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Abstract. We provide a solution to the isoperimetric problem in the Heisenberg group Hn

when the competing sets belong to a restricted class of C 2 graphs. Within this restricted class
we characterize the isoperimetric profiles as the bubble sets (1.5) (modulo nonisotropic dila-
tions and left-translations). We also compute the isoperimetric constant.
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1 Introduction

The classical isoperimetric problem states that among all measurable sets with as-
signed volume the ball minimizes the perimeter. This is the content of the celebrated
isoperimetric inequality, see [DG3],

jEjðn�1Þ=n
aCnPðEÞ;ð1:1Þ

which holds for all measurable sets E HRn with constant Cn ¼ n
ffiffiffi
p

p
=Gðn=2 þ 1Þ1=n.

In (1.1), PðEÞ denotes the perimeter in the sense of De Giorgi, see [DG1], [DG2], i.e.,
the total variation of the indicator function of E. Equality holds in (1.1) if and only if
(up to negligible sets) E ¼ Bðx;RÞ ¼ fy A Rn j jy � xj < Rg, a Euclidean ball. It is
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well known that (1.1) is equivalent to the geometric Sobolev inequality for BV func-
tions, see [FR]. An analogous ‘‘isoperimetric inequality’’ was proved in [GN] in
the general setting of a Carnot-Carathéodory space, and such inequality was used,
among other things, to establish a geometric embedding for horizontal BV functions,
similar to Fleming and Rishel’s one. However, the question of the optimal config-
urations in such isoperimetric inequality was left open.

The aim of this paper is to bring a partial solution to this open problem in the
Heisenberg group Hn. We recall that Hn is the simplest and perhaps most impor-
tant prototype of a class of nilpotent Lie groups, called Carnot groups, which play
a fundamental role in analysis and geometry, see [Ca], [Ch], [H], [St], [Be], [Gro1],

[Gro2], [E1], [E2], [E3], [DGN2]. Its underlying manifold is R2nþ1 with non-
commutative group law

gg 0 ¼ ðx; y; tÞðx 0; y 0; t 0Þ ¼ x þ x 0; y þ y 0; t þ t 0 þ 1

2
ðhx; y 0i� hx 0; yiÞ

� �
;ð1:2Þ

where we have let x; x 0; y; y 0 A Rn, t; t 0 A R. If Lgðg 0Þ ¼ gg 0 denotes the operator of
left-translation, let ðLgÞ� indicate its di¤erential. The Heisenberg algebra admits the
decomposition hn ¼ V1 lV2, where V1 ¼ R2n � f0g, and V2 ¼ f0g �R. Identifying
hn with the space of left-invariant vector fields on Hn, one easily recognizes that a
basis for hn is given by the 2n þ 1 vector fields

ðLgÞ� q
qxi

� �
¼def

Xi ¼ q
qxi

� yi

2
q
qt
;

ðLgÞ� q
qyi

� �
¼def

Xnþi ¼ q
qyi

þ xi

2
q
qt
;

ðLgÞ� q
qt

� �
¼def

T ¼ q
qt
;

8>>>><
>>>>:

ð1:3Þ

and that the only non-trivial commutation relation is

½Xi;Xnþj� ¼ Tdij; i; j ¼ 1; . . . ; n:ð1:4Þ

In (1.3) we have identified the standard basis fe1; . . . ; e2n; e2nþ1g of R2nþ1 with the
system of (constant) vector fields fq=qx1; . . . ; q=qyn; q=qtg. Because of (1.4) we have
½V1;V1� ¼ V2, ½V1;V2� ¼ f0g, thus Hn is a graded nilpotent Lie group of step r ¼ 2.
Lebesgue measure dg ¼ dz dt is a bi-invariant Haar measure on Hn. If we denote
by dlðz; tÞ ¼ ðlz; l2tÞ the non-isotropic dilations associated with the grading of the
Lie algebra, then dðdlgÞ ¼ lQ dg, where Q ¼ 2n þ 2 is the homogeneous dimension
of Hn.

In what follows we denote by PHðE;HnÞ the intrinsic, or H-perimeter of E HHn

associated with the bracket-generating system X ¼ fX1; . . . ;X2ng. Such notion will
be recalled in Section 2. To state our theorem we let Hn

þ ¼ fðz; tÞ A Hn j t > 0g,
Hn

� ¼ fðz; tÞ A Hn j t < 0g, and consider the collection

E ¼ fE HHn jE satisfies ðiÞaðiiiÞg;
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where

(i) jE XHn
þj ¼ jE XHn

�j;

(ii) there exist R > 0, and functions u; v : Bð0;RÞ ! ½0;yÞ, with u; v A C2ðBð0;RÞÞX
CðBð0;RÞÞ, u ¼ v ¼ 0 on qBð0;RÞ, and such that

qE XHn
þ ¼ fðz; tÞ A Hn

þ j jzj < R; t ¼ uðzÞg;

qE XHn
� ¼ fðz; tÞ A Hn

� j jzj < R; t ¼ �vðzÞg:

(iii) fz A Bð0;RÞ j uðzÞ ¼ 0gX fz A Bð0;RÞ j vðzÞ ¼ 0g ¼ j.

We note explicitly that condition (iii) serves to guarantee that every E A E is a piece-
wise C2 domain in Hn (with possible discontinuities in the derivatives only on that
part of E which intersects the hyperplane t ¼ 0). We also stress that the upper and
lower portions of a set E A E can be described by possibly di¤erent C2 graphs, and
that, besides C2 smoothness, and the fact that their common domain is a ball, no
additional assumption is made on the functions u and v. For instance, we do not re-
quire a priori that u and/or v are spherically symmetric. Here is our main result.

Theorem 1.1. Let V > 0, and define the number R > 0 by

R ¼
ðQ � 2ÞG Qþ2

2

� �
G

Q�2

2

� �
pðQ�1Þ=2G

Qþ1

2

� �
0
B@

1
CA

1=Q

V 1=Q:

Given such R, then the variational problem

min
E AE; jEj¼V

PHðE;HnÞ

has a unique solution ER ¼ dRðEoÞ A E, where qEo is described by the graph t ¼GuoðzÞ,
with

uoðzÞ ¼def p

8
þ jzj

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � jzj2

q
� 1

4
sin�1ðjzjÞ

� 	
; jzja 1:ð1:5Þ

Fig. 1.1. E A E
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The sign G depends on whether one considers qEo XHn
þ, or qEo XHn

�. Finally, the

boundary qER ¼ dRðqEoÞ of the bounded open set ER is only of class C2, but not of

class C3, near its two characteristic points 0;GpR2

8

� �
, it is Cy away from them, and

SR ¼ qER has positive constant H-mean curvature given by

H ¼ Q � 2

R
:

Remark 1.2. We notice explicitly that the function uo in (1.5) can also be expressed as
follows

uoðzÞ ¼
1

2

ð p=2

sin�1ðjzjÞ
sin2 t dt:

Remark 1.3. We emphasize that, as the reader will recognize, for our proof of the
existence of a global minimizer it su‰ces to assume that the two functions u and v

in the definition of the sets of the class E are C
1;1
loc ðBð0;RÞÞ. It is an open question

whether u; v A C1ðBð0;RÞÞ is enough. This is possible thanks to a sharp result of Ba-
logh concerning the size of the characteristic set, see Theorem 3.9 below. In our proof
of the uniqueness of the global minimizer, instead, it is convenient to work under the
hypothesis of C 2 smoothness. However, with little extra care, it should be possible to
relax it to C

1;1
loc .

For the notion of H-mean curvature of a C2 hypersurface SHHn we refer the
reader to Definition 3.2 in Section 3. This notion of horizontal mean curvature,
which is of course central to the present study, was introduced in [DGN4]. Its geo-
metric interpretation is that, in the neighborhood of a non-characteristic point g A S,
it coincides with the standard Riemannian mean curvature of the 2n � 1-dimensional
submersed manifold obtained by intersecting the hypersurface S with the fiber of the
horizontal subbundle HgHn, see also [DGN3] where a related notion of Gaussian
curvature was introduced. A seemingly di¤erent notion, based on the Riemannian
regularization of the sub-Riemannian metric of Hn, was proposed in [Pa], but the
two are in fact equivalent, see [DGN4]. From Theorem 1.1 we obtain the following
isoperimetric inequality for the horizontal perimeter.

Theorem 1.4. Let E be as above, and denote by ~EE the class of sets of the type dlLgðEÞ,
for some E A E, l > 0 and g A Hn, then the following isoperimetric inequality holds

jEjðQ�1Þ=Q
aCQPHðE;HnÞ; E A ~EE;ð1:6Þ

where

CQ ¼
ðQ � 1ÞG Q

2

� �2=Q

QðQ�1Þ=QðQ � 2ÞG Qþ1

2

� �1=Q

pðQ�1Þ=2Q

;
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with equality if and only if for some l > 0 and g A Hn one has E ¼ LgdlðEoÞ, where Eo

is given by (1.5).

Fig. 1.1 gives a representation of the isoperimetric set Eo in Theorem 1.1 in the spe-
cial case n ¼ 1. We note that the invariance of the isoperimetric quotient with respect
to the group left-translations Lg and dilations dl is guaranteed by Propositions 2.11
and 2.12.

A remarkable property of the isoperimetric sets is that, similarly to their Riemannian
predecessors, they have constant H-mean curvature. It is tempting, and also natural,
to conjecture that the set Eo described by (1.5), along with its left-translated and di-
lated, exaust all the isoperimetric sets in Hn (for the definition of such sets, see Defi-
nition 1.6 below). By this we mean that Theorem 1.4 continues to be valid when one
replaces the class ~EE with that of all measurable sets E HHn with locally finite H-
perimeter. At the moment, this remains a challenging open problem. In this con-
nection, another interesting conjecture is as follows: Let SHHn be a C2, compact

oriented hypersurface. Suppose that for some a > 0

H1 a on S:ð1:7Þ

Is it true that, up to a left translation, if we denote by Sþ ¼ SXHn
þ, S� ¼ SXHn

�,

then Sþ, S� are respectively described by

t ¼G
1

4
jzj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � jzj2

q
� R2

4
tan�1 jzjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � jzj2
q

0
B@

1
CAþ pR2

8

8><
>:

9>=
>;; jzjaR;ð1:8Þ

where R ¼ ðQ � 2Þ=a? Concerning this conjecture we remark that Theorem 1.1 pro-
vides evidence in favor of it. As it is well known, the Euclidean counterpart of it is
contained in the celebrated soap bubble theorem of A. D. Alexandrov [A]. We men-

Fig. 1.2. Isoperimetric set in H1 with R ¼ 1
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tion that, after this paper was completed, we have received an interesting preprint
from Ritoré and Rosales [RR2] in which, among other results, the authors prove the
above soap bubble conjecture in the first Heisenberg group H1.

To put the above results in a broader perspective we recall that in any Carnot
group a general scale invariant isoperimetric inequality is available. In fact, using the
results in [CDG], [GN] one can prove the following theorem, see Theorem 2.9 in
Section 2.

Theorem 1.5. Let G be a Carnot group with homogeneous dimension Q. There exists a

constant CisoðG Þ > 0 such that, for every H-Caccioppoli set E HG , one has

jEjðQ�1Þ=Q
aCisoðG ÞPHðE;G Þ:

A measurable set E HG is called a H-Caccioppoli set if PHðE;oÞ < y for any
oHHG . Theorem 1.5 generalizes an earlier result of Pansu [P1], who proved a re-
lated inequality for the first Heisenberg group H1, but with the H-perimeter in the
right-hand side replaced by the 3-dimensional Hausdor¤ measure H3 in H1 con-
structed with the Carnot-Carathéodory distance associated with the horizontal sub-
bundle HH1 defined by fX1;X2g in (1.3). One should keep in mind that the homo-
geneous dimension of H1 is Q ¼ 4, so 3 ¼ Q � 1, which explains the appearance of
H3 in Pansu’s result. It should also be said that some authors attribute to Pansu [P2]
the conjecture that the isoperimetric sets in H1 have the form (1.5). We mention that
other isoperimetric and Fleming-Rishel type Gagliardo-Nirenberg inequalities have
been obtained by several authors at several times, see [Va1], [Va2], [VSC], [CS], [BM],
[FGW], [MaSC]. We now introduce the following definition.

