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DYNAMIC PROGRAMMING FOR NONLINEAR SYSTEMS
DRIVEN BY ORDINARY AND IMPULSIVE CONTROLS®

MONICA MOTTA? ano FRANCO RAMPAZZO!

Abstract. A dynamic programming approach is considered for a class of minimum problems
with impulses. The minimization domain consists of trajectories satisfying an ordinary differential
eguation whose right-hand sids depends not only on a measurable control v but also on a second
control ¢ and on its time decivative u. For this reason, the contrel u 2nd the diffierential equation are
called impulsive.

The value function of the considered minimum problem turns out to depend on the time, the
state, the ¢ variable, and the varintion allowsd to the impulsive control. 1t i shown that the value
function satisfies, in a generalized sense, o dynamic programming equation (DPE)}, which is obtained
from a dynamic programming principle invelving space—time trajectories. Moreover the value function
is the urigue map-solving equation (DPE) satistying either an inequality condition or a supersolutian
condition at each point of the boundary. Incidentally this extends a result by Barron, Jensen, and
Menaldi [Noniinear Anal,, 21 (1993), pp. 241-268), where the impulsive contral is scalar monetone
and the corresponding vector field is independent of the state variable. Next, a moximum principle
iz proved, and the well-known relationship between adjoint variakles and value Function is suitably
extendad to impulsive control systems. A fully elaborated exnmple concludes tha paper.
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1. Introduction.
The optimal contrel problem. This paper concerns the dynamic programming
approach to minimum problems involving impulsive control systems of the form

&= glt, T, u,v) + Y‘gi(t,z,u,v)ﬁ,-,
(E) =
z(t-) =ZI,

where the state z belongs to B™ and the controls u and v map & time interval [f,T)
into & closed subset If € B™ and & compact subzet V' B9, respectively. Moregver
u is subject to the directional constraint ¢ € C, where € ¢ B™ is & closed cone.
Optimwume problemns involving a dynamics of the form (E) arise in applications to
rational mechanics {13]-[15}, [35], economics [17], space navigation {25], {29}, [33], and
advertising strategy {20], [39].

Because of the presance of the derivative i on the right-hand side of (E) the state
can jump in consequence of a discontinuity of the control u. However, the notion
of solution to (B) is provided by the Carathéodory theory of ordinary differential
equations only if the control u is absolutely continuous. Moreover, it is known-—
see, e.g., [9]-{12), 119), [21], [23], 28], {30}, [32], [a7), [41]—that whenever the fields
g1+ -+ m depend on z, u, and v, a mere measure-theoretic extension of this notion to
the case of o discontinuous u does not agree with elementary requirements of continuity
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of the input-output map. In order to overcome this difficulty, in (104, [32], {34} one
extends system () to the space-time systom

B m

(STE) = mlt et - it v,
. i=]

where the contrals #(s), u(s) are Lipschitz continuous and the superscript denotes
differentiation with respect to the psendo-time perameter 5 € [0,1}. In this space-
time setting a discontinuous control u(2} s regarded as the space projection of a space-
time control £(s), u(s) whose first compenent {5} is allowed to be nondecreasing. We
fust recall--ses, e.g., [10], [30], {32}, [37j—that, because of the noncommutativity of
the vector fields gi,..., gm, the svalution of z depends on the particular space-time
control ¢(s), u{s) which completes tha graph of u(t). Incidentally we remark that in the
standard impuiza contrel theary there is no need of considering space-time contrals,
Indeed, in that case the fields 91+, 9m (m = n) coincide with the canonicat basis; in
particular they commute, As & consequence each completion of & control u produces
the same trajectory which in turn coincides with the unique trajectory resulting fom
the measure-theoretic approach; see, eg., [3].

As a prototype of a minimum problem initially formulated for the original system
(E) we consider an unconstrained Mayer problem with finite horizan and & bound on
the total variation of .

More precisely, let @ : B® x I/ - B be g centinnous map, G be a closed cone of
B™, and K > 0 be an upper bound for the total variation of the control 4, For every
EEaE)e[0,T) xR » I » [0, ], we consider the following problem:

(Psam) minimize {&{z{T), u(T})}

over all end points (2(T), u(T)) of (E} corresponding to control policies (u(-}, v(-)),
where v : [[,T] — V is a Borel-measurable map and z : [[,T] — U is an absolutely
continuous map which satisfies

uwf)=a, VF(u) <K -F and 6t} =C for ne. t ¢ .7

{VF(u) denoctes the total variation of u(") on the interval {f, 7).} Since the unhounded
control 4 appears linearly on the right-hand side of (E%}, problem Pliz,n,5 does not
display anyone of the standard coercivity assumptions which guarantee the existence
of an optimal control. This justifies the introduction of the extended system {8TE)
and of the corresponding space-time reformulation of problem Plran k. Actually
this extenston is proper, i.e., the infimum of the original problem turns out to coincide
with the infimum of the extended problem. Hence the value functiens determined by
the two problems colncide. Mareover the set of eriginal eontrols is dense in the set,
of space-time controls, and under some further assumptions, there exists an optimal
coatrol (2(s), u(s}, #(s)) for the extended problem: see [32].

The dynamic programming approach. We call value funcéisn the map
V0, T)x B x U x [0, K] — B which associntes the infimum of problem P - & 1 to
every (£, &, &, k). Actually V car be identified with the value function corresponding to
the extended problem, for the two maps turn out £o eoincide on 0,T)xBx U x {0, &).
Moreover, in the extended setting V cen be defined also at T = T.

In the particular case when the control u is a scalar nondecreasing map (ie.,
m=14eC=R* and u=k € [0, K]} and the vector feld o does nof depend on
and u, the dynamic programming approach has been aiready pursued by E. N Barron,
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K. ‘}EESEH, and 1. 1. Menald; M Thair main result consisted in proving that the
value funesion ¥ is the unique cogtinuous map which satisfies {in the viscosity sense) a

certain Hamilton-Jacobi-Beliman equation together with the following, quite natural,
Dirichlet conditions: '

{BC)y V¥ coincides with the value function of the corresponding nonimpulsive
problem (1 = 0) en the strip [0, T} = B™ x {#} (where all the available variation of
has run out});

(8C)2 V coincides with the vaiue function of the corresponding purely impulsive
problem {go = 0) or the region {T} = R" » [, K]{where ne more time is available).

Moreover, Barron, Jansen, and Menaldi left the following questions as open prob-
lems:

a} Can the well-knoun relationship between the adjoint variables of the mammum
principle and the value function be ertended in some way to impulsive problems?

b} Can we state o rigorous resuft {i.e., a verification thesrem) which relates the
dynamic programming eguetion with the problem of lesting the optimality of a given
control?

c) What can be soid when g, depends aleo on = and u?

