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A partial solution of the isoperimetric problem for the
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Abstract. We provide a solution to the isoperimetric problem in the Heisenberg group H”
when the competing sets belong to a restricted class of C? graphs. Within this restricted class
we characterize the isoperimetric profiles as the bubble sets (1.5) (modulo nonisotropic dila-
tions and left-translations). We also compute the isoperimetric constant.
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1 Introduction

The classical isoperimetric problem states that among all measurable sets with as-
signed volume the ball minimizes the perimeter. This is the content of the celebrated
isoperimetric inequality, see [DG3],

(L) |E"" < G, P(E),

which holds for all measurable sets E = R” with constant C, = ny/z/T(n/2 + 1)"/".
In (1.1), P(E) denotes the perimeter in the sense of De Giorgi, see [DG1], [DG2], i.e.,
the total variation of the indicator function of E. Equality holds in (1.1) if and only if
(up to negligible sets) E = B(x,R) = {y e R"||y — x| < R}, a Euclidean ball. It is
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well known that (1.1) is equivalent to the geometric Sobolev inequality for BV func-
tions, see [FR]. An analogous “isoperimetric inequality” was proved in [GN] in
the general setting of a Carnot-Carathéodory space, and such inequality was used,
among other things, to establish a geometric embedding for horizontal BV functions,
similar to Fleming and Rishel’s one. However, the question of the optimal config-
urations in such isoperimetric inequality was left open.

The aim of this paper is to bring a partial solution to this open problem in the
Heisenberg group H”. We recall that [H” is the simplest and perhaps most impor-
tant prototype of a class of nilpotent Lie groups, called Carnot groups, which play
a fundamental role in analysis and geometry, see [Ca], [Ch], [H], [St], [Be], [Grol],
[Gro2], [El], [E2], [E3], [DGN2]. Its underlying manifold is R**! with non-
commutative group law

1
(1.2) g9’ ' =(x,y,0(x", )y 1") = (x +xy+ e+t + 3 (ENDERES y>)>,

where we have let x,x’, y, ' e R", t,#' e R. If L,(g9’") = gg’ denotes the operator of
left-translation, let (L,), indicate its differential. The Heisenberg algebra admits the
decomposition b, = V; @ V3, where ¥} = R*" x {0}, and V> = {0} x RR. Identifying
b, with the space of left-invariant vector fields on H”, one easily recognizes that a
basis for b, is given by the 2n + 1 vector fields

and that the only non-trivial commutation relation is
(14)  [Xi, Xuyjl =T0; i,j=1,...,n

In (1.3) we have identified the standard basis {ey, ..., e, €1} of R>*! with the
system of (constant) vector fields {0/0x1,...,0/dy,, d/0t}. Because of (1.4) we have
V1, V1] = Va, [V1, Va] = {0}, thus H” is a graded nilpotent Lie group of step r = 2.
Lebesgue measure dg = dz dt is a bi-invariant Haar measure on H”. If we denote
by 8,(z, 1) = (Az, 2°t) the non-isotropic dilations associated with the grading of the
Lie algebra, then d(J,g9) = 22 dg, where Q = 2n + 2 is the homogeneous dimension
of H".

In what follows we denote by Py (E;IH") the intrinsic, or H-perimeter of E < H”
associated with the bracket-generating system X = {Xj,..., X3,}. Such notion will
be recalled in Section 2. To state our theorem we let H} = {(z,7) e H" |7 > 0},
H" = {(z,t) e H"| t < 0}, and consider the collection

& = {E < H"| E satisfies (i)—(iii)},



The isoperimetric problem for the Heisenberg group 101

where
(i) [EnH}|=[EnH"];

(ii) there exist R > 0, and functions u, v : B(0, R) — [0, c0), with u,v € C*(B(0, R)) N
C(B(0,R)), u=v =0 on dB(0, R), and such that

OENnH! = {(z,t) e H} | |z] < R,t = u(z)},
OENH" ={(z,1) e H" | |z| < R,t = —v(2)}.

(iii) {z € B(0, R) |u(z) = 0} n {z € B(0, R) | v(z) = 0} = .

Fig. 1.1. E€ &

We note explicitly that condition (iii) serves to guarantee that every E € & is a piece-
wise C? domain in IH” (with possible discontinuities in the derivatives only on that
part of E which intersects the hyperplane 1 = 0). We also stress that the upper and
lower portions of a set E € & can be described by possibly different C? graphs, and
that, besides C? smoothness, and the fact that their common domain is a ball, no
additional assumption is made on the functions u and v. For instance, we do not re-
quire a priori that # and/or v are spherically symmetric. Here is our main result.

Theorem 1.1. Let V' > 0, and define the number R > 0 by

o 2r()r(2\”
n(wa/zr(QT“) '

R =

Given such R, then the variational problem

min Py (E;H")
Eeé,|E|=V

has a unique solution Eg = 0r(E,) € &, where 0E, is described by the graph t = tu,(z),
with

2 C. A Y PRRTRE R e
(1.5) uo(z)—{8+4 1 —|z] 7 Sin (|z|)}, lz| < 1.
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The sign + depends on whether one considers 0E, "'}, or 0E, "nH". Finally, the

boundary 0ER = 6g(0E,) of the bounded open set Eg is only of class C?, but not of
class C3, near its two characteristic points (0, i"TRZ), it is C* away from them, and

Sgr = OER has positive constant H-mean curvature given by

0-2
===
R
Remark 1.2. We notice explicitly that the function u, in (1.5) can also be expressed as
follows

(7,
Uy(2) :—J sin” 7 dr.
2 Jsin~1el)

Remark 1.3. We emphasize that, as the reader will recognize, for our proof of the
existence of a global minimizer it suffices to assume that the two functions u and v
in the definition of the sets of the class & are Cllo’c1 (B(0,R)). It is an open question
whether u,v e C'(B(0, R)) is enough. This is possible thanks to a sharp result of Ba-
logh concerning the size of the characteristic set, see Theorem 3.9 below. In our proof
of the uniqueness of the global minimizer, instead, it is convenient to work under the
hypothesis of C? smoothness. However, with little extra care, it should be possible to
relax it to CIL’CI.

For the notion of H-mean curvature of a C? hypersurface .¥ = H" we refer the
reader to Definition 3.2 in Section 3. This notion of horizontal mean curvature,
which is of course central to the present study, was introduced in [DGN4]. Its geo-
metric interpretation is that, in the neighborhood of a non-characteristic point g € &,
it coincides with the standard Riemannian mean curvature of the 2n — 1-dimensional
submersed manifold obtained by intersecting the hypersurface .% with the fiber of the
horizontal subbundle H,IH", see also [DGN3| where a related notion of Gaussian
curvature was introduced. A seemingly different notion, based on the Riemannian
regularization of the sub-Riemannian metric of H”, was proposed in [Pa], but the
two are in fact equivalent, see [DGN4]. From Theorem 1.1 we obtain the following
isoperimetric inequality for the horizontal perimeter.

Theorem 1.4. Let & be as above, and denote by & the class of sets of the type 0,L4(E),
for some E € &, 4> 0 and g € H", then the following isoperimetric inequality holds

(1.6) |E|'9VC < CoPy(E;H"), Eeé,

where
2/0

(e-1r(9)
0(0-1/2(Q — 2)r(%)l/Qn<Q—1)/zQ ’

Co =
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with equality if and only if for some 1 > 0 and g € H" one has E = L,0,(E,), where E,
is given by (1.5).

Fig. 1.1 gives a representation of the isoperimetric set E, in Theorem 1.1 in the spe-
cial case n = 1. We note that the invariance of the isoperimetric quotient with respect
to the group left-translations L, and dilations J, is guaranteed by Propositions 2.11
and 2.12.

’-'-
W s \\v
/I,l’ /-‘-‘-‘\‘§\

Fig. 1.2. Isoperimetric set in H' with R = 1

A remarkable property of the isoperimetric sets is that, similarly to their Riemannian
predecessors, they have constant H-mean curvature. It is tempting, and also natural,
to conjecture that the set £, described by (1.5), along with its left-translated and di-
lated, exaust a/l the isoperimetric sets in H” (for the definition of such sets, see Defi-
nition 1.6 below). By this we mean that Theorem 1.4 continues to be valid when one
replaces the class & with that of all measurable sets E = H” with locally finite H-
perimeter. At the moment, this remains a challenging open problem. In this con-
nection, another interesting conjecture is as follows: Let . = H" be a C?, compact
oriented hypersurface. Suppose that for some o > 0

(1.7) H#=a on.

Is it true that, up to a left translation, if we denote by " = ¥ "nH'}, ¥~ =9 nH",
then & *, S~ are respectively described by

| R? R?
(1.8) =+ |z| R2 — |z|* == tan! B i

=R,
4 R — |2 8

where R = (Q — 2)/a? Concerning this conjecture we remark that Theorem 1.1 pro-
vides evidence in favor of it. As it is well known, the Euclidean counterpart of it is
contained in the celebrated soap bubble theorem of A. D. Alexandrov [A]. We men-
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tion that, after this paper was completed, we have received an interesting preprint
from Ritoré and Rosales [RR2] in which, among other results, the authors prove the
above soap bubble conjecture in the first Heisenberg group IH'.

To put the above results in a broader perspective we recall that in any Carnot
group a general scale invariant isoperimetric inequality is available. In fact, using the
results in [CDG], [GN] one can prove the following theorem, see Theorem 2.9 in
Section 2.

Theorem 1.5. Let G be a Carnot group with homogeneous dimension Q. There exists a
constant Ciso(G) > 0 such that, for every H-Caccioppoli set E = G, one has

|E[@7VC < Coo(G) Py (E; G).