Definition 1.6. Given a Carnot group G with homogeneous dimension Q we define
the isoperimetric constant of G as

aisoðG Þ ¼ inf
EHG

PHðE;G Þ
jEjðQ�1Þ=Q

;

where the infimum is taken on all H-Caccioppoli sets E such that 0 < jEj < y. If a
measurable set Eo is such that

aisoðG Þ ¼ PHðEo;G Þ
jEojðQ�1Þ=Q

;

then we call it an isoperimetric set in G .

We stress that, thanks to Theorem 1.5, the isoperimetric constant is strictly positive.
It should also be observed that, using the representation formula for the H-perimeter

PHðE;G Þ ¼
ð
qE

W

jN j dHN�1;ð1:9Þ
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valid for any bounded open set E HG of class C1, with Riemannian outer normal

N and angle function W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
p2

1 þ � � � þ p2
m (see Lemma 2.8, and (3.1), (3.2)), one

immediately recognizes that, since for any oHHG one has W aCðoÞjN j, then
PHðE;G ÞaCHN�1ðqEÞ < y. As a consequence, aisoðG Þ < y as well. What is not
obvious instead is the existence of isoperimetric sets. In this regard, one has the fol-
lowing basic result proved in [LR].

Theorem 1.7. Let G be a Carnot group, then there exists a bounded H-Caccioppoli set

Fo such that

PHðFo;G Þ ¼ aisoðG ÞjFojðQ�1Þ=Q:

The equality continues to be valid if one replaces Fo by Lgo
� dlðFoÞ, for any l > 0,

go A G .

Of course, this result leaves open the fundamental question of the classification of
such sets. We stress that, in the generality of Theorem 1.5, this problem is presently
totally out of reach. When G ¼ Hn, however, Theorems 1.1 and 1.4 provide some
basic progress in this direction. Our main contribution is to use direct methods of the
Calculus of Variations to prove that the critical point (1.8) is a global minimizer in
the class E. Furthermore, such global minimizer is unique (modulo left-translations
and dilations) in such class. These results follow from some delicate properties of
convexity, and strict convexity at the global minimizer, of the H-perimeter functional
subject to a volume constraint.

In connection with our work, we mention that several authors have recently studied
the isoperimetric problem in Hn, but under the restriction that the class of com-
petitors be C2 smooth and cylindrically symmetric, i.e., spherical symmetry about the
t-axis of the graph of the competing sets. For instance, in the recent interesting work
[BC], for the first Heisenberg group H1, the authors prove that the flow by H-mean
curvature of a C 2 surface which is convex, and which is described by t ¼Gf ðjzjÞ,
with f 0 < 0, converges to the sets (1.5). Notice, however, that f is spherically sym-
metric, convex, and that it is assumed that the upper and lower part of the surface
are described by the same strictly decreasing function f . We also mention the paper
[Pa] in which the author, still for H1, heuristically derives the surface described by
(1.5) by imposing the condition of constant H-mean curvature among all C2 surfaces
which can be described by t ¼Gf ðjzjÞ. Recently, Hladky and Pauls in [HP] have
proposed a general geometric framework, which they call Vertically Rigid manifolds,
and which encompasses the class of Carnot groups, in which they study the iso-
perimetric and the minimal surface problems. In this setting they introduce a notion
of horizontal mean curvature, and they show, in particular, that remarkably the iso-
perimetric sets have constant horizontal mean curvature. In the paper [LM] the au-
thors prove, among other interesting results, that the uo in our Theorem 1.1 is a
critical point (but not the unique global minimizer) of the H-perimeter, when the
class of competitors is restricted to C2 domains, with defining function of the type
t ¼Gf ðjzjÞ. A similar result has been also obtained in the interesting recent preprint
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[RR1], which also contains a classification of the Delaunay type surfaces in Hn. In
this connection, we also mention the earlier paper [To], in which the author describes
the Delaunay type surfaces of revolution in H1, heuristically computes the special
solutions (1.5), and shows that standard Schwarz symmetrization does not work in
the Heisenberg group. In [FMP] the authors gave a complete classification of the
constant mean curvature surfaces (including minimal) which are invariant with re-
spect to 1-dimensional closed subgroups of Iso0ðH3; gÞ. We also mention the paper
[Mo1], in which the author proved that the Carnot-Carathéodory ball in Hn is not
an isoperimetric set. Subsequently, in [Mo2] he proved that, as a consequence of this
fact, a generalization of the Brunn-Minkowski inequality to Hn fails. Finally, in their
interesting paper [MoM] the authors have established the isoperimetric inequality for
the Baouendi-Grushin vector fields X1 ¼ qx, X2 ¼ jxjaqt, a > 0, in the plane ðx; tÞ,
and explicitly computed the isoperimetric profiles. In the special case a ¼ 1, such
profiles are identical (up to a normalization of the vector fields) to our uo in Theorem
1.1, see Remark 1.2 above.

Acknowledgment1. For the first Heisenberg group H1, and under the assumption that
the isoperimetric profile be of class C2 and of the type t ¼ f ðjzjÞ, the idea of using
calculus of variations to explicitly determine f ðjzjÞ, first came about in computations
that Giorgio Talenti and the second named author carried in a set of unpublished
notes in Oberwolfach in 1995. We would like to thank G. Talenti for his initial con-
tribution to the present study.

2 Isoperimetric inequalities in Carnot groups

The appropriateness of the notion of H-perimeter in Carnot-Carathéodory geometry
is witnessed by the isoperimetric inequalities. Similarly to their Euclidean counter-
part, these inequalities play a fundamental role in the development of geometric
measure theory. Theorem 1.5 represents a sub-Riemannian analogue of the classical
global isoperimetric inequality. Such result can be extracted from the isoperimetric
inequalities obtained in [CDG] and [GN], but it is not explicitly stated in either pa-
per. Since a proof of Theorem 1.5 is not readily available in the literature, for com-
pleteness we present it in this section.

Given a Carnot group G , its Lie algebra g satisfies the properties g ¼ V1 l � � �l
Vr, where ½V1;Vj � ¼ Vjþ1, j ¼ 1; . . . ; r � 1, and ½V1;Vr� ¼ f0g. If mj ¼ dim Vj,

1 The results in this paper were presented by the second named author in the lecture: ‘‘Re-
marks on the best constant in the isoperimetric inequality for the Heisenberg group and
surfaces of constant mean curvature’’, Analysis seminar, University of Arkansas, April 12,
2001, (http://comp.uark.edu/~lanzani/schedule.html), by the third named author at the inter-
national meeting on ‘‘Subelliptic equations and sub-Riemannian geometry’’, Arkansas, March
2003, and by the first named author in the lecture ‘‘Hypersurfaces of minimal type in sub-
Riemannian geometry’’, Seventh New Mexico Analysis Seminar, University of New Mexico,
October 2004.
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j ¼ 1; . . . ; r, then the homogeneous dimension of G is defined by Q ¼ m1 þ 2m2

þ � � � þ rmr. The non-isotropic dilations associated with the grading of g are given
by Dlðx1 þ � � � þ xrÞ ¼ lx1 þ � � � þ lrxr. Via the exponential mapping exp : g ! G ,
which is a global di¤eomorphism onto, such dilations induce a one-parameter
group of dilations on G as follows dlðgÞ ¼ exp � Dl � exp�1ðgÞ. The push forward
through exp of the standard Lebesgue measure on g is a bi-invariant Haar mea-
sure on G . We will denote it by dg. Clearly, dðdlgÞ ¼ lQ dg. For simplicity, we let
m ¼ m1. We fix some orthonormal basis fe1; . . . ; emg; . . . ; fer;1; . . . ; er;mr

g, of the
layers V1; . . . ;Vr, and consider the corresponding left-invariant vector fields on G
defined by X1ðgÞ ¼ ðLgÞ�ðe1Þ; . . . ;XmðgÞ ¼ ðLgÞ�ðemÞ; . . . ;Xr;1ðgÞ ¼ ðLgÞ�ðer;1Þ; . . . ;
Xr;mr

ðgÞ ¼ ðLgÞ�ðer;mr
Þ. We will assume that G is endowed with a left-invariant Rie-

mannian metric h� ; �i with respect to which these vector fields constitute and ortho-
normal basis. No other inner product will be used in this paper. We denote by
HGHTG the subbundle of the tangent bundle generated by fX1; . . . ;Xmg. We next
recall the notion of H-perimeter, see e.g. [CDG]. Given an open set WHG , we let

FðWÞ ¼
�
z ¼

Pm
i¼1

ziXi A G1
0ðW;HG Þ j jzjy ¼ sup

W

jzj ¼ sup
W

�Pm
i¼1

z2
i

�1=2

a 1

	
;

where we say that z A G1
0ðW;HG Þ if Xjzi A C0ðWÞ for i; j ¼ 1; . . . ;m. Given z A

G1
0ðW;HG Þ we define

divH z ¼
Pm
i¼1

Xizi:

For a function u A L1
locðWÞ, the H-variation of u with respect to W is defined by

VarHðu;WÞ ¼ sup
z AFðWÞ

ð
G

u divH z dg:

We say that u A L1ðWÞ has bounded H-variation in W if VarHðu;WÞ < y. The space
BVHðWÞ of functions with bounded H-variation in W, endowed with the norm

kukBVH ðWÞ ¼ kukL1ðWÞ þ VarHðu;WÞ;

is a Banach space. A fundamental property of the space BVH is the following special
case of the compactness Theorem 1.28 proved in [GN].

Theorem 2.1. Let WHG be a (PS) (Poincaré-Sobolev) domain. The embedding

i : BVHðWÞ ,! LqðWÞ

is compact for any 1a q < Q=ðQ � 1Þ.
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We now recall a special case of Theorem 1.4 in [CDG].

Theorem 2.2. Let G be a Carnot group with homogeneous dimension Q. There exists a

constant CðG Þ > 0, such that for every go A G , 0 < R < Ro, one has for every C1 do-

main E HE HBðgo;RÞ

jEjðQ�1Þ=Q
aCPHðE;Bðgo;RÞÞ:

To prove Theorem 1.5 we need to extend Theorem 2.2 from bounded C1 domains to
arbitrary sets having locally finite H-perimeter. That such extension be possible is due
in part to the following approximation result for functions in the space BVH , which is
contained in Theorem 1.14 in [GN], see also [FSS1].

Theorem 2.3. Let WHG be open, where G is a Carnot group. For every u A BVHðWÞ
there exists a sequence fukgk AN in CyðWÞ such that

uk ! u in L1ðWÞ as k ! y;ð2:1Þ

lim
k!y

VarHðuk;WÞ ¼ VarHðu;WÞ:ð2:2Þ

We next introduce the notion of H-perimeter.

Definition 2.4. Let E HG be a measurable set, W be an open set. The H-perimeter of
E with respect to W is defined by

PHðE;WÞ ¼ VarHðwE ;WÞ;

where wE denotes the indicator function of E. We say that E is a H-Caccioppoli set if
wE A BVHðWÞ for every WHHG .

The reader will notice that when the step of the group G is r ¼ 1, and therefore G
is Abelian, the space BVH coincides with the space BV introduced by De Giorgi, see
[DG1], [DG2], [DCP], and thereby in such setting the Definition 2.4 coincides with
his notion of perimeter. A fundamental rectifiability theorem á la De Giorgi for H-
Caccioppoli sets has been established, first for the Heisenberg group Hn, and then for
every Carnot group of step r ¼ 2, in the papers [FSS2], [FSS3], [FSS4]. We will need
the following simple fact.