This paper is alzo a trial to give an answer to the above questions, not only in the
scalar control case but also in the general situation where v is vector valued. More
precisely, we begin by proving that, under suitzble assumptions on the set U and the
cone C, the value function V is continuous on [6.7) % B® x U7 = [0,K]. Next, vie
a dynamic programming principle invelving space-time trajectories, we prove that

o
the value function V is a viscosity solution on 0, T{=E" x U x |0, K| of the dynamic
profranuning equation

) 5y gy ay '
(DPE) ¥ (:,I u 323 W —1-) =0,

where, for every (p:, Pe, pusFx) € B ™™+ the Hamiltonian Function J is defined
by

H(tlmrurphp:!ﬂuspk)
m
] PP mt s v + 3 (pe - 0ul6 7,0 K) + 1) n + gl
= min =
|(1.U(3,...,wm){‘—* 1, uyg z0, w= (wl,...,wm) (=1 C', vel

Furthermore, 1 turas out to be the unique solution of (DPE) satisfying the following
boundary conditions:

(BCY, Visa (viscosity) supersolution of (DPE) at all points of {0, T}{=R" x 8/ x
0, I{[ uio, TixR" x U x {#Y;

{BC); at each boundary point {T'z, v, kYW < & cither V is a supersolution of
(DPE) or it satisfles the relation V{T, z, u, k) = ®(z,u). )

We remark that, unlike conditions (BC), end (BC)q above, boundary conditions
(BC)} and (BC)} do not involve any auxiliary minimum problem and refer only to
ihe cost function & and to equation {DFE).

We also prove a verification theorem (Theorem £.1}, which incidentally provides
a passible answer to the open question b) mentioned zbove,

Finally, by applying standard results to the space-time embedding, we are able
to clarify the relationship occurring between the adjeint varizbles of the maximum
principle and the value function ¥. This provides a possible answer to the open
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question &) above, while the answer to question c} is inherent to the gensra) sebting
of the problem, far the vector felds gg, - . +9m do depend on x amd u.

The paper ends with a simple, elaborated exemple where the theoretical results
proved throughout the paper are explicisly applied to test the aptimality of a fesdbacl
control previously computed by means of the maximum principle.

2. The minimum problem. Let us consider the contro! system

(2.1) Fe=golt, v+ Y gtz v, v)i(l),
i=]
(2:2) z(t) =z, v(l}=1x

defined on a time interval {f, T, where the state T rapges in B™ while the controls o
and v take values on a closed arcwise connected subset U = B™ and a compact subset
V' < RY, respectively. Moreover the control ¥ is subject to the directional constraint
% € C, where C C ™ denotes & given closed cone.

Let K be a positive constant, and for every k & [0, K] let us define the set

- [ lnv) € AC(ETLU) x B(E, 7], V) - u{f) = &,
@8 WeGmz ) gy
ift)eCorae teff,T) and VI(u) < K ~F

where AC([f,T), I7) denotes the set of absolutely continuous funetions from [f, 7] into
U, B([[.T], V) is the set of Borel-measurable fiunctions fom i#,T] into V, and V7 (x)
denotes the {otal variation of u on the interval [£.T}. We call W _g(Z,5) the set of
admissible reqular controls from (I, @) such that the varintion of u is less than or equol
to K —E.

Let P be a continuous function defined on B % I, For any (f, 2,4, k) € [0, TixBE" x
U x [0, K] we consider the following minimum problem of Mayer type:
Pris inimi D[, 7, i; T
Pezar) (T (T T D) T)),
where z[f, %, fi: ¢, v){-) denotes the solution of (2.1), {2.2) corresponding to the control
(u,v).

Throughout, this paper we assume the following bypothesis (H1) on the vector
fields gg,...,9m and the function ¥:

{H1} go,...,9m and & are continuous in all of its variables, and there is a positive
constant A such that

fult 2w v)f < M{L+ ((z,0)]),  |B(z,u)] < M

Ytz uwv) e[0T x B 2 UxV 4 =0,...,m).

Moreover, for any compact subset @ C B™ x I/ there is a constant L such that
lg:{t, 214, 0) ~ g8, 2,4, 0)] < L)z ~ 2
iz w o) (L) € 0,7« QxV =0,...,m).
In the following discussion, whenever the compact set Q is specified, we wili

denote by wy,,...,ts,, and wy the medulus of uniform continuity of the restrictions
of the functions go, ..., 5 and @ t0 {0,7) x Q x V and Q, respectively.

Remerk 2.1. The condition |$(x, u)} < M implies that the value function is glob-
ally bounded, which turns out te be very convenient for applying the theory of viscosity
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solutions. On the ather hand one can skip such o Hmitation by replacing the cost func-
tion & with the bounded cost function arctan . Ti is obvious that this transformetion
will not affect the essential character of the problet,

Since the right-hand side of {2.1) depends linearly on the derivative i, in general
nc optimal controls can be found within the class Wi _z(#,&). Hence, denoting the
triple {f,z,u} by y, on the basis of the results in {10}, {32}, we embed (2.1} into the
space-time system

(24) V= do(n v (s) + Y gely, vhulfs)

=1

together with the initial condition

(2.5) w0} = (I, 7 4)
In (2.4} the superscript denotes differentistion with respect to the new parameter
s €[0,1] end for every i = 0,...,m the vecior field §i coincides with the ith column
of the (14 n 4 m) » (14 m) matrix
1 o ... D
fo: Gy -ve Gy
G =] g0, 1. oo G
0 | S 1
0 0 ...

DerFuvTion 2.1, The contrel system (2.4) is called the space-time control system
relative to (2.1}, and a map

B} 0, = LT < U=V

is called o space-time contral for (2.4}, (2.5) whenever the following hold:
(i) {t, u)(0) = (7, 0); '

(i) {t,u) 2 [0,1] — [, 7| = I is Linschitz continuous and u'(s) € C for almost
every s € [0, 1) .

(iii) ¢t : [0,1) — [, T} is surjective and nondecreasing;

(iv) v:{0,1] = ¥ is Borel measurable.

The set of space~time controls will be denoted by T(f, 2). A solution of the space—time
control system (2.4} will be celled o space-time trajectory.

We remark again—see the introduction-~that & mere interpretation of the orig-
inal system (2.1) as an equation in measure would iead to an ili-posed problem, for
the dependence of gy,...,¢x on x and u makes it impossible to define a concept of
(univalued) trajectory as » map of the original parameter t.

We refer to the appendix for some basic facts concerning the concept of cenonical
parametrization and the related topology on the set of space-time controls. Briefly, the
parametrization of & space-time control {¢,u,v) is called canonieal if the norm (¢, )|
is constant almost everywhere in [0, 1} Any space-time control can be reperametrized
in such a way that the resulting space-time control turns out to be canonical, And, up
to reparametrization, the corresponding trajectories coincide (see Proposition A2).

Observe that after introducing new eguations we regard ¢ and u both as stete
varizbles and as control variables. This allows us to embed problem P25 into the
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exiended probiem

(P(Hf,:‘:,i.}_:)) (z,u{::‘l)ienli‘f_izjf.ﬁ)@ (y[ I u, ”}(1))!
where
(2.6) Tr_plf,8) = {(t.w,v) eD(Ea) : Viw) < i — k)

is the set of admissible space-time controls and it Z, i1, u, v}(-) denates the solution
of (2.4), {2.5) corresponding to the space-time contro) {t,u,v).

Remark 2.2, We point out that ® is a function of the only variables (z, u). With
abuse of notation we write ${y), where ¥ = (t,z, ), instead of @(z, ), just to remind
the reader that we are now relerring to the space—time extension (2.4).