A measurable set £ < G is called a H-Caccioppoli set if Py(E;w) < oo for any
o cc G. Theorem 1.5 generalizes an earlier result of Pansu [P1], who proved a re-
lated inequality for the first Heisenberg group H!', but with the H-perimeter in the
right-hand side replaced by the 3-dimensional Hausdorff measure #° in H' con-
structed with the Carnot-Carathéodory distance associated with the horizontal sub-
bundle HH' defined by { X, X»} in (1.3). One should keep in mind that the homo-
geneous dimension of H'! is Q =4, so 3 = Q — 1, which explains the appearance of
A7 in Pansu’s result. It should also be said that some authors attribute to Pansu [P2]
the conjecture that the isoperimetric sets in IH! have the form (1.5). We mention that
other isoperimetric and Fleming-Rishel type Gagliardo-Nirenberg inequalities have
been obtained by several authors at several times, see [Val], [Va2], [VSC], [CS], [BM],
[FGW], [MaSC]. We now introduce the following definition.

Definition 1.6. Given a Carnot group G with homogeneous dimension Q we define
the isoperimetric constant of G as
.~ Pu(E; @)

%iso(G) = Elng|E|(Q*1)/Q’

where the infimum is taken on all H-Caccioppoli sets E such that 0 < |E| < co. If a
measurable set E, is such that

o PH(EO; G)
Ofiso(G) _Wa

then we call it an isoperimetric set in G.

We stress that, thanks to Theorem 1.5, the isoperimetric constant is strictly positive.
It should also be observed that, using the representation formula for the H-perimeter

(19) PulE:G)=| oo

¢

dHN*lu
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valid for any bounded open set E = G of class C', with Riemannian outer normal

N and angle function W = +/p? + ---+ p2 (see Lemma 2.8, and (3.1), (3.2)), one
immediately recognizes that, since for any w << G one has W < C(w)|N|, then
Py(E; G) < CHy_1(0FE) < o0. As a consequence, o5 (G) < co as well. What is not
obvious instead is the existence of isoperimetric sets. In this regard, one has the fol-
lowing basic result proved in [LR].

Theorem 1.7. Let G be a Carnot group, then there exists a bounded H-Caccioppoli set
F, such that

Py (Fy; G) = O‘iso(G)‘Fa|(Q71>/Q-

The equality continues to be valid if one replaces F, by L, 096,(F,), for any 1 >0,
go € G.

Of course, this result leaves open the fundamental question of the classification of
such sets. We stress that, in the generality of Theorem 1.5, this problem is presently
totally out of reach. When G'= IH", however, Theorems 1.1 and 1.4 provide some
basic progress in this direction. Our main contribution is to use direct methods of the
Calculus of Variations to prove that the critical point (1.8) is a global minimizer in
the class &. Furthermore, such global minimizer is unique (modulo left-translations
and dilations) in such class. These results follow from some delicate properties of
convexity, and strict convexity at the global minimizer, of the H-perimeter functional
subject to a volume constraint.

In connection with our work, we mention that several authors have recently studied
the isoperimetric problem in H”, but under the restriction that the class of com-
petitors be C* smooth and cylindrically symmetric, i.e., spherical symmetry about the
t-axis of the graph of the competing sets. For instance, in the recent interesting work
[BC], for the first Heisenberg group IH', the authors prove that the flow by H-mean
curvature of a C? surface which is convex, and which is described by # = +£(|z]),
with f/ < 0, converges to the sets (1.5). Notice, however, that f is spherically sym-
metric, convex, and that it is assumed that the upper and lower part of the surface
are described by the same strictly decreasing function f. We also mention the paper
[Pa] in which the author, still for IH!, heuristically derives the surface described by
(1.5) by imposing the condition of constant H-mean curvature among all C? surfaces
which can be described by ¢ = +f(|z|). Recently, Hladky and Pauls in [HP] have
proposed a general geometric framework, which they call Vertically Rigid manifolds,
and which encompasses the class of Carnot groups, in which they study the iso-
perimetric and the minimal surface problems. In this setting they introduce a notion
of horizontal mean curvature, and they show, in particular, that remarkably the iso-
perimetric sets have constant horizontal mean curvature. In the paper [LM] the au-
thors prove, among other interesting results, that the u, in our Theorem 1.1 is a
critical point (but not the unique global minimizer) of the H-perimeter, when the
class of competitors is restricted to C?> domains, with defining function of the type
t ==+f(]z|). A similar result has been also obtained in the interesting recent preprint
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[RR1], which also contains a classification of the Delaunay type surfaces in H". In
this connection, we also mention the earlier paper [To], in which the author describes
the Delaunay type surfaces of revolution in H', heuristically computes the special
solutions (1.5), and shows that standard Schwarz symmetrization does not work in
the Heisenberg group. In [FMP] the authors gave a complete classification of the
constant mean curvature surfaces (including minimal) which are invariant with re-
spect to 1-dimensional closed subgroups of Isoy(Hj3,g). We also mention the paper
[Mol], in which the author proved that the Carnot-Carathéodory ball in H" is not
an isoperimetric set. Subsequently, in [Mo2] he proved that, as a consequence of this
fact, a generalization of the Brunn-Minkowski inequality to H” fails. Finally, in their
interesting paper [MoM] the authors have established the isoperimetric inequality for
the Baouendi-Grushin vector fields X; = d,, X = |x|*d;, « > 0, in the plane (x,?),
and explicitly computed the isoperimetric profiles. In the special case o = 1, such
profiles are identical (up to a normalization of the vector fields) to our u, in Theorem
1.1, see Remark 1.2 above.

Acknowledgment'. For the first Heisenberg group H!, and under the assumption that
the isoperimetric profile be of class C? and of the type ¢ = f(|z|), the idea of using
calculus of variations to explicitly determine f(|z|), first came about in computations
that Giorgio Talenti and the second named author carried in a set of unpublished
notes in Oberwolfach in 1995. We would like to thank G. Talenti for his initial con-
tribution to the present study.

2 Isoperimetric inequalities in Carnot groups

The appropriateness of the notion of H-perimeter in Carnot-Carathéodory geometry
is witnessed by the isoperimetric inequalities. Similarly to their Euclidean counter-
part, these inequalities play a fundamental role in the development of geometric
measure theory. Theorem 1.5 represents a sub-Riemannian analogue of the classical
global isoperimetric inequality. Such result can be extracted from the isoperimetric
inequalities obtained in [CDG] and [GN], but it is not explicitly stated in either pa-
per. Since a proof of Theorem 1.5 is not readily available in the literature, for com-
pleteness we present it in this section.

Given a Carnot group G, its Lie algebra g satisfies the properties g=V; @ --- @
V,, where [Vi,Vj]= Vi, j=1,....,r—1, and [V, V] ={0}. If m; =dimV},

! The results in this paper were presented by the second named author in the lecture: “Re-
marks on the best constant in the isoperimetric inequality for the Heisenberg group and
surfaces of constant mean curvature”, Analysis seminar, University of Arkansas, April 12,
2001, (http://comp.uark.edu/~lanzani/schedule.html), by the third named author at the inter-
national meeting on “Subelliptic equations and sub-Riemannian geometry”, Arkansas, March
2003, and by the first named author in the lecture “Hypersurfaces of minimal type in sub-
Riemannian geometry”’, Seventh New Mexico Analysis Seminar, University of New Mexico,
October 2004.
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j=1,...,r, then the homogeneous dimension of G is defined by Q = m; + 2m,
+ -+ -+ rm,. The non-isotropic dilations associated with the grading of g are given
by A (& + -+ &) = A+ -+ 2"¢,. Via the exponential mapping exp : g — G,
which is a global difffomorphism onto, such dilations induce a one-parameter
group of dilations on G as follows J;(g) = expo A; o exp~!(g). The push forward
through exp of the standard Lebesgue measure on g is a bi-invariant Haar mea-
sure on G. We will denote it by dg. Clearly, d(5,9) = 49 dg. For simplicity, we let
m=m;. We fix some orthonormal basis {ei,...,en},...,{€r1,...,€m}, of the
layers V1,...,V,, and consider the corresponding left-invariant vector fields on G
defined by X (g) = (L!l)*(el)’ s 7va(g) = (Lél>*(en7)7 s ’X‘,l(g) = (Lg)*(e",l)a R
X, (9) = (Ly),.(er,m,). We will assume that G is endowed with a left-invariant Rie-
mannian metric {-,-» with respect to which these vector fields constitute and ortho-
normal basis. No other inner product will be used in this paper. We denote by
HG < TG the subbundle of the tangent bundle generated by {X1,..., X,,}. We next
recall the notion of H-perimeter, see e.g. [CDG]. Given an open set Q = G, we let

m m 1/2
F(Q) = {c = ;ciXi e (QHG)|[L|, = sup|{] = sup (Z:]c?) < 1},

1

where we say that CeFé(Q,HG) if Xj(;eCo(Q) for i,j=1,...,m. Given (e
I} (Q, HG) we define

m
divg { =) Xi(;.
i=1
For a function u L}OC(Q), the H-variation of u with respect to Q is defined by

Vary (u; Q) = sup J udivy {dg.
tez (@ Ja

We say that u € L'(Q) has bounded H-variation in Q if Vary (u; Q) < oo. The space
BV (Q) of functions with bounded H-variation in Q, endowed with the norm

lull gy ) = lull L) + Varm (u; Q)

is a Banach space. A fundamental property of the space BV is the following special
case of the compactness Theorem 1.28 proved in [GN].

Theorem 2.1. Let Q = G be a (PS) (Poincaré-Sobolev) domain. The embedding
i:BVy(Q) — L1(Q)

is compact for any 1 < q < Q/(Q — 1).
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We now recall a special case of Theorem 1.4 in [CDG].

Theorem 2.2. Let G be a Carnot group with homogeneous dimension Q. There exists a
constant C(_G) > 0, such that for every g, € G,0 < R < R,, one has for every C' do-
main E < E < B(g,, R)

|E|'©"Y/C < CPyy(E; B(go, R)).

To prove Theorem 1.5 we need to extend Theorem 2.2 from bounded C' domains to
arbitrary sets having locally finite H-perimeter. That such extension be possible is due
in part to the following approximation result for functions in the space BV, which is
contained in Theorem 1.14 in [GN], see also [FSS1].