Lemma 2.5. Let Ro > 0 be given and consider a H-Caccioppoli set E HE HBðe;RoÞ,
then

PHðE;Bðe;RoÞÞ ¼ PHðE;G Þ:ð2:3Þ

Proof. This can be easily seen as follows. Clearly, one has trivially PHðE;Bðe;RoÞÞa
PHðE;G Þ. To establish the opposite inequality, let ro < Ro be such that E HBðe; roÞ,
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and pick f A Cy
0 ðBðe;RoÞÞ be such that 0a f a 1, and f 1 1 on Bðe; roÞ. If

z A FðG Þ, then it is clear that f z A G1
0ðBðe;RoÞ;HG Þ, and that k f zkLyðBðe;RoÞÞ a 1,

i.e., f z A FðBðe;RoÞÞ. We haveð
G

wE divH z dg ¼
ð

Bðe;RoÞ
wE f divH z dg

¼
ð

Bðe;RoÞ
wE divHð f zÞ dg �

ð
Bðe;RoÞ

wEh‘Hf ; zi dg

¼
ð

Bðe;RoÞ
wE divHð f zÞ dgaPHðE;Bðe;RoÞÞ:

Taking the supremum over all z A FðG ;HG Þ we reach the conclusion
PHðE;Bðe;RoÞÞbPHðE;G Þ, thus obtaining (2.3). r

In the next result we extend the isoperimetric inequality from C1 to bounded H-
Caccioppoli sets.

Theorem 2.6. Let G be a Carnot group with homogeneous dimension Q. There exists a

constant CisoðG Þ > 0 such that for every bounded H-Caccioppoli set E HG one has

jEjðQ�1Þ=Q
aCisoðG ÞPHðE;G Þ:

Proof. In [CDG] it was proved that Theorem 2.2 implies the following Sobolev in-
equality of Gagliardo-Nirenberg type: for every u A C 1

0 ðBðgo;RÞÞ
� Ð

Bðgo;RÞ
jujQ=ðQ�1Þ

dg

	ðQ�1Þ=Q

aC
R

jBðgo;RÞj1=Q

Ð
Bðgo;RÞ

j‘Huj dg:ð2:4Þ

If now u A BVHðBðgo;RÞÞ, with supp uHBðgo;RÞ, then by Theorem 2.3 there
exists a sequence fukgk AN A Cy

0 ðBðgo;RÞÞ such that uk ! u in L1ðBðgo;RÞÞ, and
VarHðuk;Bðgo;RÞÞ ! VarHðu;Bðgo;RÞÞ, as k ! y. Passing to a subsequence, we
can assume that ukðgÞ ! uðgÞ, for dg-a.e. g A Bðgo;RÞ. Applying (2.4) to uk and
passing to the limit we infer from the theorem of Fatou� Ð

Bðgo;RÞ
jujQ=ðQ�1Þ

dg

	ðQ�1Þ=Q

aC
R

jBðgo;RÞj1=Q
VarHðu;Bðgo;RÞÞ;

for every u A BVHðBðgo;RÞÞ, with supp uHBðgo;RÞ. If now E HE HBðgo;RÞ is a
H-Caccioppoli set, then taking u ¼ wE in the latter inequality we obtain

jEjðQ�1Þ=Q
aC

R

jBðgo;RÞj1=Q
PHðE;Bðe;RoÞÞ:

The isoperimetric problem for the Heisenberg group 109



At this point, to reach the desired conclusion we only need to use Lemma 2.5 and
observe that jBðgo;RÞj ¼ RQjBðe; 1Þj. We thus obtain the conclusion with CisoðG Þ ¼
CjBðe; 1Þj�1=Q. r

The following is a basic consequence of Theorem 2.6.

Theorem 2.7. Let G be a Carnot group with homogeneous dimension Q. With CisoðG Þ
equal to the constant in Theorem 2.2, one has for any bounded H-Caccioppoli set

jEjðQ�1Þ=Q
aCisoðG ÞPHðE;G Þ:

To establish Theorem 1.5 we next prove that one can remove from Theorem 2.7,
without altering the constant CisoðG Þ, the restriction that the H-Caccioppoli set be
bounded. We recall a useful representation formula. In what follows N indicates the
topological dimension of G , and HN�1 the ðN � 1Þ-dimensional Hausdor¤ measure
constructed with the Riemannian distance of G .

Lemma 2.8. Let WHG be an open set and E HG be a C1 bounded domain. One has

PHðE;WÞ ¼
ð
WXqE

jNH j
jN j dHN�1;

where NH ¼
Pm

j¼1 hN ;XjiXj is the projection onto HG of the Riemannian normal N
exterior to E. In particular, when

E ¼ fg A G j fðgÞ < 0g;ð2:5Þ

with f A C1ðG Þ, and j‘fjb a > 0 in a neighborhood of qE, then N ¼ ‘f, and there-

fore jNH j ¼ j‘Hfj. When W ¼ G we thus obtain in particular

PHðE;G Þ ¼
ð
qE

j‘Hfj
j‘fj dHN�1:ð2:6Þ

For the proof of this lemma we refer the reader to [CDG]. For a detailed study of the
perimeter measure in Lemma 2.8 and (2.6), we refer the reader to [DGN1], [DGN2]
and [CG]. We can finally provide the proof of Theorem 1.5.

Theorem 2.9. Let G be a Carnot group with homogeneous dimension Q. With the same

constant CisoðG Þ > 0 as in Theorem 2.7, for every H-Caccioppoli set E HG one has

jEjðQ�1Þ=Q
aCisoðG ÞPHðE;G Þ:

Proof. In view of Theorem 2.7 we only need to consider the case of an unbounded H-
Caccioppoli set E. If PHðE;G Þ ¼ þy there is nothing to prove, so we assume that
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PHðE;G Þ < þy and jEj < þy. We consider the Cy H-balls BHðe;RÞ ¼ fg A G j
rðgÞ < Rg, generated by the pseudo-distance r ¼ re ¼ Gð�; eÞ1=ð2�QÞ A CyðGnfegÞX
CðG Þ, where Gð�; eÞ A CyðGnfegÞ is the fundamental solution with singularity at the
identity for the sub-Laplacian DH ¼

Pm
j¼1 X 2

j (the reader should notice that any
other smooth gauge would do). For any R > 0 we have

PHðE XBHðe;RÞ;G ÞaPHðE;BHðe;RÞÞ þ PHðBHðe;RÞ;EÞ:ð2:7Þ

Here, when we write PHðBHðe;RÞ;EÞ we mean the standard measure theoretic ex-
tension of the H-perimeter from open sets to Borel sets, see for instance [Z]. Thanks
to the smoothness of BHðe;RÞ we have from Lemma 2.8

PHðBHðe;RÞ;EÞ ¼
ð
qBH ðe;RÞXE

jNH j
jN j dHN�1 ¼

ð
qBH ðe;RÞXE

j‘Hrj
j‘rj dHN�1:

Recalling that Gð�; eÞ is homogeneous of degree 2 � Q, see [F1], [F2], and therefore r

is homogeneous of degree one, we infer that for some constant CðG Þ > 0,

j‘HrjaCðG Þ:ð2:8Þ

This gives

PHðBHðe;RÞ;EÞaCðG Þ
ð
qBH ðe;RÞXE

dHN�1

j‘rj :ð2:9Þ

By Federer co-area formula [Fe], we obtain

y > jEj ¼
ð
G

wE dg ¼
ðy

0

ð
qBH ðe; tÞXE

dHN�1

j‘rj dt;

therefore there exists a sequence Rk % y such that

ð
qBH ðe;RkÞXE

dHN�1

j‘rj 

!
k!y

0:ð2:10Þ

Using (2.10) in (2.9) we find

lim
k!y

PHðBHðe;RkÞ;EÞ ¼ 0:ð2:11Þ

From (2.7), (2.11), we conclude

lim sup
k!y

PHðE XBHðe;RkÞ;G ÞaPHðE;G Þ:ð2:12Þ
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We next apply Theorem 2.7 to the bounded H-Caccioppoli set E XBHðe;RkÞ ob-
taining

jE XBHðe;RkÞjðQ�1Þ=Q
aCisoðG ÞPHðE XBHðe;RkÞ;G Þ:

Letting k ! y in the latter inequality, from (2.12), and from the relation

lim
k!y

jE XBHðe;RkÞjðQ�1Þ=Q ¼ jEjðQ�1Þ=Q;

we conclude that

jEjðQ�1Þ=Q
aCisoðG ÞPHðE;G Þ:

This completes the proof. r

We close this section with two basic properties of the H-perimeter which clearly play
a role also in Theorem 1.4.

Proposition 2.10. In a Carnot group G one has for every measurable set E HG and

every r > 0

PHðE;G Þ ¼ rQ�1PHðd1=rE;G Þ:ð2:13Þ

Proof. Let E HG be a measurable set. If z A C1
0 ðG ;HG Þ, then the divergence theo-

rem, and a rescaling, give

ð
E

divH z dg ¼
ð

E

Pm
j¼1

Xjzj dg ¼ rQ

ð
Er

Pm
j¼1

XjzjðdrgÞ dg;ð2:14Þ

where we have let Er ¼ d1=rðEÞ ¼ fg A G j drg A Eg. Since

Xjðzj � drÞ ¼ rðXjzj � drÞ;

we conclude

ð
E

Pm
j¼1

Xjzj dg ¼ rQ�1

ð
E

Pm
j¼1

Xjðzj � drÞ dg:ð2:15Þ

Formula (2.15) implies the conclusion. r

Proposition 2.10 asserts that the H-perimeter scales appropriately with respect to the
non-isotropic group dilations. Since on the other hand one has jd1=rEj ¼ r�QjEj, we
easily obtain the following important scale invariance of the isoperimetric quotient.
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Proposition 2.11. For any H-Caccioppoli set in a Carnot group G one has

PHðE;G Þ
jEjðQ�1Þ=Q

¼
PHðd1=rE;G Þ
jd1=rEjðQ�1Þ=Q

; r > 0:ð2:16Þ

Another equally important fact, which is however a trivial consequence of the left-
invariance on the vector fields X1; . . . ;Xm, and of the definition of H-perimeter, is the
translation invariance of the isoperimetric quotient.

Proposition 2.12. For any H-Caccioppoli set in a Carnot group G one has

PHðLgo
ðEÞ;G Þ

jLgo
ðEÞjðQ�1Þ=Q

¼ PHðE;G Þ
jEjðQ�1Þ=Q

; go A G ;ð2:17Þ

where Lgo
g ¼ gog is the left-translation on the group.

3 Partial solution of the isoperimetric problem in Hn

The objective of this section is proving Theorems 1.1 and 1.4. This will be accom-
plished in several steps. First, we introduce the relevant notions and establish some
geometric properties of the H-perimeter that are relevant to the isoperimetric profiles.
Next, we collect some results from convex analysis and calculus of variations. Fi-
nally, we proceed to proving Theorems 1.1 and 1.4. In what follows we adopt the
classical non-parametric point of view, see for instance [MM], according to which a
C2 hypersurface SHG locally coincides with the zero set of a real function. Thus,
for every g0 A S there exists an open set OHG and a function f A C 2ðOÞ such that:
(i) j‘fðgÞj0 0 for every g A O; (ii) SXO ¼ fg A O j fðgÞ ¼ 0g. We will always as-
sume that S is oriented in such a way that for every g A S one has

NðgÞ ¼ ‘fðgÞ

¼ X1fðgÞX1 þ � � � þ XmfðgÞXm þ � � � þ Xr;1fðgÞXr;1

þ � � � þ Xr;mr
fðgÞXr;mr

:

To justify the second equality the reader should bear in mind that we have endowed
G with a left-invariant Riemannian metric with respect to which fX1; . . . ;Xm; . . . ;
Xr;mr

g constitute an orthonormal basis. Given a surface SHG , we let

pi ¼ hN ;Xii; i ¼ 1; . . . ;m;ð3:1Þ

and define the angle function

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 þ � � � þ p2
m

q
:ð3:2Þ

The motivation for the name comes from the fact that, if UJV denotes the angle
between two vector fields U , V on G , then
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cosðnHJNÞ ¼ hnH ;Ni

jN j ¼ W

jN j :ð3:3Þ

The characteristic locus of S is the closed set

S ¼ fg A S jWðgÞ ¼ 0g ¼ fg A S jHgGHTgSg:

We recall that is was proved in [B], [Ma] that HQ�1ðSÞ ¼ 0, where Hs denotes the
s-dimensional Hausdor¤ measure associated with the Carnot-Carathéodory distance
of G , and Q indicates the homogeneous dimension of G . We also recall the earlier
result of Derridj [De1], [De2], which states that when S is Cy the standard surface
measure of S vanishes. Later on in this section we will need a result from [B], see
Theorem 3.9 below.

