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Abstract. Depth estimation for dynamic scenes is a challenging and rel-
evant problem in computer vision. Although this problem can be tackled
by means of ToF cameras or stereo vision systems, each of the two sys-
tems alone has its own limitations. In this paper a novel framework for
the fusion of 3D data produced by a ToF camera and a stereo vision
system is proposed. Initially, depth data acquired by the ToF camera
are up-sampled to the spatial resolution of the stereo vision images by
a novel super-resolution algorithm based on image segmentation and bi-
lateral up-sampling. In parallel a dense disparity field is obtained by a
stereo vision algorithm. Finally, the up-sampled ToF depth data and the
disparity field provided by stereo vision are synergically fused by enforc-
ing the local consistency of depth data. The depth information obtained
with the proposed framework is characterized by the high resolution of
the stereo vision system and by an improved accuracy with respect to ei-
ther the ToF and the stereo measurements. Experimental results clearly
show how the proposed method is able to outperform the compared fu-
sion algorithms.

1 Introduction

Depth estimation for dynamic scenes is a classic computer vision problem and
it has attracted a large amount of research. Many solutions have been proposed
for this problem including stereo vision systems, Time-of-Flight (ToF) cameras
and light-coded cameras (such as Microsoft Kinect). Concerning stereo vision
systems, in spite of the fact that recent research in this field has greatly improved
the quality of the estimated geometry, results are yet not completely satisfactory,
specially in estimating the geometry of scenes with limited texture information
(aperture problem) or with repetitive texture patterns. A detailed description of
the state-of-the-art in this field can be found in [1]. The introduction of Time-
of-Flight cameras and of light-coded cameras (e.g., Microsoft Kinect) is more
recent. These sensors are active systems that emit an infrared illumination, and
estimate 3D scene geometry by analyzing the reflection of such an illumination.
The great advantage of such systems is their ability to robustly estimate in real
time the 3D geometry of the scene. Their main limitations are their low spatial
resolution, their inability to deal with low IR-reflective surfaces (e.g., dark or
black surfaces), and the high level of noise in their measurements.

The characteristics of ToF and stereo data are somehow complementary,
therefore the problem of their fusion has attracted a lot of interest in the last
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years. The overall goal of ToF and stereo data fusion is to combine the infor-
mation of a ToF camera and a stereo system in order to obtain an improved
3D geometry that combines the best features of both subsystems, such as high
resolution, high accuracy and robustness with respect to different scenes.

In this paper a method for the fusion of data coming from a stereo system and
a ToF camera satisying this requirements is proposed. The proposed framework
is constituted by three different steps:

– a first step, in which the depth data acquired by the ToF camera are up-
sampled to the spatial resolution of the stereo vision images by a novel
super-resolution algorithm based on image segmentation and bilateral up-
sampling.

– a second step, that can be performed in parallel, in which a dense disparity
field is obtained by means of a stereo vision algorithm.

– a third step in which the up-sampled ToF depth data and the stereo vi-
sion output are synergically fused by extending the Local Consistency (LC)
approach proposed in [2].

Furthermore, even if in this paper the fusion of the data coming from a ToF
camera and a stereo pair is considered, the proposed approach can be applied
to other active depth sensors such as the Microsoft Kinect.

The paper is organized as follows: Section 2 reviews the state-of-the-art in the
fusion of data from a ToF camera with data from a stereo pair. Section 3 reports
an overall presentation of the proposed framework, Section 4 presents a novel
method for the super-resolution of ToF data, Section 5 explains the choice of the
considered stereo vision algorithm and Section 6 presents the proposed ToF and
stereo data fusion approach based on the LC strategy. Section 7 demonstrates
the effectiveness of the proposed method with experimental evidence and Section
8 finally draws the conclusions.

2 Related Work

In spite of the fact that ToF cameras reached the market only a few years ago,
the fusion of information provided by ToF range cameras and by standard color
cameras has already received considerable attention. The first attempt to com-
bine a low resolution ToF range camera with a high resolution color camera in
order to provide an high resolution depth map is presented in [3], where the
authors adopt a Markov Random Field (MRF) approach, by defining a graphi-
cal model of the acquired frame that is minimized via conjugate gradient. The
fundamental hypothesis of this method, as well as of most of the other methods
that couple a ToF range camera with a color camera is that discontinuities in
the range data and in the color images tend to align.