It is clear that in the space—time setting the original set Wi x(i, 4} of ndmissible
controls has to be identified with the subset Tr_o{68) & Mye_p(E, &) formed by the
Lipschitz continuons reparametrizations of the graphs of the elements belonging to
Wye_g(7, 3)- '

The subset '}, (%, %) turns cut to be dense—see {32} and the Appendix—in the
set T'y-_z(f, ) of space-time controls.

We now prove that the infimum of the axtended problem 'P(}j.ﬁj) coincides with
the infimum of the original problem Prizu iy

THECREM 2.1. For every initial condition G2ab e T) xR x U x {0, K]
one has
{27)

inf (YL, £, 458, u, v}{1)) =
e (ulE =, 551, u, 0] (1))

T(=[E, T, 2w, o)(T), w(T)).

inf
{u)EWp _r(£,8)

Proof. Let (1,£,5, k) be a fixed initial datum and let us observe that Gronwall’s
lemma, together with the bound on the tota] variation of u, guarantees that there is
some positive constant Af’ such that

W2, 5w, v)(s)] < AL

(2:8) lgs (u[E, 2, & t, 1, () v <M (i= 0,...,m} forae se0,1)

for all (t,u,v) € Iy g (f, #}. Henee, setting Q = Brsm[0,MPO R % U {where
Brym{0, M} denotes the closed balt of center 0 and radius M in B*™), we can
identify the vector fields gq,..., g and the funciicn: ® with their restrictions to the
compaet sets {8, T] x @ = V and Q, respectively.
By the definition of TH_p{&#), proving (2.7) is equivalent, to checking that the
identity
inf ®{uff, £, 8:t,v,0(1) =

inf By, 7,0t 4, v](1
(t.u.n)EI‘fc_;(f,ﬂ) {tuv)er o _p(fa) ( { i ))

holds true. Hence it suffices to show that

2.9 inf Byl T, 4; 4, u,v](1)) < inf  D(y[f,E Gt u,vi(1)).
I s e Bl el (0)

Since these infima are.bounded, for any £ > 0 there is a space-time control
(f:u,v) € T _g(T,5) veritying

(2.10) inf Byl z, o ';ﬁ, (1)) > ®(vlt 2, 8; t,u,vl{1)) — g/2.

(LAl . g [R.0)
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Note that on the basis of Propesition A.2 it is not restrictive to assume that the norm
f(t',1"}] is constant almos: everywhere in [0, 1}, this constant being less than K + T,
Then, by setting

. (t()"‘a+5c
() =04 (T~10) (ls"—f+p£)p

for a p. € {0,{T - }/2] to be chosen, we obtain a space-time control {t,,u,v) €
Tz (T, 8) such that

¥s & [0,

[t{s) — t{s}] < 2p. Vs € [a,1],

and the corresponding trajectory z, = z{f, £, G:l,, 1, v} satisfies
{72 (5} — z{s)i an [90 (te (), 2e(), ulo}, (o)) - gy (tle),z{o), ulo), o))t () do

+ -/: Z|g‘-{t¢(ﬂ)‘z5{o‘),u(U),v({;)) -5 (t(a},z(a-),u{a},v(v))l bl (o} do

i=1

o [l soh uior o) i - 0 1)

< (K+T)ng,{2p5}+(m+1)(Il’+T)L/0-a f;t(o)—:c{a'}lda-fEF—f—t__;{TﬂJ’pz.

=0

By Gronwall's lemma it follows that

[E(ze(1), (1)) ~ @ (2(1), u(1}}] & we ({21‘!",{?:4-(5'-}-?") 3 e, (gps)}efmﬂxh'ﬂ*m).
=0
Hence for a g, small enough from {2,10) we have
inf Pl 2, & 48, 811)) = Blr.(1), i1 -,
ol R0 H02) 2 (1), u() -2
which by the arbitrariness of ¢ » 0 vields (2.9}, 5]

3. The value function. In this section wa introduce the so-called value function
for the problem Pr.2,5,5) and study its regularity properties,
Derivrrion 3.1. The map :

{(3.1) Fit,z,uk= ®(zft, £, 8;u, o){T),2{T)

Ciaf
() €Wy _p{i;n)
from [0,T)xB"x U x [0, K} into B is calied the value function of the original minimum
problem.

DEFINITION 3.2, The map

(3.2) V{5, 8 k) =

= i D(yll, z, T;1, 1
(:‘u.u)e:ﬂ{-;(i.a)w(yi BT 1))

Jram [0, T]xB* U %[0, K} into B is called the value function of the extended minimum
problem.

The foltowing result follows from Theorem 2.1.

COROLLARY 3.1. The value function F of the originel minimum problem is
bounded end coincides with the velue function V of the extended minimum probiem.

Let us observe that the value function V of the extended problem is defined even
gt time § = T. Fusthermore, in Theorem 3.1 below we show that V is continuoug
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pravided that one of the following two hypotheses on the cone G and the closed set I/

holds:
(H2)c Theset U coincides with the whole B,

(H2)y the core ¢ coincides with the whole B™; moreover for any £ > 0 and
uy € U there exists'a § > 0 such that for each u, € U N B{u,,8), there is a path
Tz € AC{[8, 1)U} satisfying 712(0) = w1, v1a(1) = 2, acd

I
Lhﬂm¢55

THEOREM 3.1, Let Q: C B™, Qu © U be compact subsets, Then for avery

(EFLE S0, % Qo % Qy x [0, K one has the following:

i) the funetions ¢ — V(i,z,8,k), t — V(¢ 3,4, k), and k — VI, %,,E) are
continuous on s, [0,T), and [0, K|, respectively, uniformly with respect to the Te-
maining variables on {0, T] % Q x Q, x [0, K} furthermore, k — V{I,%,%, k) is non-
decreasing; ’

if) in addition, if either hypothesis (H2)g or hypothesis (H2)y is assumed,
then the function v — V(f, Z,u, k) is continuous on Qi uniformly uith respect to the
remaining variables on [0,T) < @, % Qy x [0, K]. fn particular the valve funciion 1V
is continuous on iis domain.

Proof. By {2.8) the trajectories starting from points of [0,T] % @z % @, lie in the
compact set [0, T} % Hoym[Qs x Qu; M1 (" = U). Let wy, denote the modulus of
uniform continuity of g; (i = 0,...,m) on {0, T} » Brym[Qe x Qui M0 (R 2 U) x 1V,
and let wq be the modulus of continuity of @ oa By ym[@s x Qo MR = T).

