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Abstract: To solve a classical ill-conditioned problem in the sense of Hadamard as the initial Cauchy problem for a 
biharmonic operator after some a priori estimates, a posteriori estimates are evaluated using three different methods of 
minimization such as: linear programming, least squares and a recursive projection algorithm for least squares. 
Numerical comparisons will be made on these three methods. 
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1. Introduction 

The Cauchy problem for the biharmonic operator is considered here and this problem is, as it 
is well known, an ill-posed problem in the sense of Hadamard. In the case that the initial data 
are not analytical but at most differentiable a certain number of times, it may seem convenient to 
proceed as follows: first of all, approximate the function expressing the initial data through 
polynomials and solve afterwards the problem by the use of the approximated initial data, 
believing that the solution obtained in such a way may be not very much different from the 
solution of the original problem. Unfortunately, such belief is false as it is completely explained 
by the famous Hadamard example [7]. Though, the problem considered has a physical relevance 
and the difficulty underlined by the famous Hadamard example for the Laplace operator may be 
overcome in the following manner: if the data prescribed are not really the Cauchy data, we still 
may solve the problem imposing to the solution to be uniformly bounded. It follows that the 
Cauchy problem for the biharmonic operator has a stable solution in the sense that it is possible 
to give some a priori estimates for the coefficients of the solution. The solution of the problem is 

therefore reduced to a solution of a problem obtained by minimizing a certain functional subject 
to some linear inequalities. In this paper, after having recalled all necessary a priori estimates for 
the biharmonic Cauchy problem, the solution may be only obtained by a numerical procedure. 
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Three different numerical procedures are possible: linear programming, least squares with 
normal equations and least squares with a recursive projection algorithm. The first and second 
procedure have been presented in [5], the third one is presented here. A comparison is made 
among numerical results of 
computing time. 

the three procedures from the point of view of accuracy and 

2. The Cauchy problem for a biharmonic operator 

In the xy-plane let C denote a smooth simple closed rectifiable Jordan curve whose interior G 
is assumed to be star-shaped with respect to the origin z = x + iy = 0. Let r = R( 0) denote the 
equation of C in polar coordinates. The problem of approximating the solution of u = u(r, 0) of 

A2u=0, ZEG, (1) 

@w, 0) =fW, (2) 

(3) 
where n is the direction of the interior normal to C and where the real-valued functions f(B), 

f’(@ and g(e) are known only approximately as F( t9), Fi( 0) and G( 0) such that 

mm{ II F(e) -f(e) ]][0,2n19 Ii K(e) -.W> ii10,2nl~ 

II G(e) - g(e) Il~o,2nI} G PL, P ’ 0, (4 

where for any real-valued function f(x) on a set E 

II f(x) IIE = ,“tpE I f(x) I- (5) 

In [4,5] it has been shown that a sequence of biharmonic functions { uk} can be determined 
numerically such that the uk and their first derivatives converge uniformly to u and its first 
derivatives on G= G u C as k tends to infinity and p tends to zero. Then an a priori estimate is 
given using a Miranda [8] maximum principle, that can be paraphrased for the restriction to 
simply connected regions. 

Theorem 1. If u is a biharmonic function in G which is continuous along with its first derivatives in 
G = G U C, then for each c > 0 there exists a biharmonic polynomial 

N N 
uN(r, e) = aN + b,r2 + C cN,krk cos kB + C d,,,rk sin k8 

k=l k=l 

N 

+ c eN,krk+2 cos ke + E fN,krk+2 sin k8, 
k=l k=l 

where N depends upon E and G, such that 

maxi I] u(r, 8) - uN(r, 0) llGp 11 sky 0) - $Cr~ e, jlGy 

/I 
g(r, e) - %(r, 8) 11,) a. 

(6) 

(7) 
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Theorem 2 (Maximum principle). There exist two positive consfants K, and K,, which on& depend 

upon G, such that if u is a solution of (l)-(3) w lc is C1 in G, then for (r, 0) in G, h’ h 

\ibx,’ + by)’ G K,{ II gllLo,2nl + II f ‘ll[o,2~,} + K2 II f 11,0,24 (8) 

and 

I h-> 0) I G KIT { II g II[o,2n] + II f’ Il[0,2n]} + (1 + K28) II f ll[0,2n]7 

where 6 = S(r, 8, C) is the distance of (r, 0) from C. 

(9) 

The use of such theorems allows to reduce the solution of the problem consideration to a 
minimization problem on the boundary of the region C. Using a minimization technique on a 
functional that is introduced as a posterior-i estimation of the error depending on the Miranda 
maximum principle it is therefore possible to solve the problem. 