Theorem 2.3. Let Q = G be open, where G is a Carnot group. For every u € BVy(Q)
there exists a sequence {uy};. .y in C*(Q) such that

2.1)  w—u in LNQ)ask — o,

(2.2) klim Vary (ug; Q) = Varg (u; Q).

We next introduce the notion of H-perimeter.

Definition 2.4. Let £ = G be a measurable set, QO be an open set. The H-perimeter of
E with respect to Q is defined by

Pu(E; Q) = Varu (15 Q),

where y; denotes the indicator function of £. We say that E is a H-Caccioppoli set if
xe € BVy(Q) for every Q cc G.

The reader will notice that when the step of the group G is r = 1, and therefore G
is Abelian, the space BV coincides with the space BV introduced by De Giorgi, see
[DGL1], [DG2], [DCP], and thereby in such setting the Definition 2.4 coincides with
his notion of perimeter. A fundamental rectifiability theorem a la De Giorgi for H-
Caccioppoli sets has been established, first for the Heisenberg group IH”, and then for
every Carnot group of step r = 2, in the papers [FSS2], [FSS3], [FSS4]. We will need
the following simple fact.

Lemma 2.5. Let R, > 0 be given and consider a H-Caccioppoli set E = E < B(e, R,),
then

(2.3)  Pu(E, B(e,R,)) = Pu(E, G).

Proof. This can be easily seen as follows. Clearly, one has trivially Py (E, B(e,R,)) <
Py (E, G). To establish the opposite inequality, let r, < R, be such that E < B(e,r,),
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and pick f e C;°(B(e,R,)) be such that 0 < f <1, and /=1 on Ble,r,). If
{ e 7 (G), then it is clear that f{ e T}(B(e,R,); HG), and that 1/ = (e, ) < 15
ie., fle 7 (B(e,R,)). We have

J 2 divi Cdg = 2 f diva Cdg
G

B(e, R,)

- 2 divi (f0) dg —j 216 <Viaf\ > dg

B(e,R,) B(e,R,)

= xedive(fC)dg < Pu(E, B(e, R,)).
B(e,R,)

Taking the supremum over all (e %(G;HG) we reach the conclusion
Py(E,B(e,R,)) = Py(E, G), thus obtaining (2.3). O

In the next result we extend the isoperimetric inequality from C! to bounded H-
Caccioppoli sets.

Theorem 2.6. Let G be a Carnot group with homogeneous dimension Q. There exists a
constant Ciso(G) > 0 such that for every bounded H-Caccioppoli set E = G one has

|EC7V/C < Cio(G) Py (E; G).

Proof. In [CDG] it was proved that Theorem 2.2 implies the following Sobolev in-
equality of Gagliardo-Nirenberg type: for every u € Cl(B(g,, R))

0/(0-1) (o-1/0 R
R ] S e T TR AL
B(!/mR) |B(g07R)‘1/QB(ng>

If now ue BVy(B(g,,R)), with suppu < B(g,, R), then by Theorem 2.3 there
exists a sequence {uy}ion € C5°(B(go, R)) such that ux — u in L'(B(g,, R)), and
Vary (u; B(go, R)) — Varg(u; B(g,, R)), as k — oo. Passing to a subsequence, we
can assume that u(g) — u(g), for dg-a.e. g € B(g,, R). Applying (2.4) to u; and
passing to the limit we infer from the theorem of Fatou

(e-1/0Q
{ [ |u|Q/<Q1>dg} SCLI/QVarH(u;B(gO,R)),
B(y{,,R) |B(g07R)‘

for every u € BVy(B(g,, R)), with suppu = B(g,, R). If now E = E = B(g,,R) is a
H-Caccioppoli set, then taking u = y in the latter inequality we obtain

R

E (0-1/0 <C P
" B(g,, R)| /¢

u(E;B(e,R,)).
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At this point, to reach the desired conclusion we only need to use Lemma 2.5 and
observe that |B(g,, R)| = R|B(e,1)|. We thus obtain the conclusion with Cis,(G) =

C|B(e, 1) /2. O
The following is a basic consequence of Theorem 2.6.

Theorem 2.7. Let G be a Carnot group with homogeneous dimension Q. With Cis,(G)
equal to the constant in Theorem 2.2, one has for any bounded H-Caccioppoli set

|E|(7V/C < Ciio(G) Py (E; G).

To establish Theorem 1.5 we next prove that one can remove from Theorem 2.7,
without altering the constant Ci,(G), the restriction that the H-Caccioppoli set be
bounded. We recall a useful representation formula. In what follows N indicates the
topological dimension of G, and Hy_; the (N — 1)-dimensional Hausdorff measure
constructed with the Riemannian distance of G.

Lemma 2.8. Let Q = G be an open set and E = G be a C' bounded domain. One has

N
PH(E,Q):J |TH||C”‘11\/1,
QNIE

where Ny = Z,’il (N, X;>X; is the projection onto HG of the Riemannian normal N
exterior to E. In particular, when

(2.5) E={geG|¢(g) <0},

with ¢ € C1(G), and |V§| = o > 0 in a neighborhood of OE, then N = V¢, and there-
fore Ng| = |Vu¢|. When Q = G we thus obtain in particular

26 puEe) = [ Tt

dHy_;.
o Vol Y

For the proof of this lemma we refer the reader to [CDG]. For a detailed study of the
perimeter measure in Lemma 2.8 and (2.6), we refer the reader to [DGN1], [DGN2]
and [CG]. We can finally provide the proof of Theorem 1.5.

Theorem 2.9. Let G be a Carnot group with homogeneous dimension Q. With the same
constant Ciso(G) > 0 as in Theorem 2.7, for every H-Caccioppoli set E = G one has

|E|'97V/2 < o (G) Py (E; G).

Proof. In view of Theorem 2.7 we only need to consider the case of an unbounded H-
Caccioppoli set E. If Py(E; G) = +oo there is nothing to prove, so we assume that
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Py(E;G) < 400 and |E| < +0c0. We consider the C* H-balls By(e,R) = {g € G|
p(g9) < R}, generated by the pseudo-distance p = p, = F(-,e)l/(z_@ e C*(G\{e}) n
C(G), where I'(+,e) € C*(G\{e}) is the fundamental solution with singularity at the

identity for the sub-Laplacian Ay = ijl X/2 (the reader should notice that any
other smooth gauge would do). For any R > 0 we have

(27) PH(EmBH(e, R), G) < P]-[(E‘7 BH(e, R)) + P[.](B[.](@7 R),E)

Here, when we write Py (Bgy(e, R); E) we mean the standard measure theoretic ex-
tension of the H-perimeter from open sets to Borel sets, see for instance [Z]. Thanks
to the smoothness of By (e, R) we have from Lemma 2.8

N \%
Py(Bu(e,R); E) = J M&IHNA = J [Viap] dHy_.

0By (e, R)NE |V 0Bu(e, R)NE Vol

Recalling that I'(-, e) is homogeneous of degree 2 — Q, see [F1], [F2], and therefore p
is homogeneous of degree one, we infer that for some constant C(G) > 0,

(2.8)  [Vupl < C(G).

This gives

dHy
(2.9)  Pu(Bule,R):E) < C(G)J N1
Bu(e.R)E VP

By Federer co-area formula [Fe|, we obtain

J dHy1

oo > |E :J dg = J )
£l ¢** Bu(e.nne VP

0

therefore there exists a sequence R; " oo such that

Hy_
(2.10) J dHy-\
oBue.R)nE |VP| koo

Using (2.10) in (2.9) we find

(2.11)  lim Py(By(e, Ry); E) = 0.

k—o0
From (2.7), (2.11), we conclude

(2.12) limsup Py(E N By(e,Ri); G) < Py(E; G).

k— o0
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We next apply Theorem 2.7 to the bounded H-Caccioppoli set E N By(e, Ry) ob-
taining

|E 0 By (e, Ri)['97Y2 < Cio(G) Py (E A By (e, Ry); G).
Letting k — oo in the latter inequality, from (2.12), and from the relation

lim |E 0 Bye, Ry)[(CV/C = g|@-D/e,
— 00

we conclude that
|E|©@7V/C < Co(G) Py (E; G).
This completes the proof. O

We close this section with two basic properties of the H-perimeter which clearly play
a role also in Theorem 1.4.

Proposition 2.10. In a Carnot group G one has for every measurable set E < G and
everyr>0

(2.13)  Py(E;G) =r2'Py(0,,E; G).

Proof. Let E = G be a measurable set. If { € C} (G, HG), then the divergence theo-
rem, and a rescaling, give

(2.14) J divy (dg :J > Xi(jdg = rQJ > Xi((drg)dy,
E Ej=1 E, j=1

where we have let E, = 6,/,(E) = {g € G|J,g € E}. Since
Xj(Cj06,) = r(X;(; 06,),
we conclude
@13) | SExgdg=ret [ S2x00)do
Ej=1 Ej=1
Formula (2.15) implies the conclusion. O
Proposition 2.10 asserts that the H-perimeter scales appropriately with respect to the

non-isotropic group dilations. Since on the other hand one has |0y, E| = r 2| E|, we
easily obtain the following important scale invariance of the isoperimetric quotient.
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Proposition 2.11. For any H-Caccioppoli set in a Carnot group G one has

Pu(E;G) Pu(01,E;G)

(2.16) E[@D72 " 5., E@D/2

r>0.

Another equally important fact, which is however a trivial consequence of the left-
invariance on the vector fields X1, ..., X,,, and of the definition of H-perimeter, is the
translation invariance of the isoperimetric quotient.

Proposition 2.12. For any H-Caccioppoli set in a Carnot group G one has

Pu(Ly,(E); G) _ Pu(E;G)
Ly, (E)|(Q*1)/Q |E|(Q*1)/Q

(2.17) gdo € G,

where Ly g = g,9 is the left-translation on the group.