A considerably wide class of methods proposed in order to solve this problem
is based on the bilateral filter [4], e.g. in [5] an approach based on bilateral
filtering is proposed where the input depth map is used in order to build a
3D volume of depth probability (cost volume). The method of [5] can also be
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generalized to the case of two color cameras instead of only one. In order to
reduce the computational burden of the iterative bilateral filtering on the cost
volume, a hierarchical version of the bilateral filtering method is proposed in [6].
In [7], an interesting temporal extension of [5] to the case of non-synchronized
distance measurements is proposed in order to treat the more general case in
which range measurements and color information are not synchronized.

The approach of [8] is different from the other methods, because it explic-
itly imposes that range and color discontinuities are aligned, while in the other
methods this hypothesis is accounted only implicitly. In [8] the high resolution
color image is firstly segmented, and then an interpolation of the low resolution
depth map samples is performed exploiting only the samples that lie in the same
segment of the interpolated location.

Another possible approach is the synergic fusion of data from a ToF with
a couple of color cameras, i.e., a stereo vision system. A first approach to this
problem is [9], in which the depth map acquired by the ToF and the depth
map acquired by the stereo pair are separately obtained and averaged. Another
approach was proposed in [10] where the depth map acquired by the ToF is
reprojected on the reference image of the stereo pair, it is then interpolated
and finally used as initialization for the application of a dynamic programming
stereo vision algorithm. A different method was proposed in [6]. After the up-
sampling of the depth map acquired by the ToF by a hierarchical application
of bilateral filtering, the authors apply a plane-sweeping stereo algorithm to the
acquisition volume defined with respect to the ToF reference frame. Finally the
depth information acquired from the ToF and from the stereo are fused together
by means of a confidence based strategy. In [11] a different method is proposed,
based on a probabilistic formulation. The final depth map is recovered from the
one acquired by the ToF and the one estimated with the stereo vision system by
performing a MAP local optimization in order to increase the accuracy of the
depth measurements. The method proposed in [12] is instead based on a global
MAP-MRF framework solved by means of belief propagation. An extension of
this method that takes into account also the reliability of the data acquired by
the two systems has been proposed in [13].

3 Proposed Method

As previously stated, the considered acquisition system is composed of a ToF
range camera and a stereo system. The two acquisition systems are jointly cal-
ibrated by means of the method proposed in [11], which provides an accurate
estimation of the relative positions of the ToF sensor with respect to the stereo
cameras. Other possible calibration methods such as [6, 12, 10], were not con-
sidered since they are characterized by higher calibration errors. The adopted
calibration procedure firstly requires to calibrate and rectify the stereo pair.
The intrinsic parameters of the ToF sensor are then estimated and finally the
extrinsic calibration parameters between the two systems are estimated by the
closed-form technique adopted in [11]. The calibration procedure computes the
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intrinsic parameters matrix of the rectified stereo cameras Ks, the intrinsic pa-
rameters matrix of the ToF camera Kt, the baseline of the rectified stereo pair
b and the matrix that describes the relative rototranslation between the ToF
camera reference frame and the stereo pair reference frame (associated with the
left camera) Tt→s. Once the overall 3D acquisition system is calibrated, it is
possible to reproject the ToF depth measurements to the stereo pair reference
frame.

The proposed algorithm is divided into three different steps:

1. Computation of a high resolution depth-map from the ToF data by reprojec-
tion of the low resolution depth measurements acquired by the ToF camera
into the lattice associated with the left camera and interpolation of the vis-
ible points only (super-resolution step).

2. Computation of a high resolution depth-map by applying a stereo vision
algorithm on the rectified images acquired by the stereo pair.

3. Locally consistent fusion of depth measurements obtained by the stereo vi-
sion algorithm and the up-sampled version of the data obtained by the ToF
sensor by means of an extended version of the LC technique [2].

4 Super-resolution of ToF data

Different approaches have been proposed for the super-resolution of ToF data
by exploiting auxiliary color images. In some previous works [14] bilateral fil-
tering has been used to exploits color information in order to assist the depth
interpolation. Other methods [8] exploit instead color data segmentation, which
leads to high quality results, but they are prone to segmentation artifacts. In
this work the sparse disparity measurements are interpolated by a novel inter-
polation method that exploits both these ideas in order to obtain better results.
This allows to combine the good edge preserving quality of the segmentation-
based method proposed in [8] and the good error reduction properties of the
bilateral filter. The proposed super-resolution method is one of the major con-
tributions of this paper. It is an improvement with respect to the state-of-the-art,
since it allows to obtain high quality results like the method of [8] and at the
same time it has the robustness of the approaches based on the bilateral filter
like [14]. Over-smoothing effects typical of simply bilateral filter-basted meth-
ods and segmentation artifacts sensitivity of [8] are undesired effects that the
proposed method allows to overcome.