3. Numerical solution of the initial-value Cauchy problem 

Theorem 3. There exists a constant K which only depends upon G and N such that 

11 aN 11 G K(H + P + d, 

II bN II < rGIK(H + P + c>, 

11 CN,k II ~r;~K(H+p+c), k=l,..., N, 

II d,,, II G GkK(H + P + c>, k=l,..., N, 

IIeN,k(I<r~k-2K(H+~++), k=l,..., N, 

[( fN,k (( <rckP2K(H+p++), k= l,..., N, 

where 

H=max{llWWl [0,271]3 II F,(e) ll[0,2n]9 II W) Il[o,zr]} 

and 

r. = o<i;yW. 
. . 

00) 
(11) 
02) 
(13) 
04 
(15) 

(16) 

(17) 

The proof of this theorem is given in [4]. By the maximum principle of Miranda [8], it follows 
that 

08) 

where K is a positive constant that depends only upon G. In the remainder of the paper, K shall 
denote a sufficiently large positive constant whose dependence on various parameters will be 
emphasized only if the dependence is crucial to the discussion. 

Let @, denote the finite set 0 = 8, < 8, < . . . < em_, < 6, = 2a. Replacing aN by a, bN by b, 
cN,k by ck, etc. in (6), denote the resulting function as uN(r, 8; P), where 

P=(a, b, cl,---,cN, &,...,dN, el~---~eN~ f~,***,f,) 
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is a point in Euclidean (4N + 2)-space. Consider the continuous functions 

II G(ej) - ‘)II, } (19) 
m 

on the compact sets 

DN= {Pla , . . . , f,,, satisfy the inequalities (lo)-(15) 

with H+~+E replacedbyH+p+l}. (20) 
Let 

.Y N,m = inf E,,,(P). 
DN 

(21) 

Since EN,,, 
that 

is a continuous function on the compact set D,, there exists a point PN,, in DN such 

4 N,m = EN,m(PN,m)* 

Consider the biharmonic functions 

(22) 

+m(Y, 8) =u,&, 8; p,,,), N= 1,2 ,..., m=O, I,... . (23) 

For these functions, it follows from the maximum principle of Miranda [8] and the triangle 
inequality that for any point (Y, 8) in G, 

where for any continuous function g(5) defined on a connected set S, 

a(& 17, S) = SUP I dtJ -g(G) IT (25) 
5,,&~S,l5,-&l<7l 

7)m= mm Iej+*-ej19 
i<j<m 

(26) 

K, is a positive constant depending upon the smoothness of R(8), and d is the diameter of G. 
This result comes from the following theorem. 
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Theorem 4. There exist two numbers K, and K, depending on& on the domain Gsuch that for every 
biharmonic function u(x, y), continuous in G with its first derivatives and verifying the boundary 
conditions (2) and (3), and with f ‘((3) and g(B) continuous, it is true that 

/~<K,[maxJgl+maxlf’ I] +K, maxIf I, (27) 

lu(P)I~K,~[m=lf l+maxIf’l] +(l+K,S) maxIf I, (28) 
where 6 is the distance of a point P( r, 13) from the boundary of G. 

Relation (28) comes immediately from (27). To show the relation (27) we take a biharmonic 
function v( x, y) continuous with the first derivatives in G verifying (2) and such that 

/--= uX+uY <HH,maxIf’)+H,maxlfJ, (29) 

where HI and Hz are convenient constants depending only on G. 
It is in fact sufficient to observe that the function u - v is zero on the boundary and such that 

the normal derivative satisfies 

r( u v - )I an 
<maxIg(+H, maxi f’ l+H2 maxi f I 

to obtain 

(30) 

i( u~-u~)~+(u~-u~)~ <KK,[m=lgI+H, maxIf’ l+H2 m=lf I] 

and from all these relations, (27) follows. 

(31) 

From the result in (24), we can state an a posteriori estimate, that may be solved only 
numerically, in the following form: 

a(P, 9) = u(a, b, c, d, e, f) =9, 

where c = (ct,. .., cN), d= (d, ,..., dN), e = (et,. 
linear inequalities 

(32) 

, eN) and f = ( fi, . . . , fN), subject to the 

j=O ,...,m-1, (33) 

j=O ,...,m-1, (34) 

j=O ,...,m-1, (35) 

(36) 
and the linear inequalities that state the assertion that P is in D, (20) is equal to YN.m. 

