recipro-
cal. Thus, μRP = 1 means that there exists a
perturbation, within the uncertainty description, that is
large enough to pull the output exactly to the limit of
the performance envelope. The model meets the condi-
tions for robust performance if and only if μRP < 1.
Details on how μRP is computed are available in the lit-
erature [38], and algorithms are also included in techni-
cal software, like Matlab.

Selection of therapies for robust performance by SSV
Values of μRP for the 41 therapies are shown in
Figure 6A. Only 5 therapies have μRP < 1 and passed
this screening test. Table 1 summarizes the parameters
involved in each one. Interestingly, no single-parameter
therapies met the robust performance specification. This
is a confirmation of the importance of a MDT approach,
as opposed to a drug strategy having only one target of
intervention. In fact, because of the interconnected
structure of the network, a robust therapy was obtained

Figure 5 Block diagram representation of the deviation models. The deviation model is shown in M-Δ form. The vector of input and output
between the two blocks are also indicated. uΔ and yΔ represent the uncertain components of the input and output, respectively, for the system
M.
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by drug (i.e. parameter) combinations affecting at the
same time processes with the same effect but dislocated
in different points of the network. For example, therapy
11 increases X concentration by reducing its consump-
tion in the forward reaction involving parameter k1, and
by reducing its degradation dependent on parameter k-3.
Therapy 12 instead decreases Y concentration by redu-
cing its production from UX (parameter k2) and increas-
ing its degradation (parameter k4).
Figure 6B shows the output dynamics of therapy 30.

First, the nominal values of the parameters were ran-
domly changed by up to ± 45%. 100 parameter sets
were generated, and used in the linearized model to
simulate the diseased treated system, with diseased
steady-state as initial condition. In all cases the output
steady-state value falls within the healthy performance
envelope, as a confirmation of SSV analysis results.
Then, the nominal nonlinear model of therapy 30 was
simulated by SSA. SSV analysis does not guarantee per-
formance in this case, as noise in component concentra-
tions was not included in the uncertainty description,
which was only parametric. Nonetheless, the stochastic

envelope generated falls into the performance envelope
even in this case after a transient (Figure 6B), increasing
our confidence on the efficacy of this therapy in the pre-
sence of unexpected uncertainty.

Discussion
In this paper we have proposed a new method for MDT
selection, taking advantage of SSV analysis, a tool
already successfully applied in other fields such as aero-
nautics [39]. We have evaluated the feasibility of using
this tool for drug screening by a simple case study,
essentially a network given by an enzymatic reaction
negatively regulated by its own product. While therapies
can be easily selected based on a criterion of nominal
performance, the importance of SSV application is
apparent in presence of parametric uncertainty, when,
to the best of our knowledge, alternative methods are
not available.
Through the case study, we demonstrated the relevance

of considering the effect of structured uncertainty, i.e.
parametric noise, as only 5 therapies, out of 41 showing
nominal performance, were robust. From a network per-
spective, the results emphasize how MDTs offer greater
potency in regulating specific targets. In fact, all the 5
therapies passing the screening involved multiple pertur-
bations. Furthermore, these resulted in therapies that are
also less susceptible to internal biological fluctuations, as
demonstrated by the SSA simulation of therapy 30,
whose results are shown in Figure 6B.
If a general unstructured multiplicative uncertainty

(namely, a full Δ matrix) had been included in the
model, an analysis of performance would have produced

Figure 6 Robust performance analysis and results of one robust therapy in presence of parametric uncertainty. (A) Results of the SSV
analysis applied for robust performance, in presence of parametric uncertainty. Green and red dots illustrate therapies that pass and do not pass
the robust performance selection criterion, respectively. (B) Comparison between the performance envelopes described in Figure 3A and the
results obtained from therapy no. 30. Blue curves are the simulation results by therapy 30 linearized model with 100 different parameter sets,
sampled within ± 45% of the nominal values. Gray curves are the upper and lower bounds of the stochastic envelope generated by the
Stochastic Simulation Algorithm of therapy 30 nonlinear model (mean ± standard deviation of 100 trajectories).

