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Abstract 

The aim of this paper is to give a short introduction to the most fundamental aspects of extrapolation methods. 
Such methods are used for accelerating the convergence of sequences. 
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This paper is based on our book [l] where all the details and the references can be found. 
This book also contains a diskette with FORTRAN routines for the most important algorithms 
for accelerating the convergence. 

1. Introduction 

Let (S,) be a sequence of (real or complex) numbers which converges to S. We shall 
transform the sequence (S,) into another sequence (7”) and denote by T such a transforma- 
tion. 

For example we can have 

T, = %I + Sn+l 
2 

) ?z=o, l,... 

or 

T, = %c%lt2 - s,2+1 
S n+2-2S,+1+S,’ n=0y17..* 

which is the well-known A2 process due to Aitken. 

* Corresponding author. E-mail: brezinsk@omega@univ-lillel.fr. 
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In order to be of some practical interest, the new sequence (T,) must exhibit, at least for 
some particular classes of convergent sequences (S,), the following properties: 

(1) (TJ must converge. 
(2) (7”) must converge to the same limit as (S,). 
(3) (7”) must converge to S faster than (S,), that is, 

lim (T, - S)/(Sn - S) = 0. 
n-m 

l If property (2) holds, we say that the transformation T is regular for the sequence (S,). 
l If property (3) holds we say that the transformation T accelerates the convergence of the 

sequence (S,) or that the sequence (T,) converges faster than (S,). 

These properties-in particular, the last one-do not hold for all converging sequence (S,). 
But do the first two above-mentioned properties hold for examples (1.1) and (1.2)? The first 

example is a linear transformation for which it is easy to see that, for each converging sequence 
(S,), the sequence (T,) converges and has the same limit as (S,). Such linear transformations, 
called summation processes, have been widely studied and the transformations, named after 
Euler, Cesaro, Hausdorff, Abel and others, are well known. The positive answer to properties 
(1) and (2) above for all convergent sequences is a consequence of the so-called Toeplitz 
theorem which can be found in the literature and whose conditions are very easily checked in 
practice. Some summation processes are very powerful for some sequences as is the case with 
Romberg’s method for accelerating the trapezoidal rule which is explained in any textbook on 
numerical analysis. However, let us look again at transformation (1.1) and try to find the class 
of sequences which it accelerates. We have 

S,+,-S 

s, - s 

and thus 

lim(T,-S)/(S,-S)=O 
n+m 

if and only if 

lim (S,+l - S)/(S, - S) = - 1 
n-m 

which shows that this transformation is only able to accelerate the convergence of a very 
restricted class of sequences. This is mainly the case for all summation processes. 

On the other hand, let us now look at our sequence transformation (1.2) which is Aitken’s A* 
process. It can be easily proved that it accelerates the convergence of all the sequences for 
which there exists a A E [ - 1, + 1) such that 

lim (&I+1 - S)/(S, - S) = A, 
t-t-m 

which is a much wider class than the class of sequences accelerated by our first linear 
transformation. But, since in mathematics as in life nothing can be obtained without pain, the 
drawback is that properties (1) and (2) do not hold for all convergent sequences. 
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In conclusion, nonlinear sequence transformations usually have better acceleration proper- 
ties than linear summation processes (that is, they accelerate a wider class of sequences) but, on 
the other hand, they do not always transform a convergent sequence into another converging 
sequence and, even if they do, the limits may be different. 

We shall now exemplify some interesting properties of sequence transformations on our 
examples (1.1) and (1.2). In the study of a sequence transformation the first question to be 
asked and solved (before those of convergence and acceleration) is an algebraic one: it 
concerns the so-called kernel -W, of the transformation, that is the set of sequences for which 
there exists an S such that V’n, T, = S (in the sequel Vn would eventually mean V’n 2 N). 