3 Partial solution of the isoperimetric problem in H"

The objective of this section is proving Theorems 1.1 and 1.4. This will be accom-
plished in several steps. First, we introduce the relevant notions and establish some
geometric properties of the H-perimeter that are relevant to the isoperimetric profiles.
Next, we collect some results from convex analysis and calculus of variations. Fi-
nally, we proceed to proving Theorems 1.1 and 1.4. In what follows we adopt the
classical non-parametric point of view, see for instance [MM], according to which a
C? hypersurface % = G locally coincides with the zero set of a real function. Thus,
for every go € & there exists an open set ¢ = G and a function ¢ € C?(() such that:
(i) |[Ve(g)| # 0 for every ge O; (i) & N0 ={ge O] p(g) =0}. We will always as-
sume that % is oriented in such a way that for every g € . one has

N(g) = Vé(g)
= X1¢(Q)X1 + -+ Xm¢(g)Xm + 4+ X;~,1¢(9)Xr,1
+ e + Xr,m,,qﬁ(g)A/r,m,-

To justify the second equality the reader should bear in mind that we have endowed
G with a left-invariant Riemannian metric with respect to which {Xi,..., X, ...
X, } constitute an orthonormal basis. Given a surface & < G, we let

)

(31) Pi:<N7Xi>» izla"'7m7
and define the angle function

(32) W =\/p}+-+pi.

The motivation for the name comes from the fact that, if UV denotes the angle
between two vector fields U, V' on G, then
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ou,Ny W

(3.3)  cos(vgLN) = NN

The characteristic locus of .% is the closed set
L={geS|W(g) =0}={ge ¥ |H,G=T,9}.

We recall that is was proved in [B], [Ma] that #¢~!(X) = 0, where #° denotes the
s-dimensional Hausdorff measure associated with the Carnot-Carathéodory distance
of G, and Q indicates the homogeneous dimension of G. We also recall the earlier
result of Derridj [Del], [De2], which states that when % is C* the standard surface
measure of X vanishes. Later on in this section we will need a result from [B], see
Theorem 3.9 below.

On the set #\X we define the horizontal Gauss map by

(34) vH:ﬁle—'_"'—’_ﬁme’

where we have let

(3.5) ﬁlz%,...,ﬁm:%, so that [vy|> = p2 +---+ p2 =1 on Z\I.

Given a point gy € &\Z, the horizontal tangent space of .% at g is defined by
TH7go(y) = {v € H00G| {v, vH(g0)> = O}

For instance, when G = H', then a basis for Ty , (&) is given by the single vector
field

(3.6) vy =DX — piXa.

Given a function u € C!'(#) one clearly has dyu(go) € Ty 4, (). We next recall some
basic definitions from [DGN4].

Let VZ denote the horizontal Levi-Civita connection introduced in [DGN4]. Let
% < G be a C? hypersurface. Inspired by the Riemannian situation we introduce a
notion of horizontal second fundamental on .% as follows.

Definition 3.1. Let . = G be a C? hypersurface, with £ = (), then we define a tensor
field of type (0,2) on Ty.%, as follows: for every X, Y € C'(¥; Ty.¥)

(3.7) 7 (X,Y)=<VEY,vy)vy.

We call II1":7 () the horizontal second fundamental form of . We also define
A7 Ty — Ty by letting for every g € & and u,v € Tu,y
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(38) (A Tuvy = A" (u,0),vyy = —(VEY, vy,

where X, Y € C!(&, Ty %) are such that X, = u, Y, = v. We call the endomorphism
o' Ty ¢ — Thu 9 the horizontal shape operator. If ey,..., e,_1 denotes a
local orthonormal frame for Tx.%, then the matrix of the horizontal shape oper-
ator with respect to the basis ey, ...,e,_; is given by the (m — 1) x (m — 1) matrix
[_<Vel;lej’ VH >}i,j:l.,...,mfl'

By the horizontal Koszul identity in [DGN4], one easily verifies that
<V5ej, vy = —<Vfl_1vH, e).
Using Definition 3.1 one recognizes that
(3.9) "X, Y)—1n"7 (Y, X) =X, Y7 vidvm,
and therefore, unlike its Riemannian counterpart, the horizontal second fundamental
form of % is not necessarily symmetric. This depends on the fact that, if X, Y e

C!(¥; HT %), then it is not necessarily true that the projection of [X, Y] onto the
horizontal bundle HIH", [X, Y]”, belongs to C'(%; Ty.%).

Definition 3.2. We define the horizontal principal curvatures as the real eigenvalues
K1,...,Ku_1 of the symmetrized operator

| ,
&{H,y —_ E{MHA&’ 4 ({Q{H,g)t}’

sym

The H-mean curvature of .% at a non-characteristic point gy € & is defined as

sym

m—1 m—1
H = —trace AT = 3 ;=% <Vgei7vH>-
i=1 i=1

If g is characteristic, then we let

H = li H
(go) g—>go.1£r12<‘f\2 (g),

provided that such limit exists, finite or infinite. We do not define the H-mean cur-
vature at those points gy € X at which the limit does not exist. Finally, we call
H = H'vy the H-mean curvature vector.

Hereafter, when we say that a function u belongs to the class C*(%), we mean that
ue C() and that for every gy € ., there exist an open set ¢ — H!, such that u co-
incides with the restriction to .% N (0 of a function in C¥((). The tangential hori-
zontal gradient of a function u € C'(%) is defined as follows
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(3.10) VAU = Vyu — (Vyu, vy dvy.

The definition of V77w is well-posed since it is noted in [DGN4] that it only depends
on the values of u on 7. Since |vy| =1 on ¥\X, we clearly have VT y vyd =0,
and therefore

(3.11)  [VITu? = \Vyul* — (Vgu, vy H2.

Definition 3.3. We say that a C? hypersurface . has constant H-mean curvature if #
is globally defined on %, and # = const. We say that & is H-minimal if # = 0.

Minimal surfaces have been recently studied in [Pa], [GP], [CHMY], [CH], [DGNS5],
[DGNP], [BSV]. The last two papers contain also a complete solution of the Bern-
stein type problem for the Heisenberg group IH'. The following result is taken from
[DGN4].

Proposition 3.4. The H-mean curvature coincides with the function
m ‘ m
(3.12) # =>V"'7p =3 Xip,.
i=1 i=1
For instance, when G = H', then according to Proposition 3.4, the H-mean curva-
ture of & is given by

2
(B.13) =SV vy =V (5) + VI () = Xipy + Xopy, on P\Z.
i=1

In this situation, given a C? surface & < IH!, there is only one horizontal principal
curvature xi(go) at every go € #\X. Since in view of (3.6) the vector v (go) con-
stitutes an orthonormal basis of T 4, (%), according to Definition 3.1 we have

K1(g0) = (v (90), vi(90))-

One can verify, see [DGN4], that the right-hand side of the latter equation equals
—#(go). We recall one more result concerning the H-mean curvature that will be
useful in the proof of Proposition 3.28. Details can be found in [DGN4].

Proposition 3.5. Suppose & < H" is a level set of a function ¢ that takes the form

¢(Zvl) = t_u<¥>v

for some C? function u : [0, 0) — R. For every point point g = (z,t) € & such that
z # 0 the H-mean curvature at ¢ is given by
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(3.14) 7 =

~ 2su”(s) +(Q = 3)u'(s)(1 +u'(s)’) SZE
25(1+ u'(s)%) ¥ , t

In Proposition 3.5 the hypothesis z # 0 is justified by the fact that, under the given
assumptions, if & intersects the z-axis in IH”, then the points of intersections are
necessarily characteristic for <.

Hereafter in this paper, we restrict our attention to G = IH". In Definition 3.3, fol-
lowing the classical tradition, we have called a hypersurface H-minimal if its H-mean
curvature vanishes identically. However, in the classical setting the measure theoretic
definition of minimality is also based on the notion of local minimizer of the area
functional. In the paper [DGN4] we have proved that there is a corresponding sub-
Riemannian counterpart of such interpretation based on appropriate first and second
variation formulas for the H-perimeter. For instance, the following first variation
formula holds in the Heisenberg group H!.

Theorem 3.6. Ler ¥ = H' be an oriented C? surface, then the first variation of the
H-perimeter with respect to the deformation

(3.15) Ji(9) =g+ i%(g9) =g+ Aa(g) X1+ b(9) X2+ k(9)T), g=(x,y,t)e,

is given by
d cos(ZLN)
A —P 4 =| H—————==|4
(16) SPu(F o= | A o e oy,

where [ denotes the angle between vectors in the inner product {-,->. In particular, &
is stationary with respect to (3.15) if and only if it is H-minimal.

Versions of Theorem 3.6 have also been obtained independently by other people.
An approach based on motion by H-mean curvature can be found in [BC]. When
a = ph, b= gh, and h € CJ"(<\X), then a proof based on CR-geometry can be found
in [CHMY]. A Riemannian geometry proof, valid in any H”, can be found in [RR1].

In what follows we set
H} = {(z,t) e H" [t >0}, H" ={(z,1) e H" |1 < 0}.

Consider a domain Q = R* and a C! function u: Q — [0, c0). We assume that
E cH"isa C! domain for which

EnH! ={(z,t) e H"|zeQ,0 <t <u(z)}.
The reader should notice that, since u > 0 in Q, the graph of u is not allowed to have

flat parts. For z = (x, y) € R*, we set z- = (p, —x). Indicating with ¢(z, 1) = t — u(z)
the defining function of £ nH, a simple computation gives
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(3-17)  [Vudl = \/

The reader should be aware that in the latter equation, the norm in the left-hand side
comes from the Riemannian inner product on 7IH" =~ IH", whereas the norm in the
right-hand side is simply the Euclidean norm in IR?. Invoking the representation
formula (2.6) for the H-perimeter, which presently gives

2
+

2 1
z
V.u+—

X
Vou——
}u 2

quJrX >

2

\Vug|
Py(E;H” :J AT 4,
n(EHD = | e Vg
and keeping in mind that, see (3.17), |Vg|=1/1+ |Vud|?, and that dH, =

\/ 1+ |Viug|* dz, we obtain

1 2
(3.18) PH(E;IHi)ZJ VZquZ7 dz:J \/Vzu|2+%+<vzu,zl>dz.
Q Q

When F < H” is a closed set we define

PH(E,F): inf PH(E,Q)
FcQ,Q open

Let now ue C'(Q), u > 0, then using the latter formula we obtain the following
generalization of (3.18)

R 1 2
(3.19) Pyu(E;HY) = J V.u+ % dz = J \/V;u|2 + % +<V.u,zt >y dz.
Q Q

The reader should notice that, unlike (3.18), in equation (3.19) we allow the graph of
u to have flat parts, i.e., subsets of Q in which the function u vanishes.