The first step of the proposed method consists in the reprojection of the
low resolution depth measurements acquired by the ToF camera into the lattice
associated with the left camera and the interpolation of the visible points only, in
order to obtain an high resolution depth map. In order to accomplish this step,
all the 3D points PT

i , i = 1, ..., n acquired by the ToF camera are first projected
onto the left camera lattice Λl (excluding the ones that are not visible from the
left camera point of view) thus obtaining a set of samples pi, i = 1, ..., n over
the left camera lattice. Note how the n samples acquired by the ToF camera
cover only a small subset of the N samples of the lattice Λl = pj , i = 1, ..., N
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associated to the high resolution color camera. For example in our setup the
ToF resolution is n = 176× 144, while the high resolution cameras used for the
experimental results have a resolution of N = 1032 × 778 pixels and n is just
3% of N . The data acquired by the ToF camera allow to associate to each non-
occluded acquired sample pi a depth value zi, i = 1, ..., n that can be mapped
to a disparity value di, i = 1, ..., n by the well known relationship between depth
and disparity:

di =
bf

zi
(1)

where b is the baseline and f is the focal length of the rectified stereo system.
This procedure makes available a set of sparse disparity measurements on the
lattice associated to the left camera of the stereo pair, as shown in the example
of Fig. 1.

a) b)

Fig. 1. Example of sparse disparity measurements: a) cropped color image framing the
acquired scene; b) disparity data acquired by the ToF camera reprojected on the lattice
associated to the left camera (the depth map acquired by the ToF camera is shown in
the upper left corner at its original size).

The goal of the proposed interpolation method is to associate to all the
points of the lattice Λl a disparity value d̃j , j = 1, ..., N . Such a value is simply
di, i = 1, ..., n for the fraction of points of Λl that have an associated disparity
value from the reprojected ToF depth measurements but it must be computed
by interpolation for all the other points of Λl, i.e., the majority of the points in
Λl. In order to accomplish this, the color image acquired by the left camera is
firstly segmented using the method based on mean-shift clustering proposed in
[15] thus obtaining a segmentation map S(pj), j = 1, ..., N that maps each point
of Λl to the corresponding region.

In order to achieve a low noise level in the upsampled depth map and at
the same time preserve edges a novel interpolation scheme is here introduced.
In the following step a window Wj of size w × w centered on each of the pj
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samples that does not have a disparity value already available is considered for
the computation of the estimated disparity value d̃j . The samples that already
have a disparity value from the ToF measures will instead just take that value.
The set of points inside the window can be denoted with pj,k, k = 1, ..., w2 and
finally W ′

j ⊂ Wj is the set of the points pi,k ∈ Wj with an associated disparity
value di. In standard bilateral filtering [4] the interpolated disparity of point pj
is computed as the weighted average of the disparity values in W ′

j where the
weights are computed by exploiting both a weighting function in the spatial
domain and one in the range domain. In the proposed approach we employ
a standard 2D Gaussian function as in [4] for the spatial domain weighting
function fs(pi,k, pj). The range domain function fc(pi,k, pj) is also a Gaussian
function but it is not computed on the depth itself, but instead we computed it
on the color difference between the two samples. Furthermore, in order to exploit
segmentation information to improve the performance of the bilateral filter, also
a third indicator function Isegm(pi,k, pj) defined as:

Isegm(pi,k, pj) =

{
1 if S(pi,k) = S(pj)
0 if S(pi,k) 6= S(pj)

(2)

is introduced. The interpolated depth values are finally computed as:

d̃js=
∑
W ′

j

[fs(pi,k, pj)Isegm(pi,k, pj)di,k + (3)

fs(pi,k, pj)fc(pi,k, pj)(1− Isegm(pi,k, pj))di,k]