For our linear summation process it is easy to check that its kernel is the set of sequences of 
the form 

S,=S+a(-1)“, 

where a is a scalar. 
For Aitken’s process the kernel is the set of sequences of the form 

S, = S + aAn, 

where a and A are scalars with a # 0 and A f 1. 
Thus, obviously, the kernel of Aitken’s process contains the kernel of the first linear 

summation process. 
As we can see, in both cases, the kernel depends on some (almost) arbitrary parameters: S 

and a in the first case and S, a and A( # 1) in the second. 
If the sequence (S,) to be accelerated belongs to the kernel of the transformation used, then, 

by construction, we shall have Vn, T, = S. 
Of course, usually, S is the limit of the sequence (S,) but this is not always the case and the 

question needs to be studied. For example, in Aitken’s process, S is the limit of (S,) if 1 A 1 < 1. 
If I A I > 1, (S,) diverges and S is called its anti-limit. If 1 A I = 1, (S,) has no limit at all or it 
only takes a finite number of distinct values and S is, in this case, their arithmetical mean. 

We are now ready to enter into the details and to explain what an extrapolation method is. 

2. Extrapolation methods 

A sequence transformation T: (S,) - CT,) is said to be an extrapolation method if it is such 
that Vn, T, = S if and only if (S,) E&-. 

Thus any sequence transformation can be viewed as an extrapolation method. What is the 
reason for this name? Of course, it comes from interpolation and we shall now explain how a 
transformation T is built from its kernel Xr., that is from a given relation R that is satisfied 
vn. 

S,, Sn+lY+Sn+p+q being known, we are looking for the sequence (u,) E ZT satisfying the 
interpolation conditions 

ui=s. 1) i=n ,*.a, n+p+q. 
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Then, since (u,) belongs to Xr, it satisfies the relation R, that is 

R(ui, *.*7”i+q7 S)=O Vi. 

But, thanks to the interpolation conditions we also have 

R(Si ,..., Si+*,S)=O, i=n ,..., n+p. 

This is a system of (p + 1) equations with (p + 1) unknowns S, a,, . . . , up whose solution 
depends on IZ, the index of the first interpolation condition. We shall solve this system to obtain 
the value of the unknown S which, since it depends on IZ, will be denoted by Tn. (Sometimes to 
recall that it also depends on k =p + q it will be called T,‘“).) 

Let us give an example to illustrate our purpose. We assume that R has the following form 

R(ui, Ui+l, S)=a,(u,-S)+a,(u,+,-S)=O, u,Yz,#O, 

and thus we have to solve the system 

( 

a,(&$ -S) + a,(&+, - S> = 0, 

%(S,+1- S) + 4%+2 - S) = 0. 

Since this system does not change when each equation is multiplied by a nonzero constant, a, 
and u2 are not independent and the system corresponds to p = 4 = 1. The derivative of R with 
respect to its last variable is equal to -(aI + a,) which is assumed to be different from zero. 
Then S is given by 

S=( ‘l”i + u2”i+l>/(ul + ‘2) 

and the system to be solved becomes 

i 

S = (%S, + %&Z+J/(% +a*), 

S = (%%+I + G%+*)& + 4 

Thus we do not restrict the generality if we assume that a, + u2 = 1 and the system is written as 

i 

S = qSn + (1 - a,)S,+,, 

S = %Srrfl + (1 - %Nl+*~ 

or 

0 = u,AS, + (1 - u,)AS,+~, 

where A is the difference operator defined by Au, = v, + 1 - v, and Ak’ ’ v, = Ak v, + r - Ak v,. 
The last relation gives 

a, = AS,, JA2S, 

(A2S, # 0 since a, + u2 # 0) and thus we finally obtain 

S=T,= $h,+ (I-2) .Sn+l, 
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that is 

T, = 
SnSn+Z - S,2+1 

s n+2 - 2&I+, + TI ’ 

which is Aitken’s A2 process (whose name comes from the A2 in the denominator). 
Thus we have shown how to construct a sequence transformation T from a given kernel XT. 

By construction Vn, T, = S if and only if (S,) EX~. 

3. Extrapolation algorithms 

Let us come back to the example of Aitken’s A2 process given in the preceding section. We 
saw that the system to be solved for constructing T is 

( 

T, = S = a& + (1 - a&S,+,, 

T,, = S = aIS,+, + (1 - al)Sn+2. 