Table 1 Increase* or decrease# of parameter values in
the robust therapies respect to their nominal ones

Therapy no. 11 12 30 32 52

Affected parameters k1 ↓ k2 ↓ k1 ↓ k2 ↓ k2 ↓

k-3 ↓ k4 ↓ k5 ↓ k4 ↓ k4 ↓

k-3 ↓ k5 ↑ k5 ↑

k-1 ↑

* Upward arrows. # Downward arrows.
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conservative results and some robust therapies might
have been discarded. In fact, this definition of uncer-
tainty is not directly connected to the physical phenom-
ena occurring in the system and will generally include
physically unfeasible perturbations. Defining ranges for
parameter values includes a structured uncertainty in
the model, preserving a closer physical interpretation,
related to the stochastic noise and the experimental
error inherent to biological networks.
Sensitivity analysis is a possible alternative approach

to identify parameters for therapy design. For compari-
son, the local sensitivity analysis (LSA) of the case
study is reported in Figure 7. Sensitivity coefficients
with respect to only one parameter were calculated,
even if global sensitivity analysis methods exist [40].
Parameter k3 was not included, as it is not present in
the linearized version of the model used in the SSV
analysis. LSA results show the disease state is particu-
larly sensitive to parameters k2 and k4, those involved
in the single target therapies 2 and 3. Therapy 2
resulted in non-robust performance (Figure 6A), and
therapy 3 failed even the nominal performance test,
when parametric uncertainty is not accounted for
(results not shown). The discrepancy in the results is
due to the local character of LSA. Even when the
model is linear, LSA is unable to account for system
behaviour in the presence of large perturbations.
Moreover, as it does not include a definition of perfor-
mance, once sensitive parameters are identified, the
information on the amount of perturbation needed to
restore a healthy performance is not available.
Several extensions of SSV analysis exists which can be

invaluable to drug discovery. As parameter fitting can
be computationally expensive, by reversing the idea of

robust performance and searching for target combina-
tions which most easily destabilize the diseased state,
the number of parameter fittings performed early in the
analysis can be greatly reduced [34]. Furthermore, in
this paper we considered a single-input, single-output
system with uncertainty being limited to the interactions
(parameters) of the network. In multiple input and mul-
tiple output (MIMO) networks, more complex perfor-
mance envelopes can be considered during robust
performance analysis. The analysis can also be extended
to include other clinically-interesting sources of uncer-
tainty, such as dosages issues, blood clearance, etc.

Conclusions
The complexity and size of biological systems make
observation-based approaches to combinatorial drug
therapy discovery prohibitive due to the associated
financial burden and time requirements. Many compa-
nies are now aware of the value of using in silico techni-
ques to guide discovery, but these analyses may rely too
heavily on model accuracy. Using tools such as SSV ana-
lysis, biological networks can be screened for MDTs that
are robust to various uncertainties. These uncertainties
may be noise experienced in data, neglected dynamics,
or even intrinsic biological variability. Furthermore, the
performance of the network can be user-defined to
cover several drug-related concerns such as drug efficacy
and known potential side effects. MDTs identified by
SSV analysis are robust to all model hypotheses
expressed in the uncertainty description, and are more
likely to be effective during experimentation. In conclu-
sion, SSV analysis can prioritize target combinations by
quantifying treatment efficacy given uncertainty in a sys-
tematic way.

Figure 7 Local sensitivity analysis results. Sensitivity coefficients, Si, of the diseased output at steady-state, yss,d, respect to the parameter
indicated on the x-axis. The coefficients are normalized with the nominal value of each parameter and with the steady-state output
concentration yss,d.
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Methods
Nominal model
All the numerical simulations were performed in
MATLAB 7.7.0 R2008b (MathWorks, Inc.). The healthy
and diseased steady-states were calculated using Matlab
function fsolve to solve the system of equations in Figure
2B after equating to zero the time derivative terms. The
nonlinear ODE model in Figure 2B was solved using
Matlab function ode15s.

Stochastic Simulation Algorithm (SSA) and performance
envelopes
The nonlinear model was expressed in terms of number
of molecules, instead of concentrations, and SSA was
applied according to [37]. The initial conditions for the
results shown in Figure 3A were the healthy and dis-
eased steady-states, respectively. 100 trajectories were
generated and interpolated at 100 regular time points.
At each time point mean and standard deviation values
among the trajectories were calculated.
The upper, yub, and lower, ylb, bounds of the healthy

performance envelope shown in Figure 3A were then
calculated by:

y y f s

y y f s
lb ss h mean

ub ss h mean

= − ⋅
= + ⋅

⎧
⎨
⎪

⎩⎪
,

,
, (7)

where yss,h is the healthy output at steady-state, smean

is the time-averaged standard deviation from the sto-
chastic simulations, and f is a weighting factor chosen to
have the stochastic envelopes reasonably contained in
the performance ones. A value of f equal to 1.6 was
used. The diseased performance envelope shown in Fig-
ure 3A was calculated analogously.