On the set SnS we define the horizontal Gauss map by

nH ¼ p1X1 þ � � � þ pmXm;ð3:4Þ

where we have let

p1 ¼ p1

W
; . . . ; pm ¼ pm

W
; so that jnH j2 ¼ p2

1 þ � � � þ p2
m 1 1 on SnS:ð3:5Þ

Given a point g0 A SnS, the horizontal tangent space of S at g0 is defined by

TH;g0
ðSÞ ¼ fv A Hg0

G j hv; nHðg0Þi ¼ 0g:

For instance, when G ¼ H1, then a basis for TH;g0
ðSÞ is given by the single vector

field

n?H ¼ p2X1 � p1X2:ð3:6Þ

Given a function u A C1ðSÞ one clearly has dHuðg0Þ A TH;g0
ðSÞ. We next recall some

basic definitions from [DGN4].

Let ‘H denote the horizontal Levi-Civita connection introduced in [DGN4]. Let
SHG be a C 2 hypersurface. Inspired by the Riemannian situation we introduce a
notion of horizontal second fundamental on S as follows.

Definition 3.1. Let SHG be a C2 hypersurface, with S ¼ j, then we define a tensor
field of type ð0; 2Þ on THS, as follows: for every X ;Y A C 1ðS;THSÞ

II H;SðX ;Y Þ ¼ h‘H
X Y ; nHinH :ð3:7Þ

We call II H;Sð� ; �Þ the horizontal second fundamental form of S. We also define
AH;S : THS ! THS by letting for every g A S and u; v A TH;g
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hAH;Su; vi ¼ �hII H;Sðu; vÞ; nHi ¼ �h‘H
X Y ; nHi;ð3:8Þ

where X ;Y A C1ðS;THSÞ are such that Xg ¼ u, Yg ¼ v. We call the endomorphism
AH;S : TH;gS ! TH;gS the horizontal shape operator. If e1; . . . ; em�1 denotes a
local orthonormal frame for THS, then the matrix of the horizontal shape oper-
ator with respect to the basis e1; . . . ; em�1 is given by the ðm � 1Þ � ðm � 1Þ matrix
½�h‘H

ei
ej; nHi�i; j¼1;...;m�1.

By the horizontal Koszul identity in [DGN4], one easily verifies that

h‘H
ei
ej; nHi ¼ �h‘H

ei
nH ; eji:

Using Definition 3.1 one recognizes that

II H;SðX ;YÞ � II H;SðY ;XÞ ¼ h½X ;Y �H ; nHinH ;ð3:9Þ

and therefore, unlike its Riemannian counterpart, the horizontal second fundamental
form of S is not necessarily symmetric. This depends on the fact that, if X ;Y A
C1ðS;HTSÞ, then it is not necessarily true that the projection of ½X ;Y � onto the
horizontal bundle HHn, ½X ;Y �H , belongs to C 1ðS;THSÞ.

Definition 3.2. We define the horizontal principal curvatures as the real eigenvalues
k1; . . . ; km�1 of the symmetrized operator

AH;S
sym ¼ 1

2
fAH;S þ ðAH;SÞ tg;

The H-mean curvature of S at a non-characteristic point g0 A S is defined as

H ¼ �traceAH;S
sym ¼

Pm�1

i¼1

ki ¼
Pm�1

i¼1

h‘H
ei
ei; nHi:

If g0 is characteristic, then we let

Hðg0Þ ¼ lim
g!g0;g ASnS

HðgÞ;

provided that such limit exists, finite or infinite. We do not define the H-mean cur-
vature at those points g0 A S at which the limit does not exist. Finally, we call
~HH ¼ HnH the H-mean curvature vector.

Hereafter, when we say that a function u belongs to the class C kðSÞ, we mean that
u A CðSÞ and that for every g0 A S, there exist an open set OHH1, such that u co-
incides with the restriction to SXO of a function in C kðOÞ. The tangential hori-
zontal gradient of a function u A C 1ðSÞ is defined as follows
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‘H;Su ¼ ‘Hu � h‘Hu; nHinH :ð3:10Þ

The definition of ‘H;Su is well-posed since it is noted in [DGN4] that it only depends
on the values of u on S. Since jnH j1 1 on SnS, we clearly have h‘H;Su; nHi ¼ 0,
and therefore

j‘H;Suj2 ¼ j‘Huj2 � h‘Hu; nHi2:ð3:11Þ

Definition 3.3. We say that a C2 hypersurface S has constant H-mean curvature if H
is globally defined on S, and H1 const. We say that S is H-minimal if H1 0.

Minimal surfaces have been recently studied in [Pa], [GP], [CHMY], [CH], [DGN5],
[DGNP], [BSV]. The last two papers contain also a complete solution of the Bern-
stein type problem for the Heisenberg group H1. The following result is taken from
[DGN4].

Proposition 3.4. The H-mean curvature coincides with the function

H ¼
Pm
i¼1

‘H;Spi ¼
Pm
i¼1

Xipi:ð3:12Þ

For instance, when G ¼ H1, then according to Proposition 3.4, the H-mean curva-
ture of S is given by

H ¼
P2
i¼1

‘H;S
i nH; i ¼ ‘H;S

1 ðp1Þ þ ‘H;S
2 ðp2Þ ¼ X1p1 þ X2p2; on SnS:ð3:13Þ

In this situation, given a C 2 surface SHH1, there is only one horizontal principal
curvature k1ðg0Þ at every g0 A SnS. Since in view of (3.6) the vector n?Hðg0Þ con-
stitutes an orthonormal basis of TH;g0

ðSÞ, according to Definition 3.1 we have

k1ðg0Þ ¼ IIHðn?Hðg0Þ; n?Hðg0ÞÞ:

One can verify, see [DGN4], that the right-hand side of the latter equation equals
�Hðg0Þ. We recall one more result concerning the H-mean curvature that will be
useful in the proof of Proposition 3.28. Details can be found in [DGN4].

Proposition 3.5. Suppose SHHn is a level set of a function f that takes the form

fðz; tÞ ¼ t � u
jzj2

4

 !
;

for some C2 function u : ½0;yÞ ! R. For every point point g ¼ ðz; tÞ A S such that

z0 0 the H-mean curvature at g is given by
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H ¼ � 2su 00ðsÞ þ ðQ � 3Þu 0ðsÞð1 þ u 0ðsÞ2Þ
2
ffiffi
s

p
ð1 þ u 0ðsÞ2Þ3=2

; s ¼ jzj2

4
:ð3:14Þ

In Proposition 3.5 the hypothesis z0 0 is justified by the fact that, under the given
assumptions, if S intersects the t-axis in Hn, then the points of intersections are
necessarily characteristic for S.

Hereafter in this paper, we restrict our attention to G ¼ Hn. In Definition 3.3, fol-
lowing the classical tradition, we have called a hypersurface H-minimal if its H-mean
curvature vanishes identically. However, in the classical setting the measure theoretic
definition of minimality is also based on the notion of local minimizer of the area
functional. In the paper [DGN4] we have proved that there is a corresponding sub-
Riemannian counterpart of such interpretation based on appropriate first and second
variation formulas for the H-perimeter. For instance, the following first variation
formula holds in the Heisenberg group H1.

Theorem 3.6. Let SHH1 be an oriented C2 surface, then the first variation of the

H-perimeter with respect to the deformation

JlðgÞ ¼ g þ lXðgÞ ¼ g þ lðaðgÞX1 þ bðgÞX2 þ kðgÞTÞ; g ¼ ðx; y; tÞ A S;ð3:15Þ

is given by

d

dl
PHðSlÞjl¼0 ¼

ð
S

H
cosðXJNÞ
cosðnHJNÞ jXj dsH ;ð3:16Þ

whereJdenotes the angle between vectors in the inner product h� ; �i. In particular, S
is stationary with respect to (3.15) if and only if it is H-minimal.

Versions of Theorem 3.6 have also been obtained independently by other people.
An approach based on motion by H-mean curvature can be found in [BC]. When
a ¼ ph, b ¼ qh, and h A Cy

0 ðSnSÞ, then a proof based on CR-geometry can be found
in [CHMY]. A Riemannian geometry proof, valid in any Hn, can be found in [RR1].

In what follows we set

Hn
þ ¼ fðz; tÞ A Hn j t > 0g; Hn

� ¼ fðz; tÞ A Hn j t < 0g:

Consider a domain WHR2n and a C1 function u : W ! ½0;yÞ. We assume that
E HHn is a C1 domain for which

E XHn
þ ¼ fðz; tÞ A Hn j z A W; 0 < t < uðzÞg:

The reader should notice that, since u > 0 in W, the graph of u is not allowed to have
flat parts. For z ¼ ðx; yÞ A R2n, we set z? ¼ ðy;�xÞ. Indicating with fðz; tÞ ¼ t � uðzÞ
the defining function of E XHn

þ, a simple computation gives
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j‘Hfj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘xu þ y

2

����
����2 þ ‘yu � x

2

����
����2

s
¼ ‘zu þ z?

2

����
����:ð3:17Þ

The reader should be aware that in the latter equation, the norm in the left-hand side
comes from the Riemannian inner product on THn GHn, whereas the norm in the
right-hand side is simply the Euclidean norm in R2n. Invoking the representation
formula (2.6) for the H-perimeter, which presently gives

PHðE;Hn
þÞ ¼

ð
qEXH n

þ

j‘Hfj
j‘fj dH2n;

and keeping in mind that, see (3.17), j‘fj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ j‘Hfj2

q
, and that dH2n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ j‘Hfj2
q

dz, we obtain

PHðE;Hn
þÞ ¼

ð
W

‘zu þ z?

2

����
���� dz ¼

ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j‘zuj2 þ

jzj2

4
þ h‘zu; z?i

s
dz:ð3:18Þ

When F HHn is a closed set we define

PHðE;FÞ ¼ inf
FHW;W open

PHðE;WÞ:

Let now u A C1ðWÞ, ub 0, then using the latter formula we obtain the following
generalization of (3.18)

PHðE;Hn
þÞ ¼

ð
W

‘zu þ z?

2

����
���� dz ¼

ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j‘zuj2 þ

jzj2

4
þ h‘zu; z?i

s
dz:ð3:19Þ

The reader should notice that, unlike (3.18), in equation (3.19) we allow the graph of
u to have flat parts, i.e., subsets of W in which the function u vanishes.

In what follows, we recall an invariance property of the H-perimeter which plays a
role in the proof of Theorem 1.1. Consider the map O : Hn ! Hn defined by

Oðx; y; tÞ ¼ ðy; x;�tÞ:

It is obvious that O preserves Lebesgue measure (which is a bi-invariant Haar mea-
sure on Hn). In fact, the map O is a group and Lie algebra automorphism of Hn.
Such map is called inversion in [F3], p. 20. Using the properties of the map O and a
standard contradiction argument, one can easily prove the following result.

Theorem 3.7. Let E HHn be a bounded open set such that qE XHn
þ and qE XHn

�
are C1 hypersurfaces, and assume that E satisfies the following condition: there exists

R > 0 such that
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E X ft ¼ 0g ¼ Bð0;RÞ:ð3:20Þ

Suppose E is an isoperimetric set satisfying jE XHn
þj ¼ jE XHn

�j ¼ jEj=2, then

PHðE;Hn
þÞ ¼ PHðE;Hn

�Þ:

We now introduce the relevant functional class for our problem. The space of com-
peting functions D is defined as follows. Consider the vector space V ¼ C0ðR2nÞ.