Note how the proposed interpolation scheme act as a standard low-pass inter-
polation filter inside each segmented region while samples that are outside the
region are weighted on the basis of both the spatial and range weighting func-
tions thus getting a lower weight, specially if their color is also different from
the one of the considered sample. The output of the interpolation method is a
disparity map Dt,s defined on the lattice Λl. For clarity’s sake let us emphasize
that in our case about the 3% of the values of Dt,s is obtained by reprojection of
depth measurements by the ToF camera, while the remaining 97% is obtained
by the proposed interpolation scheme. The proposed scheme offers an attractive
novel super-resolution method because it couples the precision of segmentation-
based methods [8] with the edge-preserving noise reduction capability of bilateral
filter weighting [14]. Moreover, since the proposed method does not only take
into account the samples inside the regions, this approach is also robust with re-
spect to segmentation artifacts, i.e., the main drawback of [8]. The image shown
in Fig. 2 is obtained by applying the proposed method on the sparse dispar-
ity map of Fig. 1. It is interesting to notice the improvements with respect to
the results obtained with method of [14] based on bilateral up-sampling (that
produces over-smoothing) and with respect to the one of [8], that is prone to
segmentation artifacts.
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Garro et al. 

Proposed 

Method 

Kopf et al. 

Fig. 2. Example of disparity measurements acquired by the ToF camera up-sampled
to the lattice associated to the left camera. The full disparity is obtained by applying
the proposed super-resolution method. In the zoomed pictures, there is a comparison
of the results obtained applying the proposed method (green marker), the results of the
application of the segmentation-based approach of [8] (blue marker) and the results of
the direct application of bilateral filtering as proposed in [14] (yellow marker).

5 Stereo vision disparity estimation

Since our setup includes two calibrated color cameras, an additional high reso-
lution disparity map Ds on lattice Λl can be inferred by means of stereo vision.
The data fusion algorithm presented in the next section is independent of the
choice of the stereo vision algorithm, therefore any stereo vision algorithm is po-
tentially suited to extract the disparity map Ds. For our experiments we adopted
the Semi Global Matching (SGM) algorithm proposed in [16]. This method infers
disparity by performing multiple scanline optimizations (SO) on 1D domains so
as to obtain a good trade-off between accuracy and computational complexity.
SGM minimizes along each of the 8 or 16 scanlines an energy term made of a
point-wise matching cost and of a regularization term that enforces smoothness
within the 1D domain (i.e. each scanline). Each SO can be computed efficiently
in polynomial time. Summing up, for each point and for each disparity hypothe-
sis, the energy provided by each independent SO allows to avoid the well known
streaking effect arising with a single SO. A detailed description of the SGM al-
gorithms can be found in [16]; for our experiments we used the implementation
available in the OpenCV library.
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f

Fig. 3. Propagation of the plausibility for the disparity hypothesis d(f) to the neigh-
boring points.

6 Fusion of stereo and ToF disparity

Given the depth maps provided by an active ToF camera and a passive stereo
vision system we aim at combining the potentially multiple range hypotheses
available for each point by means of a technique that enables to obtain a locally
consistent depth field. Our method extends the Locally Consistent technique
(LC) [2] proposed for stereo matching so as to deal with the (potentially) twice
disparity hypotheses available with our setup.

Given a dense disparity field provided by a stereo matching algorithm, the
original LC technique enabled to improve the overall accuracy by propagating,
within a patch referred to as active support centered on each point f of the ini-
tial disparity field, the plausibility of the same disparity assignment made for the
central point f to each point g within the parch. As depicted in Figure 3, for an
active support of size 5×5 pixels centered in f , the plausibility Pf⇀g(d(f)) prop-
agated from f to each point g within the active support is computed according
to the image content [2]. Specifically, the cues deployed by LC to propagate the
plausibility within the active support centered in f at a given disparity hypoth-
esis d(f) are the the color intensity of each point in the reference and the target
image with respect to the corresponding central point of the active support, the
matching cost for the assumed disparity hypothesis and a prior constraint related
to the Euclidean distance of the examined point with respect to the center f
of the active support. Therefore, after propagating this information, the overall
plausibility of each disparity hypothesis is given by the amount of plausibility
for the same disparity hypothesis received from neighboring points.