Derivation of potential therapies
Each therapy is obtained by fitting the output of the
nonlinear model with diseased input, utot,d, to the
healthy output response. The fitting was performed
using Matlab function fmincon by minimizing the fol-
lowing cost function, C:

C y t y tdt i h i

i

= −[ ]
=
∑ ( ) ( ) ,

2

1

20

(8)

where ti are 20 regularly-spaced time points in the
simulated time span. The initial conditions were given
by the diseased steady-state. Up to 4 parameters were
simultaneously allowed to change in the range ±100% of
their nominal value.

Test for nominal performance
The model of each therapy was run using the healthy
steady-state as initial condition. The absolute deviation
of the therapy model output from the healthy one was
calculated, and the therapies that met the condition in
(2) at each time point, ti, defined above, were selected as
respondent to the requirements of nominal
performance.

Model linearization
The model of each therapy was transformed by analyti-
cal Jacobian linearization around the healthy steady-
state. The following deviation variables, indicated by the

over bar, were defined: x x x ss h= − , , ux ux ux ss h= − , ,

u u utot tot tot h= − , , u u utot tot tot h= − , . Then, the model

was rearranged in state-space form:

dz

dt
Az Bv

w Cz Dv

= +

= +

⎧
⎨
⎪

⎩⎪
, (9)

where z x ux y
T

= ⎡
⎣

⎤
⎦, , , v utot= , w y= , and A, B, C,

and D are constant matrices. As A, B, C, and D depend
on the parameter values, they are different for each
therapeutically-treated diseased model and for the
healthy one. Furthermore, the therapy models have

input u u utot d tot d tot h, , ,= − , while the healthy one has

null input in deviation variables.

Model rearrangement and SSV analysis
An uncertainty rk = 45% was applied to each parameter
in the model, according to the definition in (3). Multiple
deviation models were then defined as the difference
between each therapy model and the healthy one in the
form described by (9). In practice these deviation mod-
els were obtained numerically in Matlab. Their output
was normalized by the performance weighting factor,
wp, defined in (3). The models were numerically con-
verted into an M-Δ form by using the Robust Control
Toolbox in Matlab.
SSV analysis was applied to all the deviation models,

after a nominal stability check (data not shown). μRP
was calculated using Matlab function mussv.

Acknowledgements
CL, JES, and FJD were supported by Pfizer Inc. through Contract No. DFP01,
and the Institute for Collaborative Biotechnologies through Grant No.
W911NF-09-D-0001 from the U.S. Army Research Office. KRS and LRP were

Luni et al. BMC Systems Biology 2010, 4:161
http://www.biomedcentral.com/1752-0509/4/161

Page 9 of 10



funded by Pfizer Inc. and the Institute for Collaborative Biotechnologies
under Grant No. DFR3A-8-447850-23002 from the Army Research Office. LRP
was also supported by Grant R01EB007511 from the National Institute of
Biomedical Imaging and Bioengineering and DOE Contract No. DE-FG02-
04ER25621. KRS was also supported by a National Science Foundation
Graduate Research Fellowship.

Author details
1Department of Chemical Engineering, University of California, Santa Barbara,
CA 93106-5080, USA. 2Department of Computer Science, University of
California, Santa Barbara, CA 93106-5070, USA.

Authors’ contributions
CL participated in the design of the study, carried out the numerical
simulations and drafted the manuscript. JES participated in the design of the
study and helped to draft the manuscript. KRS helped with preliminary
stochastic analyses in the design of the manuscript. LRP participated in the
design of the study and helped to draft the manuscript. FJD participated in
the design of the study and helped to draft the manuscript. All authors read
and approved the final manuscript.