Definition 3.8. We let

ð3:21Þ D ¼ fu A V j there exists R > 0 such that ub 0 in Bð0;RÞ;

Bð0;RÞ ¼
T
fBð0;R þ rÞ j suppðuÞHBð0;R þ rÞg;

u A C1;1
loc ðBð0;RÞÞXW 1;1ðBð0;RÞÞg:

We note explicitly that, as a consequence of Definition (3.8), if u A D and R is as in
(3.21), we have u ¼ 0 on qBð0;RÞ. Furthermore, the functions in D are allowed to
have large sets of zeros, i.e., their graph is allowed to touch the hyperplane t ¼ 0 in
sets of large measure. We remark that D is not a vector space, nor it is a convex
subset of V. We mention that the requirement u A C

1;1
loc ðBð0;RÞÞ in the definition of

the class D, is justified by the following considerations. When we compute the Euler-
Lagrange equation of the H-perimeter functional (3.18) we need to know that, with

W ¼ Bð0;RÞ, the set z ¼ ðx; yÞ A WHR2n j ‘zuðzÞ þ z?

2

�� �� ¼ 0
n o

, which is the projec-

tion of the characteristic set of the graph of u onto R2n � f0g, has vanishing 2n-
dimensional Lebesgue measure. This is guaranteed by the following sharp result of Z.
Balogh (see Theorem 3.1 in [B]) provided that u A C

1;1
loc ðWÞ, but it fails in general for

u A C
1;a
loc ðWÞ for every 0 < a < 1.

Theorem 3.9. Let W ¼ Bð0;RÞHR2n and consider u A C 1;1
loc ðWÞ, then jAðuÞj ¼ 0,

where AðuÞ ¼ fz A W j‘zuðzÞ þ z?=2 ¼ 0g, and jEj denotes the 2n-dimensional Leb-

esgue measure of E in R2n. If instead u A C2ðWÞ, then the Euclidean dimension of AðuÞ
isan.

Following classical ideas from the Calculus of Variation, we next introduce the ad-
missible variations for the problem at hand, see [GH] and [Tr].

Definition 3.10. Given u A D, we say that f A V, with supp fJ supp u, is D-
admissible at u if u þ lf A D for all l A R su‰ciently small.

Now, for u A D we let

G½u� ¼
ð

suppðuÞ
uðzÞ dz ¼

ð
Bð0;RÞ

uðzÞ dz:ð3:22Þ
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With (3.18) in mind, we define for such u

F½u� ¼
ð

suppðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j‘zuj2 þ

jzj2

4
þ h‘zu; z?i

s
:ð3:23Þ

In the class of C1 graphs over R2n � f0g, the isoperimetric problem consists in min-
imizing the functional F½u�, subject to the constraint that G½u� ¼ V , where V > 0 is
given and Bð0;RÞ is replaced by an a priori unknown domain W. We emphasize that
finding the section of the isoperimetric profile with the hyperplane ft ¼ 0g, i.e., find-
ing the domain W, constitutes here part of the problem. Because of the lack of an
obvious symmetrization procedure, this seems a di‰cult question at the moment. To
make further progress we restrict the class of domains E by imposing that their sec-
tion with the hyperplane ft ¼ 0g be a ball, i.e., we assume that, given E A E, there
exists R ¼ RðEÞ > 0 such that W ¼ Bð0;RÞ. Under this hypothesis, we can appeal
to Theorem 3.7. The latter implies that it su‰ces to solve the following variational
problem: given V > 0, find Ro > 0 and uo A D with suppðuoÞ ¼ Bð0;RoÞ for which the

following holds

F½uo� ¼ minfF½u� j u A Dg and G½uo� ¼
V

2
:ð3:24Þ

To reduce the problem (3.24) to one without constraint, we will apply the following
standard version of the Lagrange multiplier theorem (see, e.g., Proposition 2.3 in
[Tr]).

Proposition 3.11. Let D be a subset of a normed vector space V, and consider func-

tionals F, G1;G2; . . . ;Gk defined on D. Suppose there exist constants l1; . . . ; lk A R,

and uo A D, such that uo minimizes (uniquely)

Fþ l1G1 þ l2G2 þ � � � þ lkGkð3:25Þ

on D, then uo minimizes F (uniquely) when restricted to the set

fu A D jGj½u� ¼ Gj½uo�; j ¼ 1; . . . ; kg:

Remark 3.12. The procedure of applying the above proposition to solving a problem
of the type

minimize fF½u� j u A Dg;
subject to the constraints G1½u� ¼ V1; . . . ;Gk½u� ¼ Vk;

�

consists of two main steps. First, one needs to show that constants l1; . . . ; lk and
a uo A D can be found in such a way that uo solves the Euler-Lagrange equation
of (3.25), and uo satisfies G1½uo� ¼ V1; . . . ;Gk½uo� ¼ Vk. Finally, one proves that the
solution uo of the Euler-Lagrange equation is indeed a minimizer of (3.25). If the
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functional involved possesses appropriate convexity properties, then one can show
that such minimizer uo is unique.

We then proceed with the first step outlined in the Remark 3.12. In what follows,
with z A R2n, u A R, and p ¼ ðp1; p2Þ A R2n, we let

f ðz; u; pÞ ¼ f ðz; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 þ y

2

�� ��2 þ p2 � x
2

�� ��2q
¼ p þ z?

2

�� ��;
gðz; u; pÞ ¼ gðuÞ ¼ u;

hðz; u; pÞ ¼ f ðz; pÞ þ lgðuÞ:

8><
>:ð3:26Þ

The constrained variational problem (3.24) is then equivalent to the following one
without constraint (provided the parameter l is appropriately chosen): to minimize

the functional

F½u� ¼
ð

suppðuÞ
hðz; uðzÞ;‘zuðzÞÞ dz ¼

ð
suppðuÞ

‘zuðzÞ þ z?

2

����
����þ luðzÞ

( )
dz;ð3:27Þ

over the set D defined in (3.21). We easily recognize that the Euler-Lagrange equation
of (3.27) is

divz

‘zu þ z?

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j‘zuj2 þ jzj2

4
þ h‘zu; z?i

q
2
64

3
75¼ l:ð3:28Þ

Remark 3.13. Before proceeding we note explicitly that, if u A C 2ðWÞ, and we con-
sider the C2 hypersurface S ¼ fðz; tÞ A Hn j z A W; t ¼ uðzÞg, indicating with S its

characteristic set, then g ¼ ðz; tÞ B S if and only if j‘zuj2 þ jzj2

4
þ h‘zu; z?i0 0. In

this situation, using Proposition 3.4, it can be recognized that, at every g B S, the
quantity in the left-hand side of (3.28) represents the H-mean curvature H of S.

As we have said, solving (3.28) on an arbitrary domain of WHR2n is a di‰cult task.
However, when W is a ball in R2n, the equation (3.28) admits a remarkable family of
spherically symmetric solutions. We note explicitly that for a graph t ¼ uðzÞ with
spherical symmetry in z, the only characteristic points can occur at the intersection of
the graph with the t-axis.

Theorem 3.14. Given R > 0, for every

�Q � 2

R
a l < 0;ð3:29Þ

the equation (3.28), with the Dirichlet condition u ¼ 0 on qW, where W ¼ Bð0;RÞ ¼
fz A R2n j jzj < Rg, admits the spherically symmetric solution uR;l A DXC2ðWnf0gÞ,
with
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uR;lðzÞ ¼ CR;l þ
jzj
4l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ � 2Þ2 � ðljzjÞ2

q
� ðQ � 2Þ2

4l2
sin�1 ljzj

Q � 2

� �
;ð3:30Þ

and

CR;l ¼ � R

4l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ � 2Þ2 � ðlRÞ2

q
� ðQ � 2Þ2

4l2
sin�1 lR

Q � 2

� �
:ð3:31Þ

Proof. We look for a spherically symmetric solution in the form uðzÞ ¼ uðjzj2=4Þ, for
some function u A C2ðð0;R2=4ÞÞXCð½0;R2=4�Þ, with uðR2=4Þ ¼ 0. The equation
(3.28) becomes

divz

u 0ðjzj2=4Þz þ z?

jzj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u 0ðjzj2=4Þ

q
2
64

3
75¼ l; in Bð0;RÞnf0g:ð3:32Þ

Since

divz

z?

jzj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u 0ðjzj2=4Þ

q
2
64

3
75¼ 0;

we obtain that (3.32) reduces to the equation

divz
u 0ðjzj2=4Þz

jzj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u 0ðjzj2=4Þ

q
2
64

3
75¼ l:ð3:33Þ

The transformation

F ðrÞ ¼def
u 0 r2

4

� �
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u 0 r2

4

� �� �2
q ;ð3:34Þ

turns the nonlinear equation (3.33) into the following linear one

F 0ðrÞ þ 2n

r
FðrÞ ¼ l

r
;

which is equivalent to

ðr2nFÞ0 ¼ lr2n�1:

We note that

jr2nFðrÞja r2n�1; for 0 < ra
R2

4
;
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therefore we conclude that limr!0 r2nFðrÞ ¼ 0. We can thus easily integrate the above
ode, obtaining F ðrÞ1 l=2n. Setting s ¼ r2=4 in the latter identity one obtains from
(3.34)

u 0ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðu 0ðsÞÞ2

q ¼ l

n

ffiffi
s

p
¼ 2l

Q � 2

ffiffi
s

p
:ð3:35Þ

Excluding the case of H-minimal surfaces (corresponding to l ¼ 0), equation (3.35)
gives

ðu 0Þ2

1 þ ðu 0Þ2
¼ a2s;ð3:36Þ

with

a ¼ 2l

Q � 2
:ð3:37Þ

This in turn implies

u 0ðsÞ ¼G
ffiffiffiffiffiffiffiffiffiffiffiffiffi

s

b2 � s

r
; where b ¼ 1

a
:ð3:38Þ

At this point, an observation must be made. We cannot choose the sign in (3.38) ar-
bitrarily. In fact, equation (3.35) implies that u 0 does not change sign on the interval
½0;R2=4�, and one has u 0 > 0, or u 0 < 0, according to whether a > 0 or a < 0. On the
other hand, if the ‘þ’ branch of the square root were chosen in (3.38), then u would
be increasing and, since ub 0 on ð0;R2=4Þ, it would be thus impossible to fulfill the
boundary condition uðR2=4Þ ¼ 0.

These considerations show that it must be u 0 < 0 on ð0;R2=4Þ. We then have to
take a < 0 (hence b < 0 as well), and therefore l < 0. Equation (3.38) thus becomes

u 0ðsÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

s

b2 � s

r
; 0a s <

R2

4
:ð3:39Þ

We stress that, thanks to the assumption (3.29), and to (3.37), we have that if

0a s <
R2

4
¼ ðQ � 2Þ2

4l2
¼ 1

a2
¼ b2;

then the function u 0 given by (3.39) is smooth on the interval ½0;R2=4Þ, and satisfies

lim
s!ðR2=4Þ�

u 0ðsÞ ¼ �y:
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Integrating (3.39) by standard calculus techniques we find for s A ½0;R2=4�

ð3:40Þ uðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðb2 � sÞ

q
� b2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s

b2 � s

r !
þ C

¼ C þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðb2 � sÞ

q
þ b2 sin�1

ffiffi
s

p

b

� �
:

Recalling that a ¼ b�1, and the equation (3.37), if we impose the condition
uðR2=4Þ ¼ 0, we obtain the solution

uðsÞ ¼ CR;l þ
ffiffi
s

p

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ � 2Þ2 � 4l2s

q
þ ðQ � 2Þ2

4l2
sin�1 2l

ffiffi
s

p

Q � 2

� �
;ð3:41Þ

where CR;l is given by (3.31). Setting uR;lðzÞ ¼ uðjzj2=4Þ, we finally obtain (3.30)
from (3.41). We are finally left with proving that such a uR;l belongs to the class D.
The membership uR;l A D is equivalent to proving that the function s ! uðs2=4Þ is of
class C 1 in the open interval ð�R;RÞ, and that furthermore ‘uR;l A C0;1ðWÞ. For the
first part, from (3.41) it is clear that we only need to check the continuity of u 0 at
s ¼ 0. Since the function is even this amounts to proving that u 0ðsÞ ! 0 as s ! 0. But
this is obvious in view of (3.39). Finally, we have

j‘uR;lðzÞ � ‘uR;lð0Þj ¼ u 0 jzj2

4

 !�����
�����aCjzj;

which shows that ‘uR;l A C
0;1
loc ðWÞ. r

In the next Proposition 3.15 we complete the analysis of the regularity of the func-
tions uR;l. It su‰ces to consider the upper half of the ‘‘normalized’’ candidate iso-
perimetric profile Eo HHn, where qEo is the graph of the function t ¼ uoðzÞ, with
uo ¼ u1;l and l ¼ �ðQ � 2Þ. The characteristic locus of Eo is given by the two points
in Hn

S ¼ 0; 0;G
p

8

� �� 	
:

Unlike its Euclidean counterpart, the hypersurface surface qEo is not Cy at the
characteristic points 0; 0;Gp

8

� �
.