Let =1, a2 € Q-, and consider the difference

V{f,x0, &, &} - V(& 21,8, %),

which can be assumed nonnegative. For any ¢ > 0 let {2, u,v} € Ty _p(i,@i) be a
space—time control satisfying

(3.3) VIE, 2y, 8, k) > $(plE, 70, 858w, 2 (1)) — e
Thus by the defirition of W we have
(3.4)

V{22, 5, k) — V{E, 21, 1, ) < &(ylf, 2, t, 2, 0] (1)) — Dyl zy, Bityu, v]{1)) + e
Furthermore standard estimates for the trajectories of (2.4) yield
(3.5) {2fE, z2, B 8, 2, v)(8) — 2(E, 71, 5; tu, v){s)] <z — py jebHmIEET):
for all 5 €[0,1}. Henrce (3.4) and (3.5) imply
V(I 7, k) — V{21, 1, &) < wgp {PQFmRIHT) 5, =) + £,

which, by the arbitrariness of £ > 0, proves that = +— V({T,z,%,k) is continvous
uniformly with respect to (7, %, k).
Now let t;,13 € [0, t1 # ta, and consider the difference

Vitz, 2,4, k) = V{4, &, G, B),

which can be nssumed nonnegative, For any £ > @, let (¢, 1, ) be a space-time control
for (t1,%, 4, k) satisfying -

Y(ty, 2.4, F) = B{ylts, 2, 82,1, 0)(1)) — £,
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and considar the epano-time nontral (Fuw) 2 D ofle.5), where 5t definnd e
lollows:

if t; < to, st

- lg, se[G,8],

s = { 2 [_ g

s}, 5= [5,1],
where
E=min{s €{0,1] : t{s) =ta);
if ty > i3, set
Hs)=t(s) ~ (s —ta)(1-3), szt 1.

In both cases the definition of { and Gronwall’s lemma imply

(3.6)
{t{s) — ()] < fta — £},

{#(s) —z(s)| < [M'fa —ts] o+ (K + T S g, (it — i)l FMIUETY yo g 0,1},
i=0
where we have st Z(-) = zfta, &, 4; £, w,v)(), () = zfty, £, tyu, v]{-). It follows that
V(tg, %, @, k) ~ Vi1, £, 4, E)
i
Swp{[Mlts ~ 1]+ (K +T) 3" wy, (It — 11[)] 2O+ g o
=0

which, by the arbitrariness of &, implies that # — V(t, z,4, k) is continuous uniformly
with respect to the remaining variables (2,3, k).

Now let ky, ks & [0, K], with &, # ky. Since the map k — V{i, 2,1, k) is nonde-
creasing, it is not restrictive to consider only the case ko > ky. Choose a space-time
control for (£, £, &, ky ) satisfying

WE 2,17, k1) 2 B{ylf, 2,858, u,v](1)) — &,

and set 0,4
_oy [ uls), s£100,3),
s = { wE).  selnl
where
§Emax{s e, : Vi(u) € K ~ k).

Observe thet either X — kb < Vil(u) < K ~ Fy and V() = K — ko with 5 < 1, or
§=1; furthermore, V(i) = Vf{u) < K —&; =0 that (1,4,) € Dg_;, (£, 7). For every
5 € J5,1) one has

Vi () < Vi (w) = 15 () = V() = Vi (w) = IO+ By S ko
Hence, from the definition of & and applying Gronwall's lemmsz one obtains
[(s) — uls)] < Vi (u) S by — &y,
!z[ﬁ,i,ﬁ;t, 4, v)(s) — z[f, 2, Ty ¢, u, v}(s)§ < [m_ﬂ.["[/;(u) b g Tz — by !}] SLUEST)
< [mM Iy ~ Fy| + Twgg (fka — ke ])JeX54TT vz 210, 1),
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This impliey
(2.7
VIEZ, 1L ko) = V2.8 3) < s ([(1 4 mA YR = oyl T (g — by )] 2547

thence & — Vif, 2,2, k) is continuous wniformly with respect to the variables (tz,3).
Thus thesis i) of the theorem is proved.

In order to prove if), let £ > 0 and, for 2 & > 0 o be determined later, lat
uy, Uz € @y satisfy fu; — @] < 8, i = 1,2, Let us consider the difference

V& v B) —~ VI, Z,u1, F),

which it is not restrictive to assume is nonnegative. Let (tu,v) e T zfg) bea
control satisfying .

Vi £ u, k) 2 (L E, wi;t,u,u){1)) - £/2,

1f {(H2)¢ is assumed, then the control {t,&,v) < (f,us — 1 + u(s),v) is in
Tg.z(f.up). The definitions of wg,, ... ,w,,, and ws together with standard estimates
for the trajectories of (2.4) imply

v{t-,::', Uz, E) - V(t-s Z,uy, ‘!_c)
SOyl 2wt 4, 0}(1)) — B(uf, 2,1y tu,vi{l)) +5/2
m
Swa(fug — |+ {4 ) 3w llun — ug [Jet T 4 o
=0

This yields the continuity of the map u — V{I, %, u, E) uniformly with respect to the
remaining variables, .

We conclude by proving ii) under hypothesis (H2)y. Let p, € (0,1). T K - F <
ey by setting Gi(s) = ua Vs € [0, }] we obtain

(3.8) V(I & w2 k) — VI, 510,k
< 2l E vat v o{(1) — D(ulE By west,u, v](1)) + /2
Swa (Iuﬁ =yl 4 pe + (Terg (fuz — | + )+ mMr’P:)eL(l-}m)(Ki—?)) +&f2

Suppose on the contrary that K - k> p.. Then by (H2)y there exists a § > 0 such
that if |uy — i < &, fus — | < & one has

Vﬁg(’Tzl)SPE/E (< 1)
for soma path v2;: {0, 1] — U such that 21 (0) = g, o1 (1} = 1;. We set
u{s), s£[0,3,
uz(s) =
s(#) { u(3), selsl],

where _
Famax{s € [0,1] : Vf(u) £ K~k -V} )}

Hence for any v € V the control defined by
P (L, vau(s/a), ), s 20,0},
(f,4,7) =
(t,u;,v)((s—a)/(l—a)), 5E EU,]-],
where o = ¥ (4m) Is in Ty_z(f, uz). Standard estimates yield

[a{s) — u(s}l € fuz —wm| + (3+ K + T (yar ),
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from which procesding ac in the pravisns anse ana ohtains an nequaliy simllas ta
(J.6). Hence, by choosing & = min{p./2, 8}, there exicts some p, > 0 such that we
have

V2,10, B) - VE 20, D) < e,

which implies the continvity of v — V(£ #,4,k) on @, uniformly with respect to the
variables (i, 3, k).
Thus the continuity of the value function V is proved. 7]

4. Diynamic programming principle and dynamic programming equa-
tion. Let us define the Hamilionian funetion H : [0,T] x B™ x 7 x Rl+n+m+l _, g
by setting

(4.1) H{t,Z14,00,P10 .. Py Prtie- - s Pt Poo)

= MR HG T Po Py B, Prtly -+ - Prtms Doy 0, W, 1),
{wp wresTy

where H denotes the unminimized Hamiltonian

(£2) H(LZ. %P0, Pry- -y ProDntise o 2 Prims Boss W, 0, T)

n
= {(Pu+zpagé(t,$,usv))ivo+ > (mgiltz, v, v) + pienu! +meWI}.
=1 [T
=i,

while ST is the intersection of [0, +oo[xC end the unit sphere §™ = {{wo,w) &
B Hug, w)] =1}
We shall prove that V solves the dynamic programming equation

(DPE) —H(t,z, u, V‘l‘) =0,

where VV stands for (V,V, V.1, V, 0, V.V, and V,V, V.V, V.V, and V.V denote
the gradients of VV with respect to ¢, =, u, and £, tespectively, The presence of the
minus sign in {DPE) is motivated by the fact that we wish to be consistent with the
terminology of the theory of viscosity solutions, In fact, like in the nonimpuisive case,
the value function V fails in general to be continuously differentiable, so it can satisfy
{DFE) cnly in a generalized sense, Aiming at self-ronsistency we recall the definition
of viscosity sclution of 2 first-order partial diffierential equation; see, e.g., {18}

DermiTioN 4.1. Let E be a subset of RY, 4 funetion V € C%(E) is e viscosity
subsolution of (DPE} et (t,7,u,k) € E if for any A € C=(RY} such that (t,z,u, k)
iz o local mazimum point of V- A on E one hes

~H (t,z,u, VALt z,u1,k)) <0.