In what follows, we recall an invariance property of the H-perimeter which plays a
role in the proof of Theorem 1.1. Consider the map @ : H" — H" defined by

O(x, y, 1) = (y,x,—1).

It is obvious that O preserves Lebesgue measure (which is a bi-invariant Haar mea-
sure on H"). In fact, the map ¢ is a group and Lie algebra automorphism of H".
Such map is called inversion in [F3], p. 20. Using the properties of the map ¢ and a
standard contradiction argument, one can easily prove the following result.

Theorem 3.7. Let E = H" be a bounded open set such that OE nH! and 0E nTH"
are C' hypersurfaces, and assume that E satisfies the following condition. there exists
R > 0 such that
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(3200 En{t=0} = B(0,R).
Suppose E is an isoperimetric set satisfying |E n1H"| = |E nH"| = |E|/2, then
Py(E;HY) = Py(E;HT).

We now introduce the relevant functional class for our problem. The space of com-
peting functions & is defined as follows. Consider the vector space ¥~ = Cy(IR?").

Definition 3.8. We let

(3.21) 2 = {u e 7" |there exists R > 0 such that u > 0 in B(0, R),
B(0,R) = ({B(0, R + p) |supp(u) = B(0, R+ p)},

ue Chl(B(0,R)) n W-1(B(O,R))}.
We note explicitly that, as a consequence of Definition (3.8), if u € 2 and R is as in
(3.21), we have u = 0 on ¢B(0, R). Furthermore, the functions in & are allowed to
have large sets of zeros, i.e., their graph is allowed to touch the hyperplane # = 0 in
sets of large measure. We remark that & is not a vector space, nor it is a convex
subset of 7". We mention that the requirement u € CIL’CI (B(0, R)) in the definition of
the class 2, is justified by the following considerations. When we compute the Euler-
Lagrange equation of the H-perimeter functional (3.18) we need to know that, with
Q = B(0, R), the set {z =(x,y) e Qc R¥||V.u(z) + 7‘ = 0}, which is the projec-

tion of the characteristic set of the graph of u onto R** x {0}, has vanishing 2n-
dimensional Lebesgue measure. This is guaranteed by the following sharp result of Z.
Balogh (see Theorem 3.1 in [B]) provided that u € Cllo"c1 (Q), but it fails in general for
ue C-*(Q) for every 0 < o < 1.

loc

Theorem 3.9. Let Q = B(0,R) = R* and consider u e Cli)‘cl (Q), then |</(u)| =0,
where of (u) = {z € Q| V.u(z) + z+/2 = 0}, and |E| denotes the 2n-dimensional Leb-
esgue measure of E in R*". If instead u € C*(Q), then the Euclidean dimension of </ (1)

is <n.

Following classical ideas from the Calculus of Variation, we next introduce the ad-
missible variations for the problem at hand, see [GH] and [Tr].

Definition 3.10. Given ue€ &, we say that ¢ e ¥, with supp¢ = suppu, is -
admissible at u if u+ ¢ € & for all A € R sufficiently small.

Now, for u e & we let

(3.22) Yu] = u(z)dz = J u(z) dz.

Jsupp(u) B(0,R)
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With (3.18) in mind, we define for such u

2
(323) F[ :J \/|Vzu|2+|z|+<Vzu,zi>.
supp(u) 4

In the class of C! graphs over R?" x {0}, the isoperimetric problem consists in min-
imizing the functional % [u], subject to the constraint that ¥[u] = V, where V' > 0 is
given and B(0, R) is replaced by an a priori unknown domain Q. We emphasize that
finding the section of the isoperimetric profile with the hyperplane {z = 0}, i.e., find-
ing the domain Q, constitutes here part of the problem. Because of the lack of an
obvious symmetrization procedure, this seems a difficult question at the moment. To
make further progress we restrict the class of domains £ by imposing that their sec-
tion with the hyperplane {# = 0} be a ball, i.e., we assume that, given E € &, there
exists R = R(E) > 0 such that Q = B(0, R). Under this hypothesis, we can appeal
to Theorem 3.7. The latter implies that it suffices to solve the following variational
problem: given V' > 0, find R, > 0 and u, € & with supp(u,) = B(0, R,) for which the
following holds

(3.24) Flu) =min{F[u]|lue 2} and Yu,) = g

To reduce the problem (3.24) to one without constraint, we will apply the following
standard version of the Lagrange multiplier theorem (see, e.g., Proposition 2.3 in
[Tr]).

Proposition 3.11. Let & be a subset of a normed vector space V", and consider func-
tionals 7, 91,9, ..., %9 defined on 9. Suppose there exist constants 1, ..., A € R,
and u, € 9, such that u, minimizes (uniquely)

(3.25) F +MG + %+ + LYy
on 9, then u, minimizes  (uniquely) when restricted to the set
{lue 2\%u) = 9lu,), j=1,...,k}.

Remark 3.12. The procedure of applying the above proposition to solving a problem
of the type

minimize {Z [u]|ue 2},
subject to the constraints ¥ [u] = V1,...,%[u] = Vi,

consists of two main steps. First, one needs to show that constants Ai,...,4; and
a u, € 2 can be found in such a way that u, solves the Euler-Lagrange equation
of (3.25), and u, satisfies % [u,| = V1,...,%[u,] = V. Finally, one proves that the
solution u, of the Euler-Lagrange equation is indeed a minimizer of (3.25). If the
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functional involved possesses appropriate convexity properties, then one can show
that such minimizer u, is unique.

We then proceed with the first step outlined in the Remark 3.12. In what follows,
with ze R*, ue R, and p = (p1, p2) € R?", we let

f(zu.p)=f(z,p /Wm+\-ﬂm—\aﬂp+%,
g9(z,u, p) = g(u) =
h(z,u, p) = f(z, ) Ag(u).

The constrained variational problem (3.24) is then equivalent to the following one
without constraint (provided the parameter A is appropriately chosen): to minimize
the functional

(3.26)

V.u(z) +

L
(3.27) Flu = J h(z,u(z),Vau(z))dz = J —| + Au(z) p dz,
supp(u) supp(u)

over the set & defined in (3.21). We easily recognize that the Euler-Lagrange equation
of (3.27) is

V;u—l—%

(3.28) div. - =
\/|Vzu|2 + % + Vo, zt)

})

Remark 3.13. Before proceeding we note explicitly that, if u e C*>(Q), and we con-
sider the C? hypersurface & = {(z,) e H"|ze Q,t = u( )}, 1ndlcat1ng with X its
characteristic set, then g = (z,¢) ¢ £ if and only i i | ,z2> #0. In
this situation, using Proposition 3.4, it can be recognlzed that at every g ¢, the
quantity in the left-hand side of (3.28) represents the H-mean curvature J# of .&.

As we have said, solving (3.28) on an arbitrary domain of Q = R*" is a difficult task.
However, when Q is a ball in R?", the equation (3.28) admits a remarkable family of
spherically symmetric solutions. We note explicitly that for a graph ¢ = u(z) with
spherical symmetry in z, the only characteristic points can occur at the intersection of
the graph with the -axis.

Theorem 3.14. Given R > 0, for every

0-2
(3.29) = <4<0,

the equation (3.28), with the Dirichlet condition u =0 on 0Q, where Q = B(0,R) =
{z e R*||z| < R}, admits the spherically symmetric solution ug ; € 7 n C*(Q\{0}),
with
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— 2 z
(3.30) ug;(z) = Cr; +%\/(Q — 2)2 _ (,1|Z|)2 _% sin”! (Q/1|_|2),

and

J— 2 h
(3.31) Cgj= —ﬁ\/(Q ~2)* - (AR)? *% sin”! ((;_RZ)

Proof. We look for a spherically symmetric solution in the form u(z) = a(|z|>/4), for
some function i€ C*((0,R*/4)) n C([0, R*/4]), with @(R?/4) = 0. The equation
(3.28) becomes

632 div. | CELAZEZ | b0, Ry o).

2ly/1+@(2/4)

Since

ZL

div. =0,
2/ 1+ (|1 /4)

we obtain that (3.32) reduces to the equation

@'(|z|/4)z

(3.33) div-
2ly/1+ (12 /4) |

=/

The transformation

a(y
(334) F(n¥ %
1+ (@ (5))
turns the nonlinear equation (3.33) into the following linear one

2n A

which is equivalent to
(anF)/ _ /1}"2"71
We note that

R2
[P"F(r) <! for0<r< i
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therefore we conclude that lim, .o #*'F(r) = 0. We can thus easily integrate the above
ode, obtaining F(r) = A/2n. Setting s = r?/4 in the latter identity one obtains from
(3.34)

@%)——————:éﬁ: 5.

Excluding the case of H-minimal surfaces (corresponding to A = 0), equation (3.35)
gives

(3.36) @
' 1+ (@)* ’

with

24

This in turn implies

N

B —s

At this point, an observation must be made. We cannot choose the sign in (3.38) ar-
bitrarily. In fact, equation (3.35) implies that &’ does not change sign on the interval
[0, R?/4], and one has &’ > 0, or i’ < 0, according to whether « > 0 or a < 0. On the
other hand, if the ‘4’ branch of the square root were chosen in (3.38), then # would
be increasing and, since i > 0 on (0, R?/4), it would be thus impossible to fulfill the
boundary condition iZ(R?/4) = 0.

These considerations show that it must be #’ < 0 on (0, R>/4). We then have to
take o < 0 (hence f < 0 as well), and therefore 4 < 0. Equation (3.38) thus becomes

(3.38) i'(s) =+

1
, whereﬂ:&.