In this paper, we extend the LC approach in order to deal with the multiple
input range fields provided by the active and the passive range measurement
available in our setup. It is worth noting that, in this circumstance, for each
point of the input image we can have 0 (both sensors don’t have a potentially
valid range measurement), 1 (only one of the two sensors provides a potentially
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valid range measurement) or 2 disparity hypotheses (both sensors provide a po-
tentially, yet not necessarily equal, valid range measurement). Our method, for
each point of the reference image with at least one range measurement computes,
within an active support of size 39 × 39 and with the same strategy proposed
in [2], the plausibility originated by each valid range sensor and propagates this
potentially multiple plausibility to neighboring points that falls within the active
support. It is worth noting that with 39 × 39 active support each valid dispar-
ity assignment provided by the ToF camera or the stereo sensor is propagated
to 1521 neighboring points. Therefore, with this strategy, in the optimal case
(i.e. when both range measurements for the examined point f are available) we
are able to propagate within 1521 neighboring points the plausibility of the two
disparity hypotheses originated by both sensors in f . When only a single sen-
sor provides a valid range measurement for f we propagate its plausibility to
1521 neighboring points according to the unique valid hypothesis. Finally, when
the point f under examination has not a valid range measurement we do not
propagate any plausibility at all towards neighboring points. Nevertheless, it is
worth observing that in this latter case, as well as in the other two former sce-
narios, one point receives several plausibilities from neighboring points if there
are neighboring points (i.e. valid range measurements provided by ToF or stereo
vision) within the size of the active support that propagated the plausibility
of their disparity hypotheses. In most cases the depicted scenario is verified in
practice. Once accumulated the overall plausibility for each point incoming from
neighboring points according to the described strategy, for each point and for
each hypothesis, we cross-check and normalize the overall plausibility similarly
to [2]. Finally, we select for each point by means of a simple winner-takes-all
strategy the disparity hypothesis with the highest overall plausibility.

It is worth to note that the proposed fusion approach implicitly addresses
the complementary nature of the two sensors. In fact, in uniformly textured
regions, where the stereo range sensing is quite inaccurate (and partially filtered-
out, in our experiments, enforcing the left-right consistency check), our approach
propagates only plausibility originated by the ToF camera. Conversely, in regions
where the ToF camera does not provide reliable information (e.g. dark objects)
we propagate the plausibility of the disparity hypotheses provided by the stereo
sensor. Of course, in regions with both range measurements we propagate the
plausibility originated by both sensors.

7 Experimental Results

In order to evaluate the performance of the proposed algorithm we used an
acquisition system made by a Mesa SwissRanger SR4000 ToF range camera
with a resolution of 176× 144 pixels and by two Basler scA1000 video cameras
(with a resolution of 1032× 778 pixels) synchronized in hardware with the ToF
camera. Such a system can collect about 15 fps in a synchronized way, so there
is no need for non-synchronized methods, such as the one proposed in [7]. The
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Disparity map MSE Scene a) MSE Scene b) MSE Scene c) Average MSE

Proposed (ToF Interp.) 7.60 10.98 7.08 8.56

SGM stereo [16] 17.79 38.10 86.36 47.42

Proposed (ToF+Stereo) 3.76 6.56 8.69 6.34

Kopf et al. [14] 14.98 27.69 13.19 21.95

Garro et al. [8] 13.07 27.91 12.95 18.36

Yang et al. [5] 15.18 28.12 15.72 19.67

Table 1. MSE with respect to the ground truth: (first row) for the interpolated dis-
parity map from the ToF depth measurements, (second row) for the disparity map
calculated with the SGM stereo vision algorithm, (third row) for the final disparity
map calculated after the data fusion, (fourth row) for the application of method [14],
(fifth row) for the application of method [8] and (sixth row) for the application of
method [5]. All the MSEs calculated for scene a), scene b) and scene c) are reported
in the first three columns of the table. In the last column, the average MSE on the
three scenes is reported. The MSE has been calculated only on non-occluded pixels for
which a ground-truth disparity value is available.

system was calibrated with the method proposed in [11], thus obtaining a 3D
reprojection error of about 5mm on the joint stereo and ToF calibration.

The proposed framework for the data fusion has been tested on different
scenes acquired with the acquisition system described before. The results on
three samples scenes are reported in Fig. 4. Note how scene a) and scene c)
have a uniform background that is quite critical for stereo vision systems due
to the lack of the textures (and in fact in row 4 many missing areas are visible)
while scene b) has a texture pattern also on the background. For each of the
acquired scene, an accurate disparity map has been acquired with an active
space-time stereo system [17] integrating 600 images that has been considered
as the ground-truth. The estimated disparity map with the interpolated data
from the ToF measurements, the disparity map estimated with the SGM stereo
vision algorithm and the disparity map obtained at the end of the proposed data
fusion algorithm have been compared with the ground-truth disparity map.