V & CY%E) is a viscosity supersolution of {OPE} at (¢, 7,u,k) € B if for any A €
C=(B¥) such that (t, 2,1, k) is a local minimum point of V — X on E one has

—H(tzu, VAL, z,u, k) = 0.
V & CUE) is a viscosity solution of (DPE) at (t,z,u,k) if it is both @ viscosity

subselution end o wiscosity supersolution.
In order to state Thecrem 4.1 below, let us introduce the domain

Q=100,T) x B™ = U x [0, K)



210 MONICA MOTTA AND FRANCO RAMPAZZO

and the boundary’s subssts
(4.3) Gr2={TT X R" = U % [0, K],
’ &0 =80\ o
TrEOREM 4.1 (dynemic progremming equation and boundary conditions). Assume
either kypothesis (H2)¢ or hypothesis (H2)y. Then
a) V is a viscosify solution on Q of the dynamic pregramming equation (DPE);
b) V satisfies

{4.4) V(T,z,u, k) € Bz, u) V(T x,u,k) € 0r8);

) V i5 e viscosity supersofution of (DPE) on &0 and at any point {T,z,u, k) €
Ol such that V{T,x,u, k} < ®(z, u).

Hemark 4.1, Note thot although the cone [0, +-co[= (T, U/NC) {where T, U denates
the contingent cone o U at 13 see, e.g., [1]) could be considered the natural range
of the control’s derivative (t/,1),...,u},), the minimum in (4.1) is searched over the
compact set 5. This is due eszentially to the bound on the variation of u and to the
possibility of replacing any space-time control with its canonical paramesrization (see
the appendix). On the other hand, the positive homogenity of M in the variable (wg, w)
allows us to use ST in the definition of H instead of BLF™ = {0, 400} x &N {{wg, w} :
[{wo,w)i £ 1}. Actually by allawing the elements {w, w,v) = {0,0,v) in the domain
of minimization of M, we would obtain an equation tacking uniqueness properties; see
§5. As a direct eonsequence of having replaced the unbounded set {0, +ea) = (T, U/ NC)
with & compact set, we achieve the continuity of the Hamiltonian H. Incidentally we
observe that this approach presents some analogies with the one adopted by G. Barles
[} in an infinite horizon problem.

Remark 4.2. The fact that the domain of minimization of (1, 1) is independent
of u is strictly related to the very definition of viscosity supersolution on a closed
set- Indeed it is well known (see, e.g., [40]) that the supersolution condition together
with the subzolution condition on the interior accounts for o constraint on the state
variables. Actually, in cur case the situation is slightly different, since at the bound-
ary poiats we have an alternative between supersolution condition and an inequality
condition; a similar situation is encountered, e.g., in [2], 18], [24).

The proof of Theorem 4.1 will be based on the foliowing dynamic DIOETamming
principle, whose proof is an obvious adaptation to the parameter—free extended prob-
lem (P;i,i.a,fc}} of the standard reasonings which yield to the dynamic programming
principle in the ordinary case.

PROPOSITION 4.1 (dynamic progiamming principle). The value funcetion 1 hgs
the following properties:

i) For an initial condition (1, £, k) € 0, T|xR" x I/ x [0, K] end an admissible
conirol (4w, v) € Upe_g(F,8), let y = ulf, £, &£, v, 7] be the corresponding trajectory of
the exiended system {2.4}, (2.5). Then the map

(4.5) ' 5 V(le), 4 V()

is nondecreasing.
i) Ifin i) the controf (f,u,v) iz optimel, then the map (4.5) is constant.
Proaf. Assume by contradiction that there exist s;, 1, 0 < 51 < 5 <1, and
£ > 0 such that :

(4.6] W{y(s2), b+ Vo (u)) = V(y(s1). E+ 15 (w)) — .
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Ry el dofinition of 1 thers is o spaco—titne conteol [y = (R 2 (a1 2 H52))
satisfying T

(4.7) B(yly(s2): 8,5, 8(1)) < V(y(sa), F + Vi () + 2/2.
Define the space-time control (£, &, 7) by

)ﬁ{ (t,w,6)(sp + 25(5a ~ 51)), 510,172,
(£, 5)(2(s — 1/2}), s (1/2,1],

and set § = yfy{s, )4, %, 6], Note that (f,2,7) & T thargs g (8 ud(50)), for we have

(£ a,i)s

Vi (i) = V2 u) 4+ T () < V) + K~k = Vi) = I - (F+ V5 ().
Moreover, by the parameter—free character of the extended system (2.4)—see Propo-
sition 4.2—wa have

B1/2} = p{sa),
#(1) = ply(sa); 4, 8)(1).
Hence, by {4.6) and (4.7), we obtain \

Vipls) &+ Vi (u)) < ®(5(1)) =  (yfy(sa)
< V(yloa), ko + V5= ()

i
+ =V{pls1) k+ Vot (u)) - g/2.
Since £ > 0, this proves i).

To prove ii) it is encugh to observe that whenever the control (i, 1,v) is optimal,
on the basis of i) one has

VIE 2,3, k) < V(u(s) B+ Vi (u)) £ D(p(1)) = V({I, 2,8, k)

for every 5 £ {0,1]. n}

Proof of Theorem 4.1, We begin by proving that V is a viscosity subsolution
of (DPE) on . Fix o point {,k) = (£,%,4,5} € £ and consider a map A £
C={R17+m1) queh that 147, Ey= Mg, k) and VV =} has a local maximum at (f, k),

" Then

Vitew k) S Mtz u k) vitzwk) e 0 B((F, k), r)
for a sufficiently small » > 9. Choose v = V and w = {un, .o wm) € BR0IINC,

where B™{0,1} = {w e R™ : ju| < 1}, and set wy = /I~ [wf2. Since I < T, ael,
and k < K, there exdsts some € & (0, 1) such that the centrol (t,u,v) defined by

(£, . v) (o) 5{ (£ + s, 3+ 5w, v), v€ (0,4,
(E+ewg+ (T~ T — ewg){s —e)/(1 — ), &+ cw, v), 5 (g1},

isin Tp_z(£, 7). Then by the dynamic programining principle one has

AT E) = VBB € V2,5t w,v)(s), FL15 () < Al 2,54, u, v)(s), B+ V5 (u)),

prl)vided 0 <3 % p, with p small encugh. Dividing the last inequality by s one has

AW 3t v (), B+ 15 (1) - M7, F) -0
p =

(4.8)
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for every 5 € (0, p|. Passing to the fimil in (4.8} &5 5 — 0%, we obtain
(VeME, 2,8, k) + VoA 5,8, Bjga(h, 2,5, v)Jwo + VoA, 2,2, F) > alf 5, T, v
il
+ VuMEZ, 2, B)w 4 Vi ME 2, i, Bl = 0.
Since w and v are arbitrary in B™{0,1) 1 € and ¥, respectively, it follows that
—-H{,z,4, VAL 2,48,E) <0.