Received: 26 May 2010 Accepted: 24 November 2010
Published: 24 November 2010

References
1. Quackenbush J: Extracting biology from high-dimensional biological

data. J Exp Biol 2007, 210:1507-1517.
2. Kitano H: Biological robustness. Nat Rev Genet 2004, 5:826-837.
3. Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular

cell biology. Nature 1999, 402:C47-C52.
4. Hornberg JJ, Bruggeman FJ, Binder B, Geest CR, de Vaate A, Lankelma J,

Heinrich R, Westerhoff HV: Principles behind the multifarious control of
signal transduction - ERK phosphorylation and kinase/phosphatase
control. FEBS J 2005, 272:244-258.

5. Barabasi AL, Oltvai ZN: Network biology: Understanding the cell’s
functional organization. Nat Rev Genet 2004, 5:101-U115.

6. Stelling J, Sauer U, Szallasi Z, Doyle FJ III, Doyle J: Robustness of cellular
functions. Cell 2004, 118:675-685.

7. Schadt EE, Friend SH, Shaywitz DA: A network view of disease and
compound screening. Nat Rev Drug Discov 2009, 8:286-295.

8. Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates?
Nat Rev Drug Discov 2004, 3:711-715.

9. Sams-Dodd F: Target-based drug discovery: is something wrong? Drug
Discov Today 2005, 10:139-147.

10. Durrant JD, Amaro RE, Xie L, Urbaniak MD, Ferguson MAJ, Haapalainen A,
Chen ZJ, Di Guilmi AM, Wunder F, Bourne PE, McCammon JA: A
Multidimensional Strategy to Detect Polypharmacological Targets in the
Absence of Structural and Sequence Homology. PLoS Comput Biol 2010,
6.

11. Zimmermann GR, Lehar J, Keith CT: Multi-target therapeutics: when the
whole is greater than the sum of the parts. Drug Discov Today 2007,
12:34-42.

12. Csermely P, Agoston V, Pongor S: The efficiency of multi-target drugs: the
network approach might help drug design. Trends Pharmacol Sci 2005,
26:178-182.

13. Lehar J, Krueger A, Zimmermann G, Borisy A: High-order combination
effects and biological robustness. Mol Syst Biol 2008, 4:215.

14. Loscalzo J, Kohane I, Barabasi AL: Human disease classification in the
postgenomic era: A complex systems approach to human pathobiology.
Mol Syst Biol 2007, 3:124.

15. Agoston V, Csermely P, Pongor S: Multiple weak hits confuse complex
systems: A transcriptional regulatory network as an example. Phys Rev E
2005, 71.

16. Araujo RP, Liotta LA, Petricoin EF: Proteins, drug targets and the
mechanisms they control: the simple truth about complex networks. Nat
Rev Drug Discov 2007, 6:871-880.

17. Bonhoeffer S, May RM, Shaw GM, Nowak MA: Virus dynamics and drug
therapy. Proc Natl Acad Sci USA 1997, 94:6971-6976.

18. Fisher RI, Gaynor ER, Dahlberg S, Oken MM, Grogan TM, Mize EM, Glick JH,
Coltman CA, Miller TP: Comparison of a standard regimen (CHOP) with 3

intensive chemotherapy regimens for advanced non-hodgkins-
lymphoma. N Engl J Med 1993, 328:1002-1006.

19. Stein GE, Gurwith MJ: Amoxicillin potassium clavulanate, a beta-
lactamase-resistant antibiotic combination. Clin Pharm 1984, 3:591-599.

20. Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G: Computational
modeling of the dynamics of the MAP kinase cascade activated by
surface and internalized EGF receptors. Nat Biotechnol 2002, 20:370-375.

21. Tyson JJ, Albert R, Goldbeter A, Ruoff P, Sible J: Biological switches and
clocks. J R Soc Interface 2008, 5:S1-S8.

22. Cho CR, Labow M, Reinhardt M, van Oostrum J, Peitsch MC: The
application of systems biology to drug discovery. Curr Opin Chem Biol
2006, 10:294-302.

23. Fridlyand LE, Harbeck MC, Roe MW, Philipson LH: Regulation of cAMP
dynamics by Ca2+ and G protein-coupled receptors in the pancreatic
beta-cell: a computational approach. American Journal of Physiology-Cell
Physiology 2007, 293:C1924-C1933.

24. Kim J, Saidel GM, Kalhan SC: A computational model of adipose tissue
metabolism: Evidence for intracellular compartmentation and differential
activation of lipases. J Theor Biol 2008, 251:523-540.