Proposition 3.15. The hypersurface So ¼ qEo HHn is C2, but not C3, near its char-

acteristic locus S. However, So is Cy (in fact, real-analytic) away from S.

Proof. First, we show that near the characteristic points 0; 0;Gp
8

� �
the function uoðzÞ

given by (1.5) is only of class C2, but not of class C3. To see this we let
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u1ðsÞ ¼
p

8
þ s

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p
� 1

4
sin�1ðsÞ; 0a sa 1;

and note that uoðzÞ ¼ u1ðjzjÞ for 0a jzja 1. Therefore, the regularity of uo at jzj ¼ 0
is equivalent to verifying up to what order of derivatives n one has

lim
s!0þ

u
ðnÞ
þ ðsÞ ¼ lim

s!0�
uðnÞ
� ðsÞ

where uþðsÞ ¼ u1ðsÞ and u�ðsÞ ¼ u1ð�sÞ. It is easy to compute

�u 0
�ðsÞ ¼ u 0

þðsÞ ¼ � 1

2

s2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ; �u 00
�ðsÞ ¼ u 00

þðsÞ ¼ � 1

2

sðs2 � 2Þ
ðs2 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p ;

�uð3Þ
� ðsÞ ¼ u

ð3Þ
þ ðsÞ ¼ � 1

2

2 þ s2

ðs2 � 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

p :

We clearly have

lim
s!0�

uðnÞ
� ¼ lim

s!0þ
u
ðnÞ
þ for n ¼ 0; 1; 2 whereas lim

s!0�
uð3Þ
� ¼ 1 and lim

s!0þ
u
ð3Þ
þ ¼ �1:

This shows the function t ¼ uoðzÞ is only C 2, but not C3, near z ¼ 0. Next, we in-
vestigate the regularity of qEo near jzj ¼ 1, that is, at the points where the upper and
lower branches that form qEo meet. To this end, we observe that qEo can also be
generated by rotating around the t-axis the curve in the ðx1; tÞ-plane whose trace is

fðx1; tÞ j t2 ¼ u1ðx1Þ2; 0a x1 a 1g:

It su‰ces to show that this curve is smooth (Cy) across the x1 axis. To this end we
compute the derivatives of u1. It is easy to see by induction that for nb 3

u
ðnÞ
1 ðx1Þ ¼ ð�1Þn

Cn

Pn�1ðx1Þ

ðx2
1 � 1Þn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

1

q ;ð3:42Þ

where Cn > 0 is a constant depending only on n, and Pn�1ðx1Þ is a polynomial in x1

of degree n � 2. The n-th derivatives of the function �u1ðx1Þ clearly takes the same
form, but with a negative sign. Letting s ! 1� in (3.42) we see that

d n

dxn
1

u1;
d n

dxn
1

ð�u1Þ !Gy; ðdepending on whether n is odd or evenÞ:

This implies that the curve with equation t2 ¼ u1ðx1Þ2 is smooth across the x1-axis.
r
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From Theorem 3.14 and Proposition 3.15, we immediately obtain the following in-
teresting consequence.

Theorem 3.16. Let V > 0 be given, and define R ¼ RðVÞ > 0 by the formula

R ¼
ðQ � 2ÞG Qþ2

2

� �
G

Q�1

2

� �
pðQ�1Þ=2G

Qþ1
2

� �
0
B@

1
CA

1=Q

V 1=Q:ð3:43Þ

With such choice of R, let W ¼ Bð0;RÞ ¼ fz A R2n j jzj < Rg. If we take

l ¼ �Q � 2

R
;ð3:44Þ

then the equation (3.28), with the Dirichlet condition u ¼ 0 on qW, admits the spheri-

cally symmetric solution uR A DXC2ðWÞ, where

uRðzÞ ¼
pR2

8
þ jzj

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � jzj2

q
� R2

4
sin�1 jzj

R

� �
:ð3:45Þ

Furthermore, such uR satisfies the conditionð
W

uRðzÞ dz ¼ V

2
:ð3:46Þ

Proof. The first part of the theorem, up to formula (3.45), is a direct consequence of
Theorem 3.14. We only need to prove (3.46). In this respect, keeping in mind the
definition (3.43), it will su‰ce to prove that

ð
W

uRðzÞ dz ¼
pðQ�1Þ=2G

Qþ1

2

� �
2ðQ � 2ÞG Qþ2

2

� �
G

Q�1
2

� �RQ:ð3:47Þ

To establish (3.47) we note explicitly that uRðzÞ ¼ uðjzj2=4Þ, where

uðsÞ ¼ pR2

8
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðR2 � 4sÞ

q
� R2

4
sin�1 2

ffiffi
s

p

R

� �
:ð3:48Þ

One has thereforeð
W

uRðzÞ dz ¼
ð
jzj<R

uðjzj2=4Þ dz ¼ s2n�1

ðR

0

uðr2=4Þr2n dr

r

¼ 22n�1s2n�1

ðR2=4

0

uðsÞsðQ�4Þ=2 ds:
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Integrating by parts the last integral, and using the fact that uðR2=4Þ ¼ 0, that u is
smooth at 0, and (3.39) (in which now b2 ¼ R2

4 ), we obtain

ð3:49Þ
ð
W

uRðzÞ dz ¼ 22ns2n�1

Q � 2

ðR2=4

0

sðQ�1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffi
R2

4 � s

q ds

¼ 22nþ1s2n�1

Q � 2

ðR2=4

0

sðQ�2Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

R2 � 4s

r
ds:

With the substitution

t2 ¼ R2 � 4s

s
; ds ¼ �2R2t

ð4 þ t2Þ2
dt;

the integral (3.49) becomes

ð
W

uRðzÞ dz ¼ 2Qs2n�1RQ

Q � 2

ðy
0

1

ð4 þ t2ÞðQþ2Þ=2
dt

¼ s2n�1RQ

4ðQ � 2Þ

ð
R

1

ð1 þ t2ÞðQþ2Þ=2
dt:

Now we use the formula

ð
R

dt

ð1 þ t2Þa ¼ p1=2 G a � 1
2

� �
GðaÞ ;

valid for any a > 1=2. We thus obtain

ð
W

uRðzÞ dz ¼
s2n�1p

1=2G
Qþ1

2

� �
4ðQ � 2ÞG Qþ2

2

� �RQ

where s2n�1 is the measure of the unit sphere Sn�1 in R2n. Finally, using in the latter
equality the fact that

s2n�1 ¼ 2pn

GðnÞ ¼
2pðQ�2Þ=2

G
Q�2

2

� � ;

we obtain (3.47). r

With the problem (3.24) in mind, it is convenient to rephrase part of the conclusion of
Theorem 3.16 in the following way.
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Corollary 3.17. Let V > 0 be given, and for any R > 0 consider the function uR defined

by (3.45). There exists R ¼ RðVÞ > 0 (the choice of R is determined by (3.43)) such

that with W ¼ Bð0;RÞ one has with uo ¼ uR

G½uo� ¼
ð
W

uoðzÞ dz ¼ V

2
:

Although the following lemma will not be used until we come to the proof of Theo-
rem 1.4, it is nonetheless appropriate to present it at this moment, since it comple-
ments Corollary 3.17.

Lemma 3.18. Let uoðzÞ be given by (3.45), and W ¼ suppðuoÞ ¼ Bð0;RÞ, then

F½uo� ¼
ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j‘zuoj2 þ

jzj2

4
þ h‘zuo; z?i

s
dz ¼

pðQ�1Þ=2G
Q�1

2

� �
2G

Q

2

� �
G

Q�1
2

� � RQ�1:ð3:50Þ

Proof. We recall that uoðzÞ ¼ uðjzj2=4Þ where u is given by (3.48). One has

‘zuoðzÞ ¼
1

2
u 0ðjzj2=4Þz;

and therefore

j‘zuoðzÞj2 þ
jzj2

4
þ h‘zuoðzÞ; z?i ¼ jzj2

4
1 þ u 0 jzj2

4

 !2
0
@

1
A:

We thus obtain

ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j‘zuoj2 þ

jzj2

4
þ h‘zuo; z?i

s
dz ¼ 1

2

ð
jzj<R

jzj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u 0ðjzj2=4Þ2

q
dz

¼ s2n�1

2

ðR

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u 0ðr2=4Þ2

q
r2nþ1 dr

r
¼ 22n�1s2n�1

ðR2=4

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u 0ðsÞ2

q
sðQ�3Þ=2 ds:

Formula (3.39), in which b ¼ �R=2, gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u 0ðsÞ2

q
¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � 4s
p :

Inserting this equation in the above integral we obtain

ð
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j‘zuoj2 þ

jzj2

4
þ h‘zuo; z?i

s
dz ¼ 22n�1s2n�1R

ðR2=4

0

sðQ�4Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

R2 � 4s

r
ds:
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We notice that the last integral above is similar to the one in (3.49). Proceeding as in
the last part of the proof of Theorem 3.16, we finally reach the conclusion. r

At this point, recalling that (3.28) represents the Euler-Lagrange equation of the un-
constrained functional (3.27), and keeping (3.26) in mind, if we combine Theorem
3.16 with Corollary 3.17, and take Remark 3.12 into account, we obtain the follow-
ing result.

Theorem 3.19. Let F and G be the functionals

F½u� ¼
ð

suppðuÞ
f ðz;‘zuðzÞÞ dz; G½u� ¼

ð
suppðuÞ

gðuÞ dz;

where f and g are defined in (3.26). Given V > 0, there exists R ¼ RðVÞ > 0 (see

(3.43)) such that the function uo ¼ uR in (3.45) is a critical point in D of the functional

F½u� subject to the constraint G½u� ¼ V
2 . This follows from the fact that uo is a critical

point in D of the unconstrained functional F½u� in (3.27).

Our next objective is to prove that the function uo in (3.45) is: 1) A global minimizer
of the variational problem (3.24); 2) The unique global minimizer. We will need some
basic facts from Calculus of Variations, which we now recall.

Definition 3.20. Let V be a normed vector space, and DHV. Given a functional
F : D ! R, u A D, and if f is D-admissible at u, one calls

dFðu; fÞ ¼def
lim
e!0

F½u þ ef� �F½u�
e

the Gâteaux derivative of F at u in the direction f if the limit exists.

Definition 3.21. Let V be a normed vector space, and DHV. Consider a functional
F : D ! R. F is said to be convex over D if for every u A D, and every f A V such
that f is D-admissible at u, and u þ f A D, one has

F½u þ f� �F½u�b dFðu; fÞ;

whenever the right-hand side is defined. We say that F is strictly convex if strict in-
equality holds in the above inequality except when f1 0.