Hence V is a subsolution of (DPE) on 1. )

Let us prave thai V is e supersolution of (DPE) on fu @’Q_ and at any point
{t,z, 4 k) € 870 where V(t, 7,1 k) < B(z,u). Let {(1,F) = (F.3,4, k) € 0 and
consider & function A € C=(RI"F™41} guch that 12 — A has & local minimum on 1
at (g, k) and V(i k) = A(§. k). Then

Vit z,u k) 2 AL,z u, k) vtz k) e 0N B((l.'.', I:),r)
for a sufficiently small r > 0. For any n € N\ {0} let (tn, e, v.) € Tp_g([,@) be a
space-time control such that the corresponding trajectory y, satisfies
(4.9) P (y(1)) < V5, By + 1/05
The dynamic programming principle vields
Munls) E4 Vi (ua)) < V{pals) £+ Vi () <V E) +1/0 = M5, B) + 1/n7,

provided 0 < 5 < p, with p small enough. By choosing s = 1/n and dividing by 1/n
we obtain
1/n _

(410 nf H(tm: VAt k o+ Vns(un)),in",un',u,,) ds < 1/n

o
for every n sufficiently lerge. Since it is not restrictive to sssume that the controls
(tnsua,v) coincide with their canonical paremetrizations, we have |(tﬂ',1u“’)|(s) =
Vg (tn1tn) for almost every s @ [0,1). Now if (§,F) € U &, one haﬁ_ﬁz@1 (iﬂLun) >
Vit (tn} = T—F > 0. Hence by the continuity —on the boundegl set QNB((f, £, 8, k),r}—
of all the considered functions, there exists 2 map ¢ : BY — R¥ such that limy-..q £(n) =
0 and

1in - _
&{n) > nf RE& 4,5 VAE 55, 6w, v,) ds
i
1/ _ -~ ~ _
(4.11) 2 2V tn, ) f min  H(E,z,8,F VAEL 2,8, %), wo,w, v) ds
@ ifuv.w)esz -
2 (T - D H{E 2,% VAE, 5,5,5).
Thereiore, as 1 tends to infinity, one has
—-H (T4, VA 24,k5) 20,
. le., Vis & viscosity supersolution of {DPE) at (f,£,4, k).

Now let {,k) = (T.z,2,k) & 879 and observa that ony space-time control
{t,2,v) € [T, i} hevipg components £(s),u(s} coinciding with Tz, respectively, gives
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rise to the constent trajectary y = (I, z,2). Henee thesia h) helds true by the very
definition of ¥; in particular the condition

(4.12) WT,z,8,k) = 8z, 1)

is equivalent to the optimality of any space-time control (tyu,v) with ¢{s) = T and
u(s} = & On the contrary, if (4.4} is satisfied as & strict inequaliiy, set
{4.13) 7 = B(z,4) - VT, 2,4, F).

In order to show that Vis a viscosity supersolution of (DPE) at (T, %,4,k) we claim
the existence of a sequence of controls (2., u,, ) = (T, vn) enjoying the following
properties: 1} there exists two positive constants &, 7t such that

(4.14) Vil{ua) 26 Ymzgy

ii) the trajectories y, = yff. 7, &; Ly Un, 1] satisfy (4.9).

in order to prove this claim, assuma by contradiction that for any minimizing
sequence ({7, un, )] wey Whose corresponding solutions setisfy (4.9) and for ooy § >
0, 71 > ( there exists a n > 7 such that :

Vi {un} < 6.

Then one can determine a subsequence, still denoted by ({7, “"'”"))new such that
the corresponding trajectories ¥n Satisfy

Gl L
Jom (s}~ (T.E, )| < Z f {Fc(pmleh va(s))hush (s} ds € APMVi (a) < M'ms,
=1 40

Then, choosing § such that wa{mM'§} < n/d, for any n > 2/ /% we oblain
€ (1)) ~ (2,3 Sn/a,  1fn? < q/a.
These inequalities and (4.9) provide a contradiction, for
Bz, %) - 0/2 < D{pal1) - 1/n® £ W(T,2,5,F) = 0(z, 2) — 7.

Hence 2 sequence of controls (T tn, v satisfying (4.14) =xdsts, and the proof is com-
pleted by replacing T - ¥ with 6 in {4.11). ot

We conclude this section by showing that (DPE) can be replaced by a quasi-
veriational inequality, We point out that thé latter can be regarded as s generalization
of the dynamic programming equation which was abtained in {8] in the specicl case
where m is equal to 1, gy is independent of x and u, and ' coincides with {0, +oo).
Set

(4.15) Atz u,p) & min{Hy{t,z,u,p), Ha(t, z,u,p)},
where Hy, Hy are defined by

13
Hi{t,z,u,p) = 315;13{?3:1 + S“pagé{t,z,u,u)},

min 2

i=1
(£.16) .
Hy(t,z,u,p) = min {pw 3 pgklh T u e+ me‘w"}-

[LETER T isi...n =1
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TxeoReM 4.2 (dynamic programming eguation in the form of quasi-variational
inequalivy). Assume either hypothesis (H2)go or hypothesis (H2)y. Then the follous
ing hold:

a} V is a viscosity solution of

(DEE)qvy —-F(t,z,u,VV) =0,

on {;
b} V satisfies

Vit z,u, k) < ®{z,u) Vit z,u, k) € Oy

¢) V is a viscosity supersolution of (DPE}gvy) on &'t and at any point (¢, z,v,
k) € 878l such that V(¢,z, 1, k) < B(z,u).

Proof. Stuce H(t,z,u,p) < H{i,z,u,p) for all {t, 2,1, p) € D xRIEFHDHL by the
fact that ¥V i5 a viscosity subsolution of (DPE) an Q it follows straightforwardly that
V is a viscosity subsolution of (DPE)quvny on 0.

Now suppose that either (§,k) = (f,2,%, k) belongs to 21U &0 or it belongs to
879, and assume that V(£ Z,4,k) < ©(Z,%). By Theorem 4.1 it follows that for
any A g C(RMmFmHlY eyuch that ¥V — A kos a local minimum or 31 &t {7, F) and
V(7. k) = M7, E), there is o pair (v,w) € V *x B™[0, 1] 1 € satisfying

(417) (VoAGE) + VA BhgoE 2,8, 0))wo + VoAE D) Y 0eF, 2,8, 00
=l

+ VA Bl + VeAH, Elu] <0,

where wp 5= /1 — |wj%. Hw=0or {w}=1, then ¥ is & supersolution of (DPE)qvy-
Otherwise, i.8., if 0 < |wf < 1, divide (4.17) by |w| and observe that either the first term
or the sum of the remaining terms must be nonpositive. Hence V is a supersolution
of (DPE)qvy. 0

Remark 4.3. Theorem 4.2 exhibits a certain analogy of the considered problem
with standard impulse control probiems; see, e.g., |31, [8]. Indezd the value functions
of the latter satisfy certain quasi-variational inequalities, which replace the usual Bel:-
man equatien, Actually, the dynamics considered in standard impulse theory can be
considered &5 the simplest ease of the dynamics considered in this paper, namely, the
case where the vector fields gy,..., gm are coostant. Yet the comparison between the
two approaches cannot be pushed further, for the two corresponding minimum prob-
lems are not equivalent, Instead, a more strict relation can be recognized between the
problems considered here and the questions adressed in E. N. Barron and R. Jensen’s
paper [8], where (ronimpulsive) controls 7{-) with bounded variation are considered.
Indeed by adding the trivial (impulsive) equation 2 = 7 the control system studied in
{6} will be reduced to the form considered in this paper.