4. The numerical algorithms 

Since the minimization problem of the functional (36) subject to (33)-(35) is a feasible linear 
programming problem, it follows that uN m can be determined by its solution [6]. We shall now 
consider an alternative method of approximating the solution of (l)-(3) subject to (4) by the 
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method of least squares subject to a quadratic constraint. From the fact that u( r, 0) can be 
represented in the form 

4.9 0) = /02*{Y10 0, MT) + Y&T 8, WC4 + Y3(C 8, MT>} d7, (37) 

where yi, i = 1, 2, 3, are the particular parts of the biharmonic kernel function for G which are 
associated with f, f ’ and g, it follows that for any compact subset D of G there exists a 
constant K depending on D and the yi, i = 1,2, 3, such that for any point (Y, 0) in D, 

146 W+l$l, 8)1+1$(6 ~+m~f ih+iif’ ii2+ii~ii2~~ (38) 

where for any function f defined on [0, 2~1 

iif h= [I:‘if(s) 12 de] 
i/2 

. (39) 

In all methods, the values of uN, (d/de)u,(r( e), e), (Clu,/an) are taken at the points q as 
those of 3m linear functions ‘pi, x j, qj of the variables aN, b,, . . . , fNN, where 

N 

qjcaN? bN,--- ?fNN)=aN+bNq2+ 5 cNkqk cos kej + c dNkrjk sin ke, 
k=l k=l 

+ E eNkqk+’ cos kej + ; fNkTkk+2 sin ke,, 
k=l k=l 

Xj(QN, bivy+--~fm) 
= 2bNrj4(&! - p) Sti dj COS ej 

+ g cNkkTk( -sin kOj + r2(a - p) sin ej cos ej cos kB,) 
k=l 

+ E d,,kr:(cos kOj + r’( a - /?) sin Bj cos ej sin kBj) 
k=l 

+ t e,,((k + 2)r:+4(a - j3) sin tj cos ej cos kl?, - krF+2 sin kOj) 
k=l 

+ f f,,((k + 2)rjk+4(a - p) sin ej cos ej sin kOj + krjk+2 cos kOj), 
k=l 

(40) 

$j(aN7 bN,---- fvN)=2bNTj(a-~)c0s(ej-yj)+ 5 CNkkrjk-’ COS( kej - ej + Yj) 
k=l 

N 

+ c dNkkrik-l sin( kOj - Bj + yj) 
k=l 

+ E eNkqkk+‘(2 cos ke, cos( Oj - yj) + k cos( kOj - ej + vi)) 
k=l 

k=l 

(2 sin ktlj cos( tlj - 7,) + k sin( kej - ej + Yj)), 
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where 

yj = tan- ‘( -;+], q=r(ej)- 

The points Pj are uniformly distributed points over the boundary, here an ellipse E is considered 
described by the equation 

r(0) = (a cos2 0 + j3 sin2 0)-l”, (41) 

where cx and p are the squares of the reciprocal of the semiaxes of E. 
To consider the problem as a “linear programming” problem let us introduce a new variable 5 

such that 

lTjmF(B,) I <ST IXjvFl(B,) I <ST I+-G(8j)l G!Y’, (42) 

which may be written as 

'P,-JGF(B,), -qj-S< -F(B,), 

Xj-SSF,(B,), -Xi-SG -F,(B,), 
#j-S< G(B,), -$j-{< -G(B,). 

The linear function u to be minimized is simply 

(43) 

a({, aNy b, >**-L&N) =l, 04 
subject to simultaneous linear inequalities (43). 

To consider our problem as a “least squares” problem let us rename the vector 

(aNY bN,...,fNN) as x=(x0, -%~~~~X4N+l ). The functions (40) will then be written as follows: 

4N+l 4N+l 4N+l 

‘p/ = C Yjpxp 9 Xj= C wjpxp9 #j = C ‘jpxp* 
p=o p=o p=o 

Now, let us consider the polynomial of second degree with respect to the xP: 

(45) 

m-l 

L N,,,= c {[F(ej)-vj]2+ [&(B,)-xj12+ [G(ej)-‘,]2)o 
j=O 

(46) 

We want to determine the point in (4N + 2)-dimensional Euclidean space which makes L,,, a 
minimum. We consider the solution of the following simultaneous equations: 