Adding and subtracting S, to the first equation and S,, 1 to the second one, leads to the 
equivalent system 

1 

S, = T, + bAS,, 

S n+1= TI +b4l+l~ 

where b = a, - 1. 
We have to solve this system for the unknown Tn. Using the classical determinantal formulae 

giving the solution of a system of linear equations, we know that T, can be written as a ratio of 
determinants 

Of course the computation of a determinant of dimension two is well known and easy to 
perform and in the preceding case we obtain 

T, = 
VLl - ~,+,4l %A+2 - s,2+1 

AS,,, - AS,, = Sn+2 - 2S,+, + S, ’ 

which is again the formula of Aitken’s process. 
Let us now take a more complicated example to illustrate the problems encountered in our 

approach. We assume now that R has the form 

+$ - S) + u&Q+r - S) + . . . +uk+&i+k - S) = 0 
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with a, . ak+l # 0. We now set p = q = k. For k = 1, the kernel of Aitken’s process is 
recovered. Performing the same procedure as above (assuming that a, + * * * +LZ~+~ = 1 since 
this sum has to be different from zero) leads to the system 

I 

S, = T, + b,AS, + . . . +b,AS,+,_,, 

S n+l = T, + b,AS,+, + . . . +b,AS,+,, 

\ 
S n+k = T, + b,AS,,k + . . . +bkASn+2k-l. 

Solving this system by the classical determinantal formulae gives for T,: 

I %I Sn+l ... Sri+++ I 
AS,, AS,,, -.a ALk 

As,,,-, As,,, **- ASn+z-1 
T, = 

1 ... 11’ 
AS,, AS,,, ‘.a AS,,, 

AS,;,_, AS,,,, . . . AS,;,,_, 

In that case T, will be denoted as e,(S,>. It is the well-known Shanks transformation. 
The computation of e,(S,> needs the computation of two determinants of dimension (k + 1) 

that is about 2(k + l)(k + l)! multiplications. However if the determinants involved in the 
definition of T,, have some special structures, as is the case of Shanks’ transformation, then it is 
possible to obtain some rules (that is, an algorithm) for computing recursively these ratios of 
determinants. Such an algorithm will be called an extrapolation algorithm. 

For example, Shanks’ transformation can be implemented via the &-algorithm of Wynn 
whose rules are 

_@] = 0, eb”’ = s 
n, n=o, l,..., 

1 
@J i = $_+ii) + (n+i) _ @’ ’ k,n=O,l,..., 

‘k 

and we have 

the E’S with an odd lower index being intermediate quantities without any interesting meaning. 
The E-algorithm is one of the most important extrapolation algorithms. 
Many sequence transformations are defined as a ratio of determinants and thus they need an 

extrapolation algorithm for their practical implementation. As explained above, such an 
algorithm usually allows to compute recursively the Tf’)‘s. 



C. Brezinski, M. Rediuo-Zaglia /Applied Numerical Mathematics 15 (1994) 123-131 129 

4. Accelerability and non-accelerability 

As explained above, a universal sequence transformation for accelerating the convergence of 
all convergent sequences cannot exist. More precisely, a universal transformation cannot exist 
for a set of sequences which is remartent. In other words a transformation able to accelerate the 
convergence of all the sequences of a remanent set cannot exist. This is clearly a very 
fundamental result in the theory of sequence transformations since it shows the frontier 
between accelerability and non-accelerability. 

A set 9 of real convergent sequences is said to possess the property of generalized 
remanence if and only if 

(1) There exists a convergent sequence (in,> with limit s^ such that V’n, Sn # s^ and such that 
(a) 3(Si) E 9 such that lim so = So. n+m n 
(b) Vm, 2 0, 3p. 2 m, and (SA) ~9 such that lim S’ = s^, and Vm <po, SA = Sz. n+m n 
(c) Vm, >po, 3p, > m, and (Sz) ~9 such that lim,,,P: = gZ and Vm <pl, Si = Si. 
Cd) . . . . 

(2) cs;, . . .,s;“, s;o+l,. .*,s;,, $+I, * .., s&, $*+I,. . .> E9. 

The diagram in Fig. 1 makes the property more clear. 
The fundamental result is that, if a set of sequences possesses the property of generalized 

remanence, then a universal transformation able to accelerate the convergence of all its 
sequences cannot exist. 

Such a set of sequences is said to be non-accelerable. Techniques similar but different from 
remanence can also be used to prove the non-accelerability of some sets of sequences. Actually 
many sets of sequences were proved to be non-accelerable. They are the following: 

. 

. 