25. Sedaghat AR, Sherman A, Quon MJ: A mathematical model of metabolic
insulin signaling pathways. Am J Physiol Endocrinol Metab 2002, 283:
E1084-E1101.

26. Kreeger PK, Lauffenburger DA: Cancer systems biology: a network
modeling perspective. Carcinogenesis 2009, 31:2-8.

27. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA,
Corrigan BW, Lockwood PA, Marshall SA, Benincosa LJ, et al: Model-based
drug development. Clin Pharmacol Ther 2007, 82:21-32.

28. Michelson S, Sehgal A, Friedrich C: In silico prediction of clinical efficacy.
Curr Opin Biotechnol 2006, 17:666-670.

29. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP,
Bornstein BJ, Bray D, Cornish-Bowden A, et al: The systems biology
markup language (SBML): a medium for representation and exchange of
biochemical network models. Bioinformatics 2003, 19:524-531.

30. Alterovitz G, Muso T, Ramoni MF: The challenges of informatics in
synthetic biology: from biomolecular networks to artificial organisms.
Briefings in Bioinformatics 2010, 11:80-95.

31. Doyle J: Analysis of feedback-systems with structured uncertainties. IEE
Proc-D 1982, 129:242-250.

32. Jacobsen EW, Cedersund G: Structural robustness of biochemical network
models-with application to the oscillatory metabolism of activated
neutrophils. Iet Systems Biology 2008, 2:39-47.

33. Ma L, Iglesias PA: Quantifying robustness of biochemical network models.
BMC Bioinformatics 2002, 3.

34. Shoemaker JE, Doyle FJ III: Identifying fragilities in biochemical networks:
Robust performance analysis of Fas signaling-induced apoptosis. Biophys
J 2008, 95:2610-2623.

35. Ghaemi R, Sun J, Iglesias PA, Del Vecchio D: A method for determining
the robustness of bio-molecular oscillator models. Bmc Systems Biology
2009, 3.

36. Brandman O, Meyer T: Feedback loops shape cellular signals in space
and time. Science 2008, 322:390-395.

37. Gillespie DT: General method for numerically simulating stochastic time
evolution of coupled chemical-reactions. J Comput Phys 1976, 22:403-434.

38. Skogestad S, Postlethwaite I: Multivariable feedback control: analysis and
design. Chichester, West Sussex, England: John Wiley & Sons;, 2 2005.

39. Bates D, Postlethwaite I: Robust Multivariable Control of Aerospace
Systems. Ios Pr Inc; 2002.

40. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M,
Tarantola S: Global Sensitivity Analysis. Chichester, West Sussex, England:
John Wiley & Sons; 2008.

doi:10.1186/1752-0509-4-161
Cite this article as: Luni et al.: Confidence from uncertainty - A multi-
target drug screening method from robust control theory. BMC Systems
Biology 2010 4:161.

Luni et al. BMC Systems Biology 2010, 4:161
http://www.biomedcentral.com/1752-0509/4/161

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/17449816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17449816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15520792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10591225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10591225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15634347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15634347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15634347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14735121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14735121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15369668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15369668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19337271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19337271?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15286737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15718163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20098496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20098496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20098496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17198971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17198971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15808341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15808341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18682705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18682705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17625512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17625512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9192676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9192676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7680764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7680764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7680764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6391783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6391783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11923843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11923843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11923843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18522926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18522926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16822703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16822703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17928534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17928534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17928534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17928534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18234232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18234232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18234232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12376338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12376338?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19861649?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19861649?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17522597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17522597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17046236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12611808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12611808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12611808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18248085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18248085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18248085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12482327?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18539637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18539637?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19772565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19772565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927383?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Case study description
	Healthy performance and potential therapies
	Selection of therapies for nominal performance
	Uncertainty description and robust performance
	Rearrangement of the model in M-Δ form
	General aspects on SSV
	Selection of therapies for robust performance by SSV

	Discussion
	Conclusions
	Methods
	Nominal model
	Stochastic Simulation Algorithm (SSA) and performance envelopes
	Derivation of potential therapies
	Test for nominal performance
	Model linearization
	Model rearrangement and SSV analysis

	Acknowledgements
	Author details
	Authors' contributions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.76333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.76333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