4N+l 

c ASpXp=B*, a=0 )...) 4IV+1, (47) 
p=o 

where 
m-1 

Ba= C (F(8,)Yj,+F,(B,)wja+ G(ej)z,,), 
j=O 

m-1 

A8p = C (YjpYjS + wjpwjS + zjpzjS)* 
j=O 



198 M. Morandi Cecchi, M. Redivo ZagIia / Solution of biharmonic problems 

A new method is considered in the following to solve the biharmonic problem by a recursive 
projection algorithm [l-3]. We want to approximate a function f( 6) using a function f * (6) that 
can be expressed as a linear combination 

f*(e) = V#%(~) + cP#O) + . * * +w#o) (48) 

of k + 1 functions c&, c#+ . . . , &, which are chosen in advance and c,,, cr, . . . , ck are coefficients 
whose value is to be determined. The function f is known at the m distinct points Pj, j = 
0 >*-*> m - 1. We want to determine the k + 1 parameters c,,, cr, . . . , ck, such that f *( 19~) = f ( Oj) 
holds exactly or as close as possible at all the m points. In the case of least-squares approxima- 
tion we determine the coefficients such that the Euclidean norm of the error function f * -f 
becomes as small as possible, that is, such that 

m-l 

IIf*-f II;= C lf*(ej)-f(ej)12 

becomes as small as posiLb;e. 
In our case the k + 1 functions are the 4N + 2 functions of the biharmonic polynomial C& = 1, 

6 =~2(Q,...,~)k> and the undetermined coefficients are ( aN, b,, . . . , fNN). The chosen points Pj 

are such that the number of the equations is less than the number of the unknowns and then we 
have an undetermined least squares problem that becomes an overdetermined least squares 
problem adding the tangential and normal derivatives known at the Pi points (3~ > 4N + 2). It 
is possible to obtain the solution to this linear system, in the least squares sense, through the 
recursive projection algorithm with the assumption that we consider the real vector space of 
functions E in which the Euclidean norm becomes the inner product of two real-valued 
continuous functions: 

m-l 

II* II:=(f) g)' J~of(ej)g(ej)o 

Then we define 3m linear functionals 

L,j($J = $L(8,L 

L*j(a)=$(ej)3 j=O,...,m-1, 

Md = z(q). p=o ,...,4N+ 1, 

(49) 

with 

LIj(f > =F(ej)> L2,(f > = F,(B,), bJ(f I = G(B,). (50) 

Then the overdetermined linear system represented by Ax = b with A a real (3~ X (4N + 2))- 
matrix and b a (3m)-vector assume the form: 

’ +O(ej> Gl(ej) a.0 G%N+l(ej) F(ej) 

gJ(B,) g#,) ... W(8,) (x)= 4 ( e, 1 

$$(ej) $(eJ . . . *(e,) WI) 

> j=o,...,m-1, 

(51) 
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or, in the functional form: 

‘LIj(+Cl) Lr~(cPI) * * ’ Llj(+4N+1) \ ‘Llj(f)’ 

L2.j(4b) L*j(Gl) *‘* L2j(+4P4N+1) (x) = L2j(f) . (52) 

\ L3j(hl) L3j(+l) ‘. . L3j(+4N+I) , , L3j(f), 

If we consider the (4N + 2)-dimensional linear subspace spanned by the functions $J,, the 
least-squares problem may be proposed as a geometric problem in a function space, because we 
look for the direction of the vector having the shortest distance to the vector represented by f. 

Then, if we are interested only in computing the approximate value, it is not necessary to 
compute the coefficients x,, and we can use the E-algorithm [l] after modifying the initializations 
according to the Mtihlbach-Neville-Aitken algorithm [9]. 

Having 

m-l 

L(f) =f(Q (f, g) = IF0 ( Llj(f )Llj(g) + L2j(f )L2j(9) + L3J(f )L3j(g)), 

(53) 

where 0 is the angle whose values must be extrapolated, we utilize the recursive formulas 

’ 

(54) 

i=k+1, k+2,..., 

with the initializations 

(55) 

and we shall obtain 

f 
*(O) =L(f *)* 

4N+l 

5. Some numerical results 

Considering the comparison among the different methods some tables have been prepared 
where the input parameters are the integers N and m, and the two parameters (Y and p of the 
ellipse, with (Y = 0.5 and p = 1.0. The results are presented for linear programming, least squares 
and the E-algorithm applied to three functions: f = r cos 13, f = 1 + x2y and f = 1 + sinh y sin x. 
The case of the third function is the most interesting because this function cannot be expressed 
as a sum of a finite number of terms of a biharmonic function. 

The accuracy of the approximation obtained in the first method is expressed by the value of c. 
The approximation obtained over the entire ellipse was good only where a small value of c was 
obtained. 
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Table 1 
Results concerning the function f= r cos fl 

Table 2 
Results concerning the function f = 1 + x*y 

m 4N+2 3 (LP-90) I (least E, 
squares) (E-alg.) m 4N+2 5 (LP-90) I (least E, 

4 6 0.19 0.175 < lo-‘4 squares) (E-alg.) 