The average mean-squared-errors (MSE) have been calculated for each of the
three estimated disparity maps on each scene, and the results are reported in
Table 1. In the table the proposed framework is also compared with the state-
of-the-art methods of [14], of [8] and of [5]. In the last column of the table the
average MSE of the estimated disparity maps on the three different scenes is also
reported. From the MSE values on the three different scenes, it is immediate to
notice how the proposed framework is capable of providing more accurate results
than the interpolated ToF data and the stereo measurements. The results are
also significantly better than the compared state-of-the-art methods on all the
considered scenes. While concerning scene a) and b) it is immediately clear how
the proposed method provides the best results, in scene c) it is the interpolation
of the ToF measurements with the proposed method that provides the minimum
MSE. This is due to the fact that this planar texture-less scenes constitute
a simple case for the ToF depth measurements and a difficult case for stereo
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algorithms. This fact is reflected also on the high MSE value of the stereo vision
system alone. However, as soon as a more complex scene geometry is considered
(e.g., the puppet in scene a)) the results of the proposed fusion framework are
superior to the single application of the interpolation algorithm on the ToF
disparity measurements. In presence of more texture information (e.g., scene b))
the contribution of the stereo is relevant, and the final results of the data fusion
algorithm halves the MSE if compared with the application of the interpolation
algorithm on ToF data alone. Note also how the proposed method not only
provides a lower MSE than the approaches of [14], [8] and [5], but also the
improvement is very large in scenes a) and b) where both the stereo system
and the ToF camera provides accurate information. This is a clear hint of the
fact that the fusion algorithm is able to combine efficiently the two information
sources. More detailed results are available in the additional material. All the
datasets used in this paper will be made available on our website (currently
removed for blind review).

The current implementation is not fully optimized and takes about 50 sec-
onds. Nevertheless each component of the overall proposed method is well suited
for a real-time GPU implementation. The current bottleneck is the local consis-
tency data fusion step, that takes about 40sec.

8 Conclusions and future work

This paper presents a novel method for the synergic fusion of 3D measurements
taken from two heterogeneous 3D acquisition systems (one active, the ToF, and
one passive, the stereo system) in order to combine the advantages of both
systems. There are two main contributions introduced in this paper. The first
is a novel super-resolution method used as interpolation technique to up-sample
the active sensor data that is able to combine precision near discontinuities,
robustness against segmentation artifacts and edge preserving noise reduction.
The second is the adoption of the local consistency framework in the context
of heterogeneous sensors data fusion, i.e. an active sensor and a stereo vision
system. The interpolation technique for the up-sampling of the active sensor
data is “per se”a novel super resolution method capable to provide an high
resolution depth map, very precise and robust with respect to errors in the depth
measurements of both the active sensor and the stereo pair. The results obtained
by the application of the proposed overall framework are always better than the
results of the application of the compared methods. The proposed method is
able to accurately estimate high resolution depth fields.

Furthermore the proposed framework is suited for a real-time GPU imple-
mentation, that is currently under development. Even though the method in this
work is exemplified on an acquisition system made by a stereo pair and a ToF
camera, we are considering its extension to different scenarios, e.g., to the case
of a stereo pair and a structured light camera (e.g. Microsoft Kinect).
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1)

2)

3)

4)

5)

6)

7)
a) b) c)

Fig. 4. Results of the proposed fusion framework. The columns correspond to the three
different datasets on which the algorithm has been tested. Rows: 1) Cropped left image
acquired by the left camera of the stereo pair; 2) Sparse disparity data acquired by
the ToF camera and mapped on the left camera lattice (cropped); 3) Interpolated
disparity map acquired by the ToF camera with the proposed interpolation framework
(cropped); 4)Disparity map calculated with the SGM stereo vision algorithm (cropped);
5) Proposed locally consistent disparity map calculated from both ToF and stereo data
(cropped); 6) Ground truth disparity map (cropped); 7) Difference between the final
disparity map of row 5 and the ground truth (cropped). All the images have been
cropped in order to account only for the pixels for which the ground truth disparity
values are present. Green pixels in the last row correspond to points that have been
ignored because occluded or because a ground truth disparity value is not available. In
order to make the errors visible, the magnitude of the disparity errors (shown in red)
have been multiplied by 10 in the images of the last row.
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