5. Uniqueness of the solution of (DPE) and verification theorem. In this
section we prove & comparison result for viscosity solutions of {DPE). As a consequence
we obfain & uniqueness result and a verification theorem for the extended problem

e

tru,k}t

( We}assume hypothesis (H3) helow on the boundary of U. Hypothesis (H3),
which excludes the presence of zero-amplitude corners in 80, is quite standard in
probiems involving state constraints; ses, e.g., [40].
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N {H3) There cxist a map n BUC{U, R™) and twe positive numbers g, such

that )
o

B(u+tq(u},rt) CU  forusdlandl<i<g

THEOREM 51 Assume hypothesis (FE3) and either (H2)e or (H2)y. Let )
be a bounded continuous viscosity subsolution of (DPE) in 0 which satisfies

(5.1) Wt z0u, k) < 9(z,u) Yit, o, u, k) € 8+0),

Let ¥y be o bounded continuous viscosity supersofution of {DPE) in QU&'D such that
for any (t,z,u.k) £ 870 either Vo satizfies the inequality

(5.2) Valt, x4, k) = B(z,u)
or it it ¢ viscosity supersolution of (DPE).

Then
(5.3) Vi<V e Tl

Proof. For every (t,k) ¢ [6,7] = [0, K] iet us define the mep Tt BY — R by
setting ‘
fogr
T+t k
Let A be a lower bound for the maps ®,7y, and Va, and let us set
Zilt, T, k) = T (VT — tyzu, - — k)= M +1), i=1,2
WE, T k) = Tk {B(x, 1) — M+ 1)

Trelr) =

Ti'nhen‘ on the one hand, the map Z; turns out to be a bounded continuous subsclution
D

(TDPE]
. 1414k
{vworn)eirnsT | wy + ful

Z+ H(T —t,z,u,V,Z, Vo, -V, E,Vi.E v, wg,w)} =

in ©, where H is the unminimized Hamiltopian defined in (4.2); morsover 2, satisfies
Zs(t,z,u, k) < Wi, z,u, k)

on Goft = {0} % B" = U x [0, K], ’

. On the other hand, Zo is a bounded continucus supersolution of (TDPL) on
{\354%. Furthermore, at each point (0, u, k) € 8ald, Z; either satichies the fnegual-
ity Za(0,z,u, k) = P(0,z,u, k) or is & viscosity supersoiution of (TDPE). Hence, a
straightforward application of Thearem 1.1 in [2} implies that ’

21 £ 2

on 12, which in turn yields the thesis. a
THEOREM 5.2 (uniqueness), Assume hypathesis (H3) and either {H2)e or {H2)y.
Then the.value function V is the unigue bounded continuous viscosity solufion of (DFE)
on §1 m:.’nch .saéi.s).'zes tf‘ze Jollowing boundary conditions:
UE([.;.?‘?[);E;:‘ :i u[.fu;sc{o}?;i:' supslrsnfufmn of (DPE; at all points of 0, T[xB™ = 8U =0, K]
{BCY; at each boundary point {(Tz,u, k) one hos V(T,z,w, k) < ®(z,u) and, more-
g‘tzezr,ue}zifher V is @ supersolution of (DPE) or it satisfles the relation V(T,z,vu, k) =
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However, since the coordinates ({1}, (1) are not, constrained, the aranments we use
to prove Thuorem 6.3 are substantially the sums as the ones used in the nonimpulsive

case without endpoint constraints; see, e.g,, [7], [22].

Proof of Theorem 6.2, By the definition of optimal trajectary there exists a mea-
surable map # such that the solution corresponding to the space-time controt (4, 4, 3)
coincides with the optimal trajectory (£,%,%,£). Les s* € [0,1] and for every initial
point {£,i) € B" = R™ define the control map

fg 1 {3", 1] = R™, Gg(s) = a(s) + 4 — @{s").

Next consider the cost functional
J{E, i) = B(EE, A1), 2:(1)),
where £[F,@]{-} denotes the solution an the interval {s*, 1] of the Couchy preblem
7' = gy (#(s), o(s), tals), B(s)) () + Zg. (fls) z{s), als), B(s)) Ti(s),
z{(s") = . =
Up to a reparametrization from the interval {s*, 1] into the standard interval [0,1), the
contral (£, 45, ) : {5*,1] — B x V¥ is feasible for the initial point (i(s*), Z, &, £(s™)).
- Hence one has

V(). 5, 8,5(e)) = VAOHD (2,9 < iz, 9)

for every (%, %) & R*™, and, by the optimality of {f, 1, #),
T(#(s), 0fs")) = VIR (3(57), i)

Therefore by the definition of superdifierential of WH™)E("} &t 4s sufficient to prove
that J(Z, ) is differentiable at {#(s*}, {s*)} and satisfies

{6.8) (p=(5")s puls™)) = Vo (E(s™),2(s7}) .

By standard computations involving the differentiability of the solutions of (§.2) with
respect to the initial data we obtain

(8.10} Vaud (#(s") (")) = (Vo u® (2(2), 2(1))  Z(1)),
where the {n 4+ m) x (n 4+ m) matrix Z(-) is the solution in [s*,1] of the variationsl
Canchy problem

25 = <{V=,“gu {E(s), (5, 2ile), ()T (5)

+ 2 Vnts () 806, 20, 0] 2661 ),

=1

2" =14,
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Sinﬂﬂ [I-J:-.ﬁu] noinaides with the Bmine solutlon to the adjelint Cauchy prolblem
(p’z(‘?)lplu(s)) = _<{P=(s)'Pu(5))s {V:.ugu(f(s),i{s),ﬁ(s),ﬂ(S))i"(S)—:-

+zv,.ugi(f(s},a‘v(s},ﬂ(s),ﬁ{s))a;(s)}>,

i=1

(r=(1), pu(1)) = Vo @ {£(1), 2(1)),
one has
d
A(B(s), Bl ), 2l =0
on the whole Interval [s*, 1], from which it follows that
(als™) Buls™)} = {(B=05"), Puls™)), Td) = (Vo (3(57), 6(s*)), 213
The latter equality and (6.10) yield (8.9}, and the thecrem is proved. ]

7. Example. We apply the results proved in the previous sections to a simple
minimum problem. In particular we check the optimality of a certain feedback control
by showing that the corresponding cost function satisfies equation (DPE) and the
boundery conditions (BC)}, (BC)s.