8 6 i 1oF < 10-6 < 10-13 6 14 0.36 0.58 < lo-‘0 
8 10 i 1o-6 < 1o-6 < 10-r* 8 14 i 1o-6 -=z 10-6 < lo-” 

10 14 0.93 0.75 < lo-” 
12 14 -C 10-6 < 10-6 < 10-10 

Table 3 
Results concerning the function f = 1+ sinh y sin x (linear programming method) 

m 4N+2 r R E l/4 E l/2 E 3/4 El 

8 14 0.28 0.03 0.19 0.11 0.06 0.28 
8 22 <1o-3 <1o-4 <10-s <lo-* <1o-3 x10-3 

16 14 0.38 0.14 0.29 0.23 0.19 0.38 
16 22 0.24 0.08 0.23 0.19 0.15 0.31 
32 22 0.02 0.01 0.02 0.02 0.01 0.02 

In the second method the approximation is measured by the quantity 

J L 
I= 3m-(Z+2) ’ 

and the solutions obtained for the coefficients of the biharmonic functions have been applied on 
as many as 1000 points. 

In the third method E, represents the value 1 f( 8) -f *( 0) 1 over the boundary of E. 
In Tables 3-5, R means the error at the origin and E1,4, El,*, E3,4 are respectively the 

computed suprema of ) u - uN ) = I f-f * I on the three ellipses E,, which belong to the region G, 
concentrical and homothetical with E, with ratio p with respect to E. 

Table 4 
Results concerning the function f = 1 + sinh y sin x (least squares method) 

m 4N+2 1 R E l/4 E l/2 E 3/4 El -, 
8 14 0.28 <lo-7 <lo-* <lo-* <lo-* 0.04 

8 22 <1o-3 
16 14 0.20 
16 22 0.14 
16 42 <1o-4 
32 14 0.175 
32 22 <lo-* 
32 42 <10-s 
32 62 <1o-6 
64 42 0.175 
64 62 0.175 
64 82 <lo-’ 

<lo-’ <10-a 
0.04 0.09 

0.04 0.08 
0.03 0.10 
<10-s 0.06 
<lo-6 <lo-* 
< 10-6 <1o-6 
<lo-6 <lo-6 
<lo-* 0.04 
<lo-* 0.02 
<lo-2 0.02 

<1o-3 <10-s 
0.09 0.07 
0.09 0.06 
0.05 0.06 
0.03 <lo-* 
<lo-* <1o-3 
<lo-6 <lo-6 
<1o-6 <1o-6 
0.01 <lo-* 
0.01 <lo-* 
0.01 <lo-2 

<10-s 
0.08 
0.02 
<10-s 
0.08 
<lo-* 
<lo-6 
<lo-6 
0.41 
0.04 
0.04 
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Table 5 
Results concerning the function f = 1 + sinh y sin x (E-algorithm) 

m 4N+2 R E l/4 E l/2 E 3/4 El 

8 14 <lo-2 1.0 

8 22 <lo-2 0.55 

16 14 <lo-2 0.74 
16 22 <10-s 0.12 

16 42 <lo-* <lo-4 

32 14 <1o-2 0.46 

32 22 <1o-4 0.07 
32 42 <10-s <lo-4 

32 62 <1o-6 <10-s 

64 42 x10-7 0.03 
64 62 <lo-4 0.06 

64 82 <10-s 0.88 

0.14 
0.03 
0.01 
<1o-2 
<10K6 
0.06 
<lo-2 
<1o-5 
<10V5 
<1o-2 
<1o-2 
0.08 

0.04 
<1o-2 

0.03 
<1o-2 
<lo-’ 
0.02 
<1o-2 
<10-s 
<1o-5 
<1o-2 

0.02 
0.01 

0.01 
<lo-2 
0.01 
<lo-3 
<lo-’ 
<lo-2 
(lo-3 
<lo-’ 
<10-s 
<lo-2 
<lo-* 
<1o-2 

Since the experiments have been made on some known function f, the order of approximation 
is evaluated in points that are not taken as nodes. 

The E-algorithm compares very well in accuracy with the other methods, however, the 
algorithm is totally reapplied on each test point. If only a few points are needed, the algorithm is 
very convenient from the point of view of the computing time; furthermore, the accuracy appears 
to be greater than for the other methods. In this case the RPA [3] can be used instead of the 
E-algorithm for implementing the procedure. 
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