0 

l 

. 

l 

. 

l 

. 

l 

The set of convergent sequences of E, where E is a metric space. This set will be denoted 
by conu( E). 
The set of convergent sequences of E such that 3N, Vn 2 N, S, # lim, +ooSi. This set will 
be denoted CWZU*( E). 
The subsets of conu(E) such that V’n, Sri+++ 2 S, or Sri+++ <S,, or Snfl > S, or Sri+++ <S,. 
The subsets of conu(E) such that Vn, ( - l>‘A’S, < 0 for i = 1,. . . , k or ( - l)‘AS, 2 0. 
The subsets of con&R) such that (- lYAS, or (- l)“(S, - S) has a constant sign. 
The subsets of conu(R) such that (- l)“AS, or (- l)“(S, - S) is monotone with a constant 
sign. 
The subsets of conu*@!) such that V’n 2 N, 0 < A < (S, + I - S)/(S, - S) < p < 1 or A < 
A&+,/AS, G P. 
The subset of conu*(R) such that lim,,,(S,+, - S)/(S, - S) = 0 
The set of logarithmic sequences, lim, ,,(S,+ 1 - S)/(S, - S) = 1. This set is called LOG. 
The subset of logarithmic sequences such that lim. +JSn+ i - S)/(S, - S) = 
lim n +mASn+ ,/AS, = 1. This set is called LOGSF. 

It must be clearly understood that the preceding results do not mean that a particular 
sequence belonging to a non-accelerable set cannot be accelerated. It means that the same 
algorithm cannot accelerate all the sequences of the set. 
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Fig. 1. The property of generalized remanence. 

This property justifies the fact that many extrapolation algorithms have to be discovered and 
studied in order to be able to accelerate the convergence of as many sets of sequences as 
necessary. Possible procedures for that purpose consist in using convergence tests for sequences 
and series, or constructing asymptotic expansions of the error, or building well-adapted 
extrapolation processes directly from the asymptotic properties of the sequence to be acceler- 
ated. 

5. General comments 

Among the existing extrapolation methods, the most well-known is certainly Aitken’s A2 
process which is explained in almost all textbooks on numerical analysis. It has been general- 
ized in several directions but the most important one is the &-algorithm. The most general 
extrapolation method actually known is the E-algorithm. All these algorithms have been widely 
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studied both from the theoretical and the practical point of view. They have received 
interesting and powerful applications. 

In numerical analysis, one often has to accelerate sequences of vectors. This can be done by 
applying a scalar extrapolation method to each component of the vectors. However, there exist 
more interesting procedures, better adapted to the vector case. Among them, one can find the 
vector and the topological &-algorithms, a vector E-algorithm and projection algorithms such as 
the so-called RPA and CRPA. 

Apart from these algorithms, there exist special devices which can be very useful in 
connection with extrapolation methods. For example, it is often interesting in applications to 
estimate the error or to control it, that is to give a sequence of intervals containing the limit, 
the bounds of which converge faster than the initial sequence. One can also, before using an 
extrapolation method, extract a sub-sequence from the initial one and then accelerate it. This 
could help in enhancing the performance of the acceleration technique. When the user is faced 
with the choice of an extrapolation procedure, he can also program several of them and then 
select, among all results obtained at each step, one of them according to some test. Under some 
assumptions, it can be proved that such an automatic selection procedure provides the best 
possible answer. 

Extrapolation methods have also many applications in the solution of various problems of 
numerical analysis outside the domain of convergence acceleration, For example, they provide 
a quadratically convergent method for solving systems of nonlinear equations (under some 
assumptions) which does not require the computation of any derivatives. The &-algorithm 
provides a generalization of the power method which allows to compute simultaneously several 
eigenvalues of a matrix. Applications to integral and differential equations (and, in particular, 
boundary value problems), to numerical quadrature and to differentiation have been studied. 
Finally let us mention that applications to statistics (the jackknife, ARMA models and 
Monte-Carlo methods) have been developed. 

Extrapolation methods have connections with such important topics as projection methods 
for systems of equations, Pad6 approximants, continued fractions and orthogonal polynomials, 
to name a few. It is a domain of numerical analysis presently in full expansion. 

Reference 

[l] C. Brezinski and M. Redivo Zaglia, Extrapolation Methods, Theory and Practice (North-Holland, Amsterdam, 
1991). 