Let T, K, and ¢ be positive constants, and for any Lz k) eDT) =R x [0, &)
consider the minimum problem:

(Pz.zp) misimize arctan(z{T))
over ali the endpoints of the trajectories of

&=+ (t) + zi{t vt e (1,71,
(7.1) e+ 1{t) {t) (2,1}
=(f) = %,

carresponding to the absolutely continucus controls (11, 1) satisfying V¥ (uy, ) <
K — k. Moreover assume that the derivatives (i, %) belong {for a.e. t € [£,T)) to the
closed cone :

(7.2) o= {(wl,wg) e k?: uy <0, wy > U}.
Foliowing §2, let us consider the extended system relative to (7.1), {7.2):

- & =ct'(s) +uf(s) + (s} Vse 0,1,

7. -

(& z}0) = (L), (u),uh)(s) €C forae se(o, 1.

The form of the equation in (7.3) implies that the optimal selution of problem Pz s iy
—and hence the vaiue function V— is independent of the initia] values u; (%} and ua(f)
of the controls. Moreover, by the definition of space-time control one has ¢ (e} z Ofor
ae. 5 € [0,1]. Sicce both i) and rip are negetive whenever z is negative, heuristics
suggests the following strategy: at the initial time leh_the state jump to the minimum z
reachable by spending all the available variation ' —F. After the jumpset 4; =0 = i,
and let the state evolve in time (with constant derivative equal te ). The maximum
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peinmipie (6.5) yiclds
(wy, w1, wa)z, 8)

(K -k4+T-B{l+28)20, L3} i z<0,

74 z : cF
(8 _ ) ok E+T-5(0.1,0) £ 220 50,22
(} —F+ T —1){1,0,0) If 220, stz ),

as 2 control candidate to be optimal. Accordingly, for each initial condition (£ z,E)
the corresponding terminal position 2(T; 1,2, k) is given by

#HTLE,E)
sinh{arcsinh(z) ~ (K k) +c(T'—§), £<0,02k<K,

={ sinh{z~ (K - &)) + (T - ), F»0,F4+k<K, 0<k<K,
F-(K-R)+c(T-1), £»0,2+k2 K, 0<E<K,

£o0 that the resulting cost is given by V(£ Z, k) < arctan(Z(T;7,2, k). We claim that
V{t,z,k) is the optimal cost; ie., it coincides with the value function of problem
Pt,=x Since V is continuously differentiable an 1 = (0, T) x B x (0, K), on the basis
of the uniqueness of Theorem 5.2 it is sufficient to verify that i) V is o classieal sclution
on {1 of {DPE) equation

(7.5)

nlin{(VgV+ VVohwp 4 V=V + zwa) + Vefwd + wd : {wp, wi,un) € S;-'_} =0;

if) V is a viscosity superselution of (DPE} on 802\ ({T} x R x {¥}) and satisfies
(7.6) V(T,z, K} = arclan{z) vz €R.
Relotions {7.5) and (7.6) can be checked by means of straightforward caleulations.
Hence it only remains to check the supersclution inequality for every {t,z,k) € 82
({TY=mr= {K}). ifAe C=(1}) is a map such that ¥ — A has & local minimum at
(¢, =, k), then it satisfies the following relations:
VAL, k) = VeV o, &), (Vb VA b k) = (Vo V, VoW, k) fe=T
and ' .
VRAR, 7 k) 2 VVIL 2, K),  (Veh V)L, 2, k) = (VoV, Vo V)it 2 k) iEk = K.
Moreover observe that relation (7.5} holds at any {t,z,k) € 80\ ({T} x & x {K})

and the minimum in the right-hand side of (7.5) is achieved by a vector (Zg, @1, D)
verifying @ = 0if t = T and (@, @2} = 0 if &k = K. It follows that

(VA VAol + Ve Ay +2d -+ VeAy /85 + 5 = on 80\ ({T} = B x {K}).

Hence V is & viscosity supersolution on 80\ ({T} 2 R % {K}), so we can conclade that
¥ coincides with the value function of problem Py -z Y(t,x,k) € (1. In particular
the controls (7.4) are optimal.

Appendix. .

Canonical parametrizations. We recall the notion of canonical parametrization
from [32}. For this purpese, if (¢,u) is not identically constant leb us introduce the

DYNAMIC PROGRAMMING FOR IMPULSIVE CONTROL SYSTEMS 223

map < from |0,1] onto itseil defined by

L Wy Jo I u))ds
0'(5) = Vol(i,u) - fﬂl l(fa'-")ld.s'

If (2,u) is constant on the whole interval [0, 1], we set
(8¢, 6%, ) = {4, ).
I {t, 1) is not constant, we set
5)] (s, o) = (L, v)(s), o=a(s).

In prineiple (D) defines & multivalued map. Yet {5, 1°) turns out to be univalued, while
¢ is uniquely determined almost everywhere. More precisely we have the following
proposition.

ProposiTioN A.1. The relation (D) defines o Lipschitz-continuous map (%, u®)
on [0,1), and the derivative (t°',u"), which erists abmost cverywhere, has constant
norm equal to Vit(t,u). Moreover (D) defines a univalued Borel-mensurable mep ve
almost everywhere in 0,1},

Thanks to Proposition 1 we can give the notion of canenical parermetrization.

DEFINITION A.1. The space-time control (t5,u°,v°) defined by relation (D} is
colled the canonicsl parpmetrization of (t, u,v).

DEerFINITION A.2. Let {ty,uy,v1), (b2, s, vn) b two space-time controls and let
(¢5,uf, ¥f), (15, u5, v5} be the corresponding canonical parametrizations. The space-time
contral {fy, iy, v:} is called equivalent to (2o, u, va) #f (e5,uf)s) = (t5,usHs) Vs &
10.1] end v§(s) = vi(s) for almost every s in [0, 1]. o

Proposition A.2 below illustrates the relationship between the trajectory ylt, u, v}
corresponding to a space-time control (t,u,v) and the trajectory yite, v°, %] corre-
sponding to the canonical parametrization (1%, u® v} of {¢,u,v).

FROPOSITION A.2. Fir the initinl condition 4{(0) = (ty,z1 w1 ). Then the irgjec-
tories yit, v, v, Y%, w6, v} satisfy the relation

ylt®, ut vl(E) = ylt v (e ({gh)

for every £ £{0,1].

A pseudometric for space~time controls. The notion of canonical parpmet-
rization allows us to introduce o pseudometric 6° on the space T'(, i) of space-time
centrols. For every two space-time controls (£1,u,v1), (2, uz, 1) let us set

(b2 wr,0), (2 uz,02)) = (05, 0%) — (852, 9%2) ) + [lo§ — v,

where ||- |t and |- §; denote the C? norm and the L' rorm, respactively. In particular
two spece-time controls have §° psendodistance equal to zero if and only if they are
equivalent, g0 6° induees a metric on the quotient space,

The following density result was proved in [32].

ProposiTion A.3. Any set I'f{__,-c(f,ﬁ) of regular controls is dense, in the topol-
ogy induced by 6%, in the carresponding set Ty p{f,11) of space-time controls.

%cknuwledgments. The authors wish to thank Martino Bardi and Pierpaclo
Soravia for their very usefzl bibliographical suggestions.
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