_ s R?
. = — |/ < —.
(3.39) @'(s) 7y O_s<4
We stress that, thanks to the assumption (3.29), and to (3.37), we have that if
R (0-2° 1 _
< _— == = =
0<s< ) PYE 2 £,

then the function @’ given by (3.39) is smooth on the interval [0, R?/4), and satisfies

lim i'(s) = —oo.
s—(R?/4)"
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Integrating (3.39) by standard calculus techniques we find for s € [0, R*/4]

(3.40) a(s) =+/s( — p*tan” (1 /ﬂ — >+C

= C+\/s(f* —5) + p*sin”! <§)

Recalling that o ="', and the equation (3.37), if we impose the condition
i(R?/4) = 0, we obtain the solution

2
(3.41) a(s) = CRH\[ (0-2)° 4123+(Q4122) Sin_l<gl[;>7

where Cg ; is given by (3.31). Setting ug ;(z) = i(|z|*/4), we finally obtain (3.30)
from (3.41). We are finally left with proving that such a ug ; belongs to the class 2.
The membership ug ; € Z is equivalent to proving that the function s — i(s*/4) is of
class C! in the open interval (—R, R), and that furthermore Vug ; € C*'(Q). For the
first part, from (3.41) it is clear that we only need to check the continuity of &’ at
s = 0. Since the function is even this amounts to proving that #’(s) — 0 as s — 0. But
this is obvious in view of (3.39). Finally, we have

)

which shows that Vug , € C;; 0, 1(Q) O

loc

|Vug,;(z) = Vug, 1(0)| = < Clz],

In the next Proposition 3.15 we complete the analysis of the regularity of the func-
tions ug ;. It suffices to consider the upper half of the “normalized” candidate iso-
perimetric profile E, = H”, where 0E, is the graph of the function # = u,(z), with
u, = uy ; and 2 = —(Q — 2). The characteristic locus of E, is given by the two points

2={(0055)}

Unlike its Euclidean counterpart, the hypersurface surface 0F, is not C* at the
characteristic points (O, 0, i%)

Proposition 3.15. The hypersurface S, = 0E, = H" is C?, but not C>, near its char-
acteristic locus X. However, S, is C* (in fact, real-analytic) away from X.

Proof. First, we show that near the characteristic points (0,0,+%) the function u,(z)
given by (1.5) is only of class C2, but not of class C3. To see this we let
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1
ui(s) :%4—5\/1 _SZ_Z sin”'(s), 0<s<l,

and note that u,(z) = u;(|z]) for 0 < |z| < 1. Therefore, the regularity of u, at |z| = 0
is equivalent to verifying up to what order of derivatives n one has
(n)

I = lim u
Jim 1 (s) = lim u(s)

where u. (s) = u;(s) and u_(s) = u;(—s). It is easy to compute

52 —u" (S) . (S) _ _l S(sz B 2)
- +

2(2-1)WV1-s2

We clearly have

lim ™ = lilzl)l+ u<+") forn=0,1,2 whereas lim u®) =1 and lir(l)l+ ud = 1.

s—0~ s—0~

This shows the function ¢ = u,(z) is only C?, but not C3, near z = 0. Next, we in-
vestigate the regularity of 0F, near |z| = 1, that is, at the points where the upper and
lower branches that form JE, meet. To this end, we observe that JE, can also be
generated by rotating around the z-axis the curve in the (x, f)-plane whose trace is

{(x1,0) ]2 = (x1)*,0 < x; <1}

It suffices to show that this curve is smooth (C*) across the x; axis. To this end we
compute the derivatives of u;. It is easy to see by induction that for n > 3

P,_i(x1)
(2= 1)" 1= N2

where C, > 0 is a constant depending only on n, and P,_;(x|) is a polynomial in x;
of degree n — 2. The n-th derivatives of the function —u;(x;) clearly takes the same
form, but with a negative sign. Letting s — 1~ in (3.42) we see that

3.42) u"(x) = (-1)"C,

d" d" . .
—uy,— (—u;) — +oo, (depending on whether n is odd or even).
dxy dxy

This implies that the curve with equation ¢> = u; (x1)2 is smooth across the xj-axis.

d
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From Theorem 3.14 and Proposition 3.15, we immediately obtain the following in-
teresting consequence.

Theorem 3.16. Let V > 0 be given, and define R = R(V') > 0 by the formula

NI
(3.43) R= (e-2r (QH)F(QTI) pi/e
(&)

With such choice of R, let Q@ = B(0, R) = {z e R*||z| < R}. If we take

(3.44) A=-2_Z

then the equation (3.28), with the Dirichlet condition u =0 on 0, admits the spheri-
cally symmetric solution ug € 7 n C*(Q), where

2 S DY PO (12l \
(3.45) uR(z)f?—i-Z R —|z|” — 4 sin~

Furthermore, such ug satisfies the condition

(3.46) JQ ur(z)dz = g

Proof. The first part of the theorem, up to formula (3.45), is a direct consequence of
Theorem 3.14. We only need to prove (3.46). In this respect, keeping in mind the
definition (3.43), it will suffice to prove that

n(Q—Uﬂr(%)
20-2r(%)r(%)

To establish (3.47) we note explicitly that ug(z) = i(|z|?/4), where

RC.

(3.47) JQ ug(z)dz =

7R
(3.48) L_l(s):%-i-% s(R? 4s)—7 sin~ (%)

One has therefore
2 R dr
J ug(z)dz = J u(|z|”/4) dz = o2n— J a(r?/4)r =
Q lz|<R 0 r

R?/4
:22n IO-ZnIJ ()<Q4/2ds
0
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Integrating by parts the last integral, and usi?g the fact that @#i(R*>/4) = 0, that # is

smooth at 0, and (3.39) (in which now f* = £%), we obtain

g (R4 (0-1))2
(3.49) J ur(z)dz = T IJ a ds
Q 0-2 J R _ ¢
4
2
:gﬁi@jJnggmﬂ S s
0-2 o R? — 45
With the substitution
, R%*—4s —2R%*t
= s S = 72 5
s 4+ 1)
the integral (3.49) becomes
2Q0'2n,1RQ *© 1
Lz wEE=T0 Jo (4+ )27 &

N O'Qn_lRQJ 1 dt
MO -2) R (14 2) @22

Now we use the formula

_1
J dt :nl/zr(" )

r(1+72)° [(a) ~
valid for any a > 1/2. We thus obtain
o1 /2T (%)
40-2)r(%?)

where 02,1 is the measure of the unit sphere S”~' in R?". Finally, using in the latter
equality the fact that

JQ ug(z)dz = R?

27" 27Z(Q72)/2
Oon—1 = =~ =
F(I’l) F(Q*Z)
2

we obtain (3.47). O

With the problem (3.24) in mind, it is convenient to rephrase part of the conclusion of
Theorem 3.16 in the following way.
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Corollary 3.17. Let V > 0 be given, and for any R > 0 consider the function ug defined
by (3.45). There exists R = R(V) > 0 (the choice of R is determined by (3.43)) such
that with Q = B(0, R) one has with u, = ug
Glu,) = J Uy(z) dz = K
Q 2

Although the following lemma will not be used until we come to the proof of Theo-
rem 1.4, it is nonetheless appropriate to present it at this moment, since it comple-
ments Corollary 3.17.

|Z|2 n.(Q*l)/Zl" Q771)
(3.50) Flu,] = J IVatty|? + 2 + (Votty, 24y dz = —————> "L RO,
o 4 21*(2)1"(@)
2 2
)

Proof. We recall that u,(z) = ii(|z|*/4) where @ is given by (3.48). One has

@'(12*/4)z,

N —

V.u,(z) =

and therefore

V“(Z)|2+E+<Vu(z) zi>—ﬁ 1+ ﬁ ’
zUp 4 Up\Z), = 2 )

We thus obtain

2] !

2
J |V2u,,|2+—+<vzu,,,zi>dz:_J lz|\/1 + ' (|z]*/4)* dz
Q 4 2 ) <r

0251 R / 2 dr R*/4 / )
B > J 1+ a/(72/4) r2n+1 7 — 22"710‘2;171 J 1+ I:l’(s) S(Q73)/2 ds.
0

0

Formula (3.39), in which f# = —R/2, gives

xans? =R
1+ (s) N

Inserting this equation in the above integral we obtain

, 2P -1 R Hp [ 5
JQ Vato + S+ Vot 24 dz = 27 "M”RJO e \/;;:ds'
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We notice that the last integral above is similar to the one in (3.49). Proceeding as in
the last part of the proof of Theorem 3.16, we finally reach the conclusion. O

At this point, recalling that (3.28) represents the Euler-Lagrange equation of the un-
constrained functional (3.27), and keeping (3.26) in mind, if we combine Theorem
3.16 with Corollary 3.17, and take Remark 3.12 into account, we obtain the follow-
ing result.

Theorem 3.19. Let F and 9 be the functionals

Fu] = J f(z,Vou(z))dz, Gu) = J g(u)dz,
supp(u) supp(u)

where f and g are defined in (3.26). Given V > 0, there exists R= R(V) > 0 (see
(3.43)) such that the function u, = ug in (3.45) is a critical point in & of the functional
F U] subject to the constraint G[u] = 4. This follows from the fact that u, is a critical

point in 9 of the unconstrained functional F [u] in (3.27).

Our next objective is to prove that the function u, in (3.45) is: 1) A global minimizer
of the variational problem (3.24); 2) The unique global minimizer. We will need some
basic facts from Calculus of Variations, which we now recall.

Definition 3.20. Let ¥~ be a normed vector space, and ¥ < ¥". Given a functional
F 9 - R ue?, and if ¢ is Z-admissible at u, one calls

e . —
def lirra F[u+ ep] — F [u]
&— &

0F (u; ¢)

the Gdteaux derivative of & at u in the direction ¢ if the limit exists.
Definition 3.21. Let ¥~ be a normed vector space, and ¢ < 7. Consider a functional

F : 9 — R. Z is said to be convex over 7 if for every u € Z, and every ¢ € ¥~ such
that ¢ is Z-admissible at u, and u + ¢ € &, one has

Flu+ gl = Flu =07 (u; ¢),

whenever the right-hand side is defined. We say that & is strictly convex if strict in-
equality holds in the above inequality except when ¢ = 0.