We have the following

Theorem 3.22. Suppose F is convex and proper over a non-empty convex subset

D� HV (i.e., FDy over D�), and suppose that uo A D� is such that dFðuo; fÞ ¼ 0
for all f which are D�-admissible at uo (that is, uo is a critical point of the functional
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F), then F has a global minimum in uo. If moreover F is strictly convex at uo, then uo

is the unique element in D� satisfying

F½uo� ¼ inffF½v� j v A D�g:

Proof. Let u A D�, and u0 uo, then the convexity of D� implies that f ¼ u � uo is
D�-admissible at uo. From Definition 3.21 we immediately infer that

F½u� �F½uo� ¼ F½uo þ f� �F½uo�b dFðuo; fÞ ¼ 0:

This shows that F has a local minimum in uo. When F is strictly convex at uo

we obtain F½uo þ f� > F½uo�, for every f A V such that f is D�-admissible at uo.
If uo A D� is another global minimizer of F, then taking f ¼ uo � uo, we see that
F½uo� > F½uo�. Reversing the roles of uo and uo we find F½uo� ¼ F½uo�. From the
strict convexity of F at uo we conclude that it must be uo ¼ uo. r

Our next goal is to adapt the above results to the problem (3.24). Given V > 0 we
consider the number R ¼ RðVÞ > 0 defined in (3.43), and consider the fixed ball
Bð0;RÞ. We consider the normed vector space VðRÞ ¼ fu A CðBð0;RÞÞ j u ¼ 0 on
qBð0;RÞg. Let

ð3:51Þ DðRÞ ¼ fu A VðRÞ j ub 0; u A C2ðBð0;RÞÞXW 1;1ðBð0;RÞÞ;

Bð0;RÞ ¼
T
fBð0;R þ rÞ j suppðuÞHBð0;R þ rÞgg:

We notice that DðRÞ is a non-empty convex subset of VðRÞ, and that for every
u A DðRÞ one has u ¼ 0 on qBð0;RÞ. Let h ¼ hðz; u; pÞ be the function in (3.26) and
consider the functional (3.27). Given u A DðRÞ and f which is DðRÞ-admissible at u,
in view of Theorem 3.9, we see that F is Gâteaux di¤erentiable at u in the direction
of f, and

ð3:52Þ dFðu; fÞ ¼
ð

Bð0;RÞ
fhuðz; uðzÞ;‘uðzÞÞfðzÞ þ h‘phðz; uðzÞ;‘uðzÞÞ;‘fðzÞig dz

¼
ð

Bð0;RÞ

h‘zu þ z?=2;‘zfi

j‘zu þ z?=2j þ lf

� 	
dz;

where in the above h� ; �i denotes the standard inner product on R2n. One has the
following well-known su‰cient condition for the convexity (strict convexity) of F.

Proposition 3.23. If for a:e: z A Bð0;RÞ, for all u A DðRÞ and p ¼ ‘u, the function h

in the definition of F satisfies for every f which is DðRÞ-admissible at u, and every

q ¼ ‘f,
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hðz; u þ v; p þ fÞ � hðz; u; pÞb huðz; u; pÞfþ h‘phðz; u; pÞ; qið3:53Þ

then F is convex on DðRÞ. If, instead, the strict inequality holds unless v ¼ 0 and

q ¼ 0, then F is strictly convex.

Proof. Let u A DðRÞ, and let f be DðRÞ-admissible at u. Using (3.52), we obtain

F½u þ f� �F½u�

¼
ð

Bð0;RÞ
fhðz; uðzÞ þ fðzÞ;‘uðzÞ þ ‘fðzÞÞ � hðz; uðzÞ;‘uðzÞÞg dz

b

ð
Bð0;RÞ

fhuðz; uðzÞ;‘uðzÞÞfðzÞ þ h‘phðz; uðzÞ;‘uðzÞÞ;‘fðzÞig dz

¼ dFðu; fÞ:

Appealing to Definition 3.21 the conclusion follows. r

Our next goal is to prove that the unconstrained functional F in (3.27) is convex on
the convex set DðRÞ. Since each one of them has an independent interest, we will
provide two di¤erent proofs of this fact. The former is based on the following linear
algebra lemma, which is probably well known, and whose proof we have provided
for the reader’s convenience.

Lemma 3.24. Let A ¼ ½Aij � be an m � m matrix with entries given by

Aij ¼ dij �
aiaj

D
where D ¼

Pm
i¼1

a2
i 0 0;

then A has l ¼ 0 as an eigenvalue of multiplicity one, and l ¼ 1 as an eigenvalue of

multiplicity m � 1.

Proof. First, consider the matrix I� A, which takes the form

1

D

a1a1 a1a2 a1a3 � � � a1am

a2a1 a2a2 a2a3 � � � a2am

..

.
� � � ..

. . .
. ..

.

ama1 ama2 ama3 � � � amam

0
BBBB@

1
CCCCA:

It is easy to see that an equivalent row-echelon form of the matrix has the last m � 1
rows containing all zeros, thus I� A is a matrix of rank one. From the rank-nullity
theorem we conclude that l ¼ 1 is an eigenvalue of A of multiplicity m � 1. We are
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thus left with showing the l ¼ 0 is a simple eigenvalue. For this we show that
detðAÞ ¼ 0. Observe that detðAÞ ¼ D�m detðBÞ, where

B ¼

D � a2
1 �a1a2 �a1a3 � � � �a1am

�a1a2 D � a2
2 �a2a3 � � � �a2am

..

.
� � � ..

. . .
. ..

.

�ama1 �ama2 �ama3 � � � D � a2
m

0
BBBB@

1
CCCCA:

To continue the computation of detðBÞ, we replace rows Rj by a1Rj � ajR1 for j ¼
2; . . . ;m and observe that a1Rj � ajR1 takes the form

a1Rj � ajR1 ¼ ½�ajD 0 � � � 0 a1D 0 � � � 0�:

We then have

detðBÞ ¼ detðCÞ;

where

C ¼

D � a2
1 �a1a2 � � � � � � � � � �a1am

�a2D a1D 0 � � � � � � 0

�a3D 0 a1D 0 � � � 0

..

.
� � � � � � � � � . .

. ..
.

�amD 0 0 0 � � � a1D

0
BBBBBB@

1
CCCCCCA:

To compute detðCÞ we take advantage of the special structure of the matrix, and
consider

CCT ¼ D2

�a1 �a2 �a3 � � � �am

�a2 a2
2 a2a3 � � � a2am

..

.
� � � � � � . .

. ..
.

�am ama2 ama3 � � � a2
m

0
BBBB@

1
CCCCA:

We note that if either a2 ¼ 0 or a3 ¼ 0, then the matrix CCT has a column of zeros,
and therefore its determinant vanishes. Suppose then that a2; a3 0 0. Replacing rows
R2 and R3 by R2 þ a2R1 and R3 þ a3R1 respectively, we see that the new rows two
and three have first entries given by �a2 � a1a2 and �a3 � a1a2, whereas all the re-
maining entries vanish. Either one of these rows is already a zero row or else, using
one to eliminate the other, we obtain a row of zeros, and therefore we conclude that
detðCCTÞ ¼ 0. Hence, detðAÞ ¼ D�m detðBÞ ¼ D�m detðCÞ ¼ 0. This completes the
proof of the lemma. r
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Proposition 3.25. Given V > 0, let R ¼ RðVÞ > 0 be as in (3.43). The functional F in

(3.27) is convex on DðRÞ. As a consequence, the function uR in (3.45) is a global mini-

mizer of F on DðRÞ.

Proof. Considering the integrand hðz; u; pÞ ¼ p þ z?

2

�� ��þ lu in the functional F in
(3.27), we have

hpi
¼ pi þ

z?i
2

� �.
p þ z?

2

��� ���;
hpipj

¼ 1

pþz?
2

�� �� dij �
piþ

z?
i

2

� �
pjþ

z?
j

2

� �
pþz?

2

�� ��2

8><
>:

9>=
>;;

hu;pi
¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

where in the above we have let

z?i ¼ yi if 1a i a n

�xi if n þ 1a i a 2n

�
ð3:54Þ

The hessian of h with respect to the variable ðu; pÞ A R�R2n now takes the form

‘2hðu; pÞ ¼

0 0 � � � 0

0

..

.
A

0

0
BBBB@

1
CCCCA

where, aside from the multiplicative factor 1=jp þ z?=2j, the block A takes the form
of the matrix A in Lemma 3.24. We thus conclude that the eigenvalues of ‘2hðu; pÞ
are l ¼ 0 (of multiplicity two) and l ¼ 1=jp þ z?=2j of multiplicity 2n � 1. Thus,
from Theorem 3.9, for a.e. z A Bð0;RÞ, the function ðu; pÞ ! hðz; u; pÞ is convex. This
in turn implies that F is convex on DðRÞ. From Theorems 3.19 and 3.22 we conclude
that uR is a global minimizer of F on DðRÞ. r

We next prove a slightly stronger result than Proposition 3.25, namely the convexity
of the function in R2n which defines the integrand in F in (3.27). The proof of this
result is based on the following lemma.

Lemma 3.26. Let a A R2n be fixed, with a0 0, then one has

f ðqÞ ¼def jaj jqj2 � ðjq þ aj � jajÞhq; aib 0; for every q A R2n:

Proof. We observe that f ð0Þ ¼ f ð�aÞ ¼ 0, and that f A CyðR2nnf�agÞ. We want to
analyze the possible critical points in R2nnf�ag of the function f . It is easier to re-
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duce the problem by introducing spherical coordinates. Let a ¼ r0o0, with o0 A S2n�1

and r0 > 0, we can consider a system of spherical coordinates in which the ‘‘north
pole’’ coincides with o0 and the colatitude angle y denotes the angle formed by the
vector q A R2nnf�ag with o0. In such a system we let q ¼ ro, with o A S2n�1, and
r ¼ jqj, so that cos y ¼ ho;o0i. We observe that the function f is constant on every
2n � 2 dimensional sub-sphere sin y ¼ const of the unit sphere S2n�1 HR2n, and we
want to exploit these symmetries of f . For z A R2n we let r ¼ rðzÞ ¼ jzj, and y ¼
yðzÞ ¼ cos�1ðhz=r;o0iÞ. Writing f ðzÞ ¼ f ðrðzÞ; yðzÞÞ, we are thus led to consider

f ðr; yÞ ¼ f ðqÞ ¼ r0r2 � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 þ r2 þ 2r0r cos y
q

� r0Þr0r cos y:

If we now set t ¼ r=r0, then we can consider the function

gðt; yÞ ¼ 1

r3
0

f ðr0t; yÞ ¼ t2 � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2 þ 2t cos y

p
� 1Þt cos y;

for ðt; yÞ A Q ¼ ½0;yÞ � ½0; p�, with ðt; yÞ0 ð1; pÞ. When t ¼ 0, then q ¼ 0 and we
have already observed that f ð0Þ ¼ 0. When y ¼ 0, then q ¼ ra for some rb 0, one
readily recognizes that f ðraÞ ¼ 0. Finally, when tb 0 and y ¼ p we have gðt; pÞ ¼ 0
if 0a ta 1, and gðt; pÞ > 0 for t > 1. In conclusion, we have f ðqÞ ¼ 0 for q ¼ ra for
some rb�1, whereas we have f ðqÞ > 0 for q ¼ ra with r < �1. We now consider
the possible critical points of f . Using the chain rule we see that

‘f ¼ fr

r
z � fy

r sin y
o0 �

cos y

r
z

� �
:

Since z;o0 � cos y
r

z
� 


¼ 0, we find

j‘f j2 ¼ f 2
r þ f 2

y

r2 sin2 y
o0 �

cos y

r
z

����
����2 ¼ f 2

r þ 1

r2
f 2
y ;

which allows us to conclude that ‘f vanishes outside of the set of points q ¼ ra with
rb�1, if and only if fr ¼ fy ¼ 0 at interior points of Q. This is equivalent to
studying the interior critical points of the function gðt; yÞ in Q. One has

ð3:55Þ ‘gðt; yÞ ¼
�

2t � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2 þ 2t cos y

p
� 1Þ cos y� ðt þ cos yÞt cos yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ t2 þ 2t cos y
p ;

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2 þ 2t cos y

p
� 1Þt sin yþ t2 sin y cos yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ t2 þ 2t cos y
p

�

¼ ðgt; gyÞ:

Since now 0 < y < p it is clear that gy ¼ 0 if and only if
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ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2 þ 2t cos y

p
� 1Þ ¼ � t cos y

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2 þ 2t cos y

p :ð3:56Þ

On the other hand, we see that gt ¼ 0 at points where (3.56) holds if and only if

gt ¼ 2t � t2 cos yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2 þ 2t cos y

p ¼ 0;

which is equivalent to

2 ¼ t cos yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2 þ 2t cos y

p :ð3:57Þ

It is clear that if p=2 < y < p, then (3.57) has no solutions. Suppose then that
0 < y < p=2. In this range, equation (3.57) is equivalent to