We have the following
Theorem 3.22. Suppose F is convex and proper over a non-empty convex subset

9" < (ie., F # o0 over D*), and suppose that u, € * is such that 0F (u,; ¢) = 0
for all ¢ which are 9 *-admissible at u, (that is, u, is a critical point of the functional
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F ), then F has a global minimum in u,. If moreover F is strictly convex at u,, then u,
is the unique element in & satisfying

Fu,) = inf{Z[v] |[ve 2.

Proof. Let ue %, and u # u,, then the convexity of &* implies that ¢ = u — u, is
@*-admissible at u,. From Definition 3.21 we immediately infer that

Ful — Fluy) = Fup + | — F [up] = 0F (up; ) = 0.

This shows that # has a local minimum in u,. When % is strictly convex at u,
we obtain Z[u, + @] > F [u,)], for every ¢ € ¥~ such that ¢ is Z*-admissible at u,.
If 4, € " is another global minimizer of %, then taking ¢ = u, — @,, we see that
F [u,) > F[i,]. Reversing the roles of u, and @, we find # [u,] = #[i,]. From the
strict convexity of Z at u, we conclude that it must be u, = i,. O

Our next goal is to adapt the above results to the problem (3.24). Given V' > 0 we
consider the number R = R(¥V) > 0 defined in (3.43), and consider the fixed ball
B(0, R). We consider the normed vector space * (R) = {u e C(B(0,R))|u=0 on
0B(0,R)}. Let

(3.51) 2(R)={ue? (R)|u=0,ue C*B(0,R)) n W-(B(0,R)),

B(0,R) = N{B(0, R + p) | supp(u) = B(0, R+ p)}}.
We notice that 2(R) is a non-empty convex subset of #"(R), and that for every
ue Z(R) one has u =0 on dB(0, R). Let i = h(z,u, p) be the function in (3.26) and
consider the functional (3.27). Given u € Z(R) and ¢ which is Z(R)-admissible at u,

in view of Theorem 3.9, we see that % is Gateaux differentiable at u in the direction
of ¢, and

(3.52) 59%m¢)JMOm%Azu@%WdﬂW@)+<Wﬁ@w@%VM@%V¢@D}ﬂ

+w}@

V.au+z4t/2

_ J {<V:u +24/2,V.)
B(0,R)

where in the above <-,-> denotes the standard inner product on IR**. One has the
following well-known sufficient condition for the convexity (strict convexity) of .

Proposition 3.23. If for a.e. z € B(0, R), for all ue 2(R) and p = Vu, the function h
in the definition of F satisfies for every ¢ which is Z(R)-admissible at u, and every
q="Vg,
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(353) h(z,u + v, p + ¢) - h(Z7 u, P) = hu(Z, u, p)¢ + <V[Jh(za u, p)a 61>

then F is convex on 9(R). If, instead, the strict inequality holds unless v =0 and
q =0, then F is strictly convex.

Proof. Let u e Z(R), and let ¢ be Z(R)-admissible at u. Using (3.52), we obtain

Flu+ ¢) — Fu

= J {h(z,u(z) + ¢(2), Vu(z) + Vg(2)) — h(z,u(z), Vu(z))} dz
B(0,R)

> J {hu(z, u(z), Vu(2))§(2) + <Vph(z, u(z), Vu(z)), Vé(2) ) } dz
B(0,R)

=07 (u; §).
Appealing to Definition 3.21 the conclusion follows. O
Our next goal is to prove that the unconstrained functional % in (3.27) is convex on
the convex set Z(R). Since each one of them has an independent interest, we will
provide two different proofs of this fact. The former is based on the following linear
algebra lemma, which is probably well known, and whose proof we have provided

for the reader’s convenience.

Lemma 3.24. Let A = [A;;] be an m x m matrix with entries given by

where D =" a? # 0,
=1

1

then A has 4 =0 as an eigenvalue of multiplicity one, and 2 =1 as an eigenvalue of
multiplicity m — 1.

Proof. First, consider the matrix I — A, which takes the form

aa; aya aas - Aldy
1 axdy dxdy  dxaz - Aoy
D

apmd)  apdy amdsz - Apdpy

It is easy to see that an equivalent row-echelon form of the matrix has the last m — 1
rows containing all zeros, thus I — A is a matrix of rank one. From the rank-nullity
theorem we conclude that 4 = 1 is an eigenvalue of A of multiplicity m — 1. We are
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thus left with showing the A =0 is a simple eigenvalue. For this we show that
det(A) = 0. Observe that det(A) = D" det(B), where

D—a12 —aa;  —a1a3

—ayap D—a% —a;

B =

—amdi —apdy  —amd3

—a1ay

—apy

D—ad2

m

To continue the computation of det(B), we replace rows R; by a1 R; — a;R; for j =
2,...,m and observe that a1 R; — a;R; takes the form

aiR; —ajRy = [—-a;D0 ---0a;D0---0].

We then have
det(B) = det(C),
where

D — al2 —a)ap
—azD alD 0

C= —CI3D 0 alD 0

—a,D 0 0 0

—da1apy

alD

To compute det(C) we take advantage of the special structure of the matrix, and

consider

—dq —d) —das

—ay @ wa

ccT =p?

—dm  Apdy  dpds

@ dp
2

al?’l

We note that if either @, = 0 or a3 = 0, then the matrix CC” has a column of zeros,
and therefore its determinant vanishes. Suppose then that a;, a3 # 0. Replacing rows
R, and R; by Ry + ao Ry and R; + a3 R; respectively, we see that the new rows two
and three have first entries given by —a; — aya; and —a3 — aja;, whereas all the re-
maining entries vanish. Either one of these rows is already a zero row or else, using
one to eliminate the other, we obtain a row of zeros, and therefore we conclude that
det(CCT) = 0. Hence, det(A) = D" det(B) = D" det(C) = 0. This completes the

proof of the lemma.

O
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Proposition 3.25. Given V > 0, let R = R(V') > 0 be as in (3.43). The functional F in
(3.27) is convex on D(R). As a consequence, the function ug in (3.45) is a global mini-
mizer of F on Z(R).

Proof. Considering the integrand h(z,u, p) = | p —&—% + Au in the functional & in
(3.27), we have

b (r4) 43

o )6

2 )

)

L
T3 |P+-T

hu,p; = 07

where in the above we have let

(3.54) z+

1

fy ifl<i<n
Cl—x; ifr+1<i<2n

The hessian of 4 with respect to the variable (u, p) € R x R?" now takes the form

V2 10
(u, p)

0
where, aside from the multiplicative factor 1/|p + z* /2|, the block .7 takes the form
of the matrix A in Lemma 3.24. We thus conclude that the eigenvalues of V2A(u, p)
are 2 =0 (of multiplicity two) and A= 1/|p+ z*/2| of multiplicity 2n — 1. Thus,
from Theorem 3.9, for a.e. z € B(0, R), the function (u, p) — h(z,u, p) is convex. This

in turn implies that & is convex on Z(R). From Theorems 3.19 and 3.22 we conclude
that ug is a global minimizer of # on Z(R). O

We next prove a slightly stronger result than Proposition 3.25, namely the convexity
of the function in IR?" which defines the integrand in % in (3.27). The proof of this
result is based on the following lemma.

Lemma 3.26. Let o € R*" be fixed, with o # 0, then one has

.\ def . .
f(q) = |allgl* = (Ig+ o — |al)<g, 0> > 0, for every g € R™".

Proof. We observe that £(0) = f(—a) = 0, and that f € C*(R*\{—a}). We want to
analyze the possible critical points in IR?"\{—a} of the function f. It is easier to re-
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duce the problem by introducing spherical coordinates. Let o = row, with wy € S~
and rp > 0, we can consider a system of spherical coordinates in which the “north
pole” coincides with w( and the colatitude angle 8 denotes the angle formed by the
vector ¢ € R?"\{—u} with wy. In such a system we let ¢ = ro, with @ € S$**~', and
r = |q|, so that cos 0 = {w, ). We observe that the function f is constant on every
2n — 2 dimensional sub-sphere sin 0 = const of the unit sphere S$**~! < R*", and we
want to exploit these symmetries of f. For z e R* we let r = r(z) = |z|, and 0 =
0(z) = cos™'({z/r,wp)). Writing f(z) = f(r(z),0(z)), we are thus led to consider

f(r,0)=f(q) = ror? — (\/rg + 12 4 2rgrcos 0 — ro)rorcos 0.

If we now set ¢ = r/ry, then we can consider the function

1
g9(1,0) = = f(rot,0) = * — (/1 + 1>+ 2tcos 0 — 1)t cos 0,
I,

0

for (¢,0) e Q =0, 0) x [0,x], with (z,0) # (1,7). When ¢ =0, then ¢ =0 and we
have already observed that f(0) = 0. When 6 = 0, then g = po for some p > 0, one
readily recognizes that f(pa) = 0. Finally, when ¢ > 0 and 6 = 7 we have g(z,7) =0
if0 <t<1,and g(z,7) > 0 for ¢ > 1. In conclusion, we have f(g) = 0 for ¢ = pa for
some p > —1, whereas we have f(g) > 0 for ¢ = pa with p < —1. We now consider
the possible critical points of f. Using the chain rule we see that

i e (- 0))

r rsin @

Since (z,wy —=¢z) = 0, we find

fZ
Jo
r2sin’ 0

cos 0 r
_ s =

1
VFI1? = 17+ 4515
r

(<]

which allows us to conclude that Vf vanishes outside of the set of points ¢ = pa with
p=—1, if and only if f, = fp =0 at interior points of Q. This is equivalent to
studying the interior critical points of the function g(¢,6) in Q. One has

(3.55) Vg(t,0) = (2; ~(V1+ 2+ 2tcos0 — 1) cos O — (t+cosO)tcos O 7
V14124 21cos0

)
(VT4 2+ 2050 — 1)tsin 0 4 500080 )
V1412 +2tcosb

= (91,90)-

Since now 0 < 6 < z it is clear that gy = 0 if and only if
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tcos 0
(3.56) (V1+ 22+ 2tcos0—1)=— cos .
(V141> +2tcosd

On the other hand, we see that g, = 0 at points where (3.56) holds if and only if

12 cosd

=2
gr V1 + 12+ 2tcosf

which is equivalent to

tcosf

V1+ 122+ 2tcos0

It is clear that if #/2 < 0 < x, then (3.57) has no solutions. Suppose then that
0 < 0 < 7/2. In this range, equation (3.57) is equivalent to

(3.57) 2=

12 cos? 0

g—_ LCOSY
1+ 24 2tcosf’

which is in turn equivalent to
(4 —cos? 0)r* + 8tcosO+ 4 =0.

An easy verification which we leave to the reader shows that the latter equation has
no solutions ¢ > 0 in the range 0 < 6 < /2. In conclusion, the function g(¢,0), and
therefore has no interior critical points. Therefore, g(¢,0) > 0 for every (z,0) € Q.
This allows to conclude that f(g) > 0 for all ¢ € R?", thus completing the proof of
the lemma. O

At this point we observe that Lemma 3.26 provides an alternative proof of Proposi-
tion 3.25. It suffices in fact to consider for every u € Z(R) and every ¢ which is Z(R)-
admissible at u, the vectors a(z) = Vu(z) + z+/2, g(z) = Vé(z). Let F be given by
(3.27) and recall (3.52). One has,

(3.58) ZFlu+ ¢l — 7

N

V.u+z5)2| + g} d=

:J (Vo4 25/2 4+ Vg
B(0, R)

- J 2V, Veu+24/2) + |V
B(0,R)

Ay de.
\V.ou+4z1)2| + V;quzL/ZJerqiﬁlJr ¢} )

From Theorem 3.9 we know that there exists Z < Q, with |Q\Z| =0, such that
|o(z)| # O for every z € Z. We intend to show that for every z € Z we have
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2g.w + g _ <q.0

3.59 >
B3 T ard = 0

This would imply

2Vp, Vo252 + |Vog? (Vep Vot 242)

3.60
(3.60) \Vou+z+/2| + |Vau+ 2424+ Vg = [Vau+2zhH)2] 7

which would prove that & is convex. For every z € Z the inequality (3.59) is easily
seen to be equivalent to

(3.61) (g +al — |#])<q,2> < lgI*|a,
which is true in view of Lemma 3.26. Finally, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. We fix V' > 0 and consider the collection of all sets E € & such
that ' = |E|. We want to show that the problem of minimizing Py (E;H") within
this subclass admits a unique solution, and that the latter is given by (3.45), in which
the parameter R = R(V) has been chosen as in (3.43). According to condition (i) in
the definition of the class &, we have V'/2 = |E n H|. Still from assumption (i), and
in view of Theorem 3.7, it is enough to minimize Py (E;IH’). This is an important
point. In fact, Theorem 3.7 states that, if E is an isoperimetric set, i.e., if £ minimizes
Py (o;TH") under the constraint |E| = V/, then

(3.62) Py(E;HY) = Py(E;H").

This implies that the minimizer must be sought for within the class of sets E € & such
that |E| = V, and for which (3.62) holds, which is in turn equivalent to proving ex-
istence and uniqueness of a global minimizer in the class Z(R) defined by (3.51). The
existence of a global minimizer follows from Proposition 3.25, and such global min-
imizer is provided by the spherically symmetric function ug in (3.45). We are thus left
with proving its uniqueness. The latter will follow if we can prove that for every
Z(R)-admissible function ¢ at ug the strict inequality

Flug + ¢] > F [ug]

holds, unless ¢ = 0. This will follow from the strict inequality in (3.60) for every
z € Z, with u replaced by the function ug in (3.45), unless ¢ = 0 in B(0, R). Such strict
inequality is equivalent to proving strict inequality in (3.61) on the set Z, with
q(z) = Vé(z) and a(z) = Vug(z) + z*+ /2. We emphasize here that, in view of (3.45),
the vector-valued function «(z) only vanishes at z = 0. Keeping in mind that ug €
C?(B(0,R)), and that, since ¢ is Z(R)-admissible at ug, we have ¢ € C*(B(0,R)),
and ¢ = 0 on dB(0, R), an analysis of the proof of Lemma 3.26, brings to the con-
clusion that the desired strict inequality holds, unless either V¢ = 0, in which case we
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conclude ¢ = 0, or there exists a function p € C'(B(0, R)), with p > —1, and such
that for every z€ Z

(3.63) Vi(z) = p(2) (VuR(z) + %)

We remark explicitly that the possibility p = const in (3.63) is forbidden by the fact
that the vector field z — Vug(z) + z+/2 is not conservative in B(0, R). Furthermore,
since the functions in both sides of (3.63) are in C!(B(0, R)), the validity of the in-
equality for every z € Z is equivalent to its being valid on the whole B(0, R).

We thus want to show that (3.63) cannot occur. To illustrate the idea, we focus on
the case n = 1 and leave the trivial modifications to the interested reader. We argue
by contradiction and suppose that (3.63) hold. This means

¢xp<uR‘x+§)a ¢y p(”R,y;),

Since ¢ € C*(B(0, R)), differentiating the first equation with respect to y and the
second with respect to x, and keeping in mind that ug is spherically symmetric (see
(3.45)), from the fact that ¢ € C*(B(0, R)), and therefore ¢, we infer that we
must have

= )

XY S _
(3.64) (2 u2>px+<2+u2)py+p 0,

where, we recall, ug(z) = i(|z|*/4), see (3.48). We now fix a point z € B(0, R)\{0},
and consider the characteristic curve starting at zop = (xo, yo), z(s) = z(s,zo) of the
transport equation (3.64). Letting z(s) = (x(s), ¥(s)), we know that such curve sat-
isfies the system

x'=%—u
(365 <, 3
2

It is clear that s — p(z(s)) satisfies the Cauchy problem

& p(els) = (=), pl=(0)) = plzo).

and therefore
(3.66) pl=(s)) = p(z(s,20)) = plz0)e "

Multiplying the first equation in (3.65) by x, and the second by y, we find
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d

$IZ(S)I2 = |z(s)I%,

which gives
(3.67) |z(s)|* = |zo) ¢’

It is clear that —co < s < 21og(R/|zo|). For every s in this range, we obtain from
(3.63), (3.66), and from (3.39),

L

- z(s) + z(s)
R? — |z(s)]

Using (3.67), we finally obtain

2 pE)’e™ ool l2s)
[Vé(z(s))|” = 7 |zo| "€ [RZ— |Z(S)|2+1 .

Letting s — —oo in the latter equation, we reach the conclusion

EDNETS
Vp(0)]* = 1

which contradicts the continuity of |V¢| at z = 0, unless p = 0. But this would con-
tradict our assumptions on p. We conclude that ug given by (3.45) is the unique
minimizer to the variational problem (3.24) in 2(R). O

Remark 3.27. We mention that an alternative proof of the uniqueness of the global
minimizer ug in Theorem 1.1 could be obtained by the interesting comparison The-
orem C’ on p. 163 in [CHMY].

Proposition 3.28. Suppose E € & is a critical point of the H-perimeter subject to the
constraint |E| = const, then S = OE has constant H-mean curvature. In particular, the
isoperimetric set E, found in Theorem 1.1 is a set of constant positive H-mean curva-
ture A = %.

Proof. Let E € & be given and let u be the function describing JE in IH”. To prove
that OF has constant H-mean curvature we could appeal to Remark 3.13. Instead, we
proceed directly as follows. We recall that u(z) = i(|z|*/4) for some C? function i,
and the assumptions that E is a critical point of the H-perimeter means that & sat-
isfies (3.33). From the discussion in the proof of Theorem 3.14, the left hand side of
(3.33) (that is the Euler-Lagrange equation) becomes

rF'(r) + (@ = 2)F(r)
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where F(r) is given by (3.34). A simple computation gives

P2 (r2/4) = 20 (24 (1 + 7 (12/4)%)
B 22(1+a'(r2/4)°) "2

F'(r)

b

and therefore we have

2(0 = 3)i (r2/4)(1 + ' (/4)%) + r2a’ (2 /4)

(3.68) rF'(r)+(Q—2)F(r) = 2r(1 + a'(r2/4)%)?

Rewriting the Euler-Lagrange equation (3.33) for such functions u (or #) we have

2(0 - 3)a' (P2 /4)(1 + @' (r2/4)%) + r2a" (r? /4)

21 + i (r2/4)2) =

(3.69)

where 1 is of course a constant. We make a change of notation by letting s = r>/4 in
(3.69), we found

(3.70) LTI+ i'(s)°) + 250"(s) _

251 + a'(s)%)*?

Comparing (3.70) with (3.14), we infer that the H-mean curvature of such surfaces is

o @=EE(A+a(9)) +250"(s)

251 + it (s))?

If the set E, is described by ug(z), where ug(z) is given by (3.45), then from (3.44) in
Theorem 3.16 we conclude that the H-mean curvature of E, is given by

This completes proof of Theorem 1.1.

Proof of Theorem 1.4. We have already established the restricted isoperimetric in-
equality. Furthermore, the invariance of the isoperimetric quotient with respect to the
group translations and dilations is a consequence of Propositions 2.11 and 2.12. We
are left with the computation of the constant Cy. To this end, we use the set Er de-
scribed by u,. We note that the integrals (3.47) and (3.50) give |Eg|/2 and Py (E;H)
respectively, and therefore after some elementary simplifications we obtain

2/Q
|Eg|@/2 Q- 1)1“(%
0= —— = 1 '
Py(Er;H") o-n/2(Q — 2)1"(%) /Qn(Qfl)/zQ

This completes the proof. O
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