4 ¼ t2 cos2 y

1 þ t2 þ 2t cos y
;

which is in turn equivalent to

ð4 � cos2 yÞt2 þ 8t cos yþ 4 ¼ 0:

An easy verification which we leave to the reader shows that the latter equation has
no solutions t > 0 in the range 0 < y < p=2. In conclusion, the function gðt; yÞ, and
therefore has no interior critical points. Therefore, gðt; yÞb 0 for every ðt; yÞ A Q.
This allows to conclude that f ðqÞb 0 for all q A R2n, thus completing the proof of
the lemma. r

At this point we observe that Lemma 3.26 provides an alternative proof of Proposi-
tion 3.25. It su‰ces in fact to consider for every u A DðRÞ and every f which is DðRÞ-
admissible at u, the vectors aðzÞ ¼ ‘uðzÞ þ z?=2, qðzÞ ¼ ‘fðzÞ. Let F be given by
(3.27) and recall (3.52). One has,

ð3:58Þ F½u þ f� �F½u�

¼
ð

Bð0;RÞ
fj‘zu þ z?=2 þ ‘zfj � j‘zu þ z?=2j þ lfg dz

¼
ð

Bð0;RÞ

2h‘zf;‘zu þ z?=2iþ j‘zfj2

j‘zu þ z?=2j þ j‘zu þ z?=2 þ ‘zfj
þ lf

( )
dz:

From Theorem 3.9 we know that there exists Z HW, with jWnZj ¼ 0, such that
jaðzÞj0 0 for every z A Z. We intend to show that for every z A Z we have

The isoperimetric problem for the Heisenberg group 135



2hq; aiþ jqj2

jaj þ jaþ qj b
hq; ai

jaj :ð3:59Þ

This would imply

2h‘zf;‘zu þ z?=2iþ j‘zfj2

j‘zu þ z?=2j þ j‘zu þ z?=2 þ ‘zfj
b

h‘zf;‘zu þ z?=2i

j‘zu þ z?=2j ;ð3:60Þ

which would prove that F is convex. For every z A Z the inequality (3.59) is easily
seen to be equivalent to

ðjq þ aj � jajÞhq; aia jqj2jaj;ð3:61Þ

which is true in view of Lemma 3.26. Finally, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. We fix V > 0 and consider the collection of all sets E A E such
that V ¼ jEj. We want to show that the problem of minimizing PHðE;HnÞ within
this subclass admits a unique solution, and that the latter is given by (3.45), in which
the parameter R ¼ RðVÞ has been chosen as in (3.43). According to condition (i) in
the definition of the class E, we have V=2 ¼ jE XHn

þj. Still from assumption (i), and
in view of Theorem 3.7, it is enough to minimize PHðE;Hn

þÞ. This is an important
point. In fact, Theorem 3.7 states that, if E is an isoperimetric set, i.e., if E minimizes
PHð�;HnÞ under the constraint jEj ¼ V , then

PHðE;Hn
þÞ ¼ PHðE;Hn

�Þ:ð3:62Þ

This implies that the minimizer must be sought for within the class of sets E A E such
that jEj ¼ V , and for which (3.62) holds, which is in turn equivalent to proving ex-
istence and uniqueness of a global minimizer in the class DðRÞ defined by (3.51). The
existence of a global minimizer follows from Proposition 3.25, and such global min-
imizer is provided by the spherically symmetric function uR in (3.45). We are thus left
with proving its uniqueness. The latter will follow if we can prove that for every
DðRÞ-admissible function f at uR the strict inequality

F½uR þ f� > F½uR�

holds, unless f1 0. This will follow from the strict inequality in (3.60) for every
z A Z, with u replaced by the function uR in (3.45), unless f1 0 in Bð0;RÞ. Such strict
inequality is equivalent to proving strict inequality in (3.61) on the set Z, with
qðzÞ ¼ ‘fðzÞ and aðzÞ ¼ ‘uRðzÞ þ z?=2. We emphasize here that, in view of (3.45),
the vector-valued function aðzÞ only vanishes at z ¼ 0. Keeping in mind that uR A
C2ðBð0;RÞÞ, and that, since f is DðRÞ-admissible at uR, we have f A C2ðBð0;RÞÞ,
and f ¼ 0 on qBð0;RÞ, an analysis of the proof of Lemma 3.26, brings to the con-
clusion that the desired strict inequality holds, unless either ‘f1 0, in which case we
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conclude f1 0, or there exists a function r A C1ðBð0;RÞÞ, with rb�1, and such
that for every z A Z

‘fðzÞ ¼ rðzÞ ‘uRðzÞ þ
z?

2

� �
:ð3:63Þ

We remark explicitly that the possibility r1 const in (3.63) is forbidden by the fact
that the vector field z ! ‘uRðzÞ þ z?=2 is not conservative in Bð0;RÞ. Furthermore,
since the functions in both sides of (3.63) are in C1ðBð0;RÞÞ, the validity of the in-
equality for every z A Z is equivalent to its being valid on the whole Bð0;RÞ.

We thus want to show that (3.63) cannot occur. To illustrate the idea, we focus on
the case n ¼ 1 and leave the trivial modifications to the interested reader. We argue
by contradiction and suppose that (3.63) hold. This means

fx ¼ r uR;x þ
y

2

� �
; fy ¼ r uR;y �

x

2

� �
:

Since f A C2ðBð0;RÞÞ, di¤erentiating the first equation with respect to y and the
second with respect to x, and keeping in mind that uR is spherically symmetric (see
(3.45)), from the fact that f A C 2ðBð0;RÞÞ, and therefore fxy ¼ fyx, we infer that we
must have

x

2
� u 0 y

2

� �
rx þ

y

2
þ u 0 x

2

� �
ry þ r ¼ 0;ð3:64Þ

where, we recall, uRðzÞ ¼ uðjzj2=4Þ, see (3.48). We now fix a point z0 A Bð0;RÞnf0g,
and consider the characteristic curve starting at z0 ¼ ðx0; y0Þ, zðsÞ ¼ zðs; z0Þ of the
transport equation (3.64). Letting zðsÞ ¼ ðxðsÞ; yðsÞÞ, we know that such curve sat-
isfies the system

x 0 ¼ x
2
� u 0 y

2
; xð0Þ ¼ x0;

y 0 ¼ y

2
þ u 0 x

2
; yð0Þ ¼ y0:

(
ð3:65Þ

It is clear that s ! rðzðsÞÞ satisfies the Cauchy problem

d

ds
rðzðsÞÞ ¼ �rðzðsÞÞ; rðzð0ÞÞ ¼ rðz0Þ;

and therefore

rðzðsÞÞ ¼ rðzðs; z0ÞÞ ¼ rðz0Þe�s:ð3:66Þ

Multiplying the first equation in (3.65) by x, and the second by y, we find
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d

ds
jzðsÞj2 ¼ jzðsÞj2;

which gives

jzðsÞj2 ¼ jz0j2es:ð3:67Þ

It is clear that �y < sa 2 logðR=jz0jÞ. For every s in this range, we obtain from
(3.63), (3.66), and from (3.39),

‘fðzðsÞÞ ¼ rðz0Þe�s

2
� jzðsÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � jzðsÞj2
q zðsÞ þ zðsÞ?

0
B@

1
CA:

Using (3.67), we finally obtain

j‘fðzðsÞÞj2 ¼ rðz0Þ2
e�2s

4
jz0j2e2s jzðsÞj2

R2 � jzðsÞj2
þ 1

" #
:

Letting s ! �y in the latter equation, we reach the conclusion

j‘fð0Þj2 ¼ rðz0Þ2jz0j2

4
;

which contradicts the continuity of j‘fj at z ¼ 0, unless r1 0. But this would con-
tradict our assumptions on r. We conclude that uR given by (3.45) is the unique
minimizer to the variational problem (3.24) in DðRÞ. r

Remark 3.27. We mention that an alternative proof of the uniqueness of the global
minimizer uR in Theorem 1.1 could be obtained by the interesting comparison The-
orem C 0 on p. 163 in [CHMY].

Proposition 3.28. Suppose E A E is a critical point of the H-perimeter subject to the

constraint jEj ¼ const, then S ¼ qE has constant H-mean curvature. In particular, the

isoperimetric set Eo found in Theorem 1.1 is a set of constant positive H-mean curva-

ture H ¼ Q�2
R

.

Proof. Let E A E be given and let u be the function describing qE in Hn
þ. To prove

that qE has constant H-mean curvature we could appeal to Remark 3.13. Instead, we
proceed directly as follows. We recall that uðzÞ ¼ uðjzj2=4Þ for some C2 function u,
and the assumptions that E is a critical point of the H-perimeter means that u sat-
isfies (3.33). From the discussion in the proof of Theorem 3.14, the left hand side of
(3.33) (that is the Euler-Lagrange equation) becomes

rF 0ðrÞ þ ðQ � 2ÞFðrÞ
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where FðrÞ is given by (3.34). A simple computation gives

F 0ðrÞ ¼ r2u 00ðr2=4Þ � 2u 0ðr2=4Þð1 þ u 0ðr2=4Þ2Þ
2r2ð1 þ u 0ðr2=4Þ2Þ3=2

;

and therefore we have

rF 0ðrÞ þ ðQ � 2ÞFðrÞ ¼ 2ðQ � 3Þu 0ðr2=4Þð1 þ u 0ðr2=4Þ2Þ þ r2u 00ðr2=4Þ
2rð1 þ u 0ðr2=4Þ2Þ3=2

:ð3:68Þ

Rewriting the Euler-Lagrange equation (3.33) for such functions u (or u) we have

2ðQ � 3Þu 0ðr2=4Þð1 þ u 0ðr2=4Þ2Þ þ r2u 00ðr2=4Þ
2rð1 þ u 0ðr2=4Þ2Þ3=2

¼ lð3:69Þ

where l is of course a constant. We make a change of notation by letting s ¼ r2=4 in
(3.69), we found

ðQ � 3Þu 0ðsÞð1 þ u 0ðsÞ2Þ þ 2su 00ðsÞ
2
ffiffi
s

p
ð1 þ u 0ðsÞ2Þ3=2

¼ l:ð3:70Þ

Comparing (3.70) with (3.14), we infer that the H-mean curvature of such surfaces is

H ¼ �ðQ � 3Þu 0ðsÞð1 þ u 0ðsÞ2Þ þ 2su 00ðsÞ
2
ffiffi
s

p
ð1 þ u 0ðsÞ2Þ3=2

¼ �l:

If the set Eo is described by uRðzÞ, where uRðzÞ is given by (3.45), then from (3.44) in
Theorem 3.16 we conclude that the H-mean curvature of Eo is given by

H ¼ Q � 2

R
: r

This completes proof of Theorem 1.1.

Proof of Theorem 1.4. We have already established the restricted isoperimetric in-
equality. Furthermore, the invariance of the isoperimetric quotient with respect to the
group translations and dilations is a consequence of Propositions 2.11 and 2.12. We
are left with the computation of the constant CQ. To this end, we use the set ER de-
scribed by uo. We note that the integrals (3.47) and (3.50) give jERj=2 and PHðE;Hn

þÞ
respectively, and therefore after some elementary simplifications we obtain

CQ ¼ jERjðQ�1Þ=Q

PHðER;HnÞ ¼
ðQ � 1ÞG Q

2

� �2=Q

QðQ�1Þ=QðQ � 2ÞG Qþ1

2

� �1=Q

pðQ�1Þ=2Q

:

This completes the proof. r
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[Ca] Carathéodory C.: Untersuchungen über die Grundlagen der Thermodynamik.
Math. Ann. 67 (1909), 355–386

[CH] Cheng J. H. & Hwang J. F.: Properly embedded and immersed minimal surfaces in
the Heisenberg group. Bull. Austral. Math. Soc. 70 (2004), 507–520

[CHMY] Cheng J. H., Hwang J. F., Malchiodi A. & Yang P.: Minimal surfaces in pseudo-
hermitian geometry and the Bernstein problem in the Heisenberg group, revised
version 2004. Ann. Sc. Norm. Sup. Pisa 1 (2005), 129–177
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