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Mathematical programming techniques
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Abstract: To solve a classical ill-conditioned problem in the sense of Hadamard as the initial Cauchy problem for a
biharmonic operator after some a priori estimates, a posteriori estimates are evaluated using three different methods of

minimization such as: linear programming, least squares and a recursive projection algorithm for least squares.
Numerical combparisons will be made on these three methods.
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1. Introduction

The Cauchy problem for the biharmonic operator is considered here and this problem is, as it
is well known, an ill-posed problem in the sense of Hadamard. In the case that the initial data
are not analytical but at most differentiable a certain number of times, it may seem convenient to
proceed as follows: first of all, approximate the function expressing the initial data through
polynomials and solve afterwards the problem by the use of the approximated initial data,
believing that the solution obtained in such a way may be not very much different from the
solution of the original problem. Unfortunately, such belief is false as it is completely explained
by the famous Hadamard example [7]. Though, the problem considered has a physical relevance
and the difficulty underlined by the famous Hadamard example for the Laplace operator may be
overcome in the following manner: if the data prescribed are not really the Cauchy data, we still

may bUlVC ulc pIUOlCIIl HIlpUblIlg to l,IlC bOluthIl to be umlormly bounded. It IOllOWb that UIC
Cauchy problem for the biharmonic operator has a stable solution in the sense that it is possible

to glvp some a nriori estimates for the coefficients of the solution. The solution of the nroblem is

T OV Q piiVil LOMILGITY 1UL UWIL LVULIIIVIUIILY Ut Wie SULBLIVLL, LU0 SULUMIVLL Ul WL pPiUUIbLLL 1

therefore reduced to a solution of a problem obtained by minimizing a certain functional subject
to some linear inequalities. In this paper, after having recalled all necessary a priori estimates for
the biharmonic Cauchy problem, the solution may be only obtained by a numerical procedure.
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Three different numerical procedures are possible: linear programming, least squares with
normal equations and least squares with a recursive projection algorithm. The first and second
procedure have been presented in [5], the third one is presented here. A comparison is made
among numerical results of the three procedures from the point of view of accuracy and
computing time.

2. The Cauchy problem for a biharmonic operator

In the xy-plane let C denote a smooth simple closed rectifiable Jordan curve whose interior G
is assumed to be star-shaped with respect to the origin z=x +iy = 0. Let r = R(8) denote the
equation of C in polar coordinates. The problem of approximating the solution of u = u(r, 8) of

Au=0, z€G, (1)
w(R(8), 6) =£(0), @
% (R(8), 6) =5(9), 3)

where n is the direction of the interior normal to C and where the real-valued functions f(#),
f’(8) and g(@) are known only approximately as F(8), F;(8) and G(8) such that

max{ || F(8) = £(8) llo.2x1> | Fi(6) = f"(8) lljo2m)»

1G(8) = 2(6) lloam} <#. 1>0, (4)
where for any real-valued function f(x) on a set E
I f(x)lle= suglf(x)l- (5)
x€

In [4,5] it has been shown that a sequence of biharmonic functions {u,} can be determined
numerically such that the u, and their first derivatives converge uniformly to « and its first
derivatives on G = G U C as k tends to infinity and p tends to zero. Then an a priori estimate is
given using a Miranda [8] maximum principle, that can be paraphrased for the restriction to
simply connected regions.

Theorem 1. If u is a biharmonic function in G which is continuous along with its first derivatives in

G = G VU C, then for each ¢ > 0 there exists a biharmonic polynomial

N N
uy(r, 0)=ay+byr*+ Y cy.r¥cos k6+ Y. dy,r* sin k6
k=1 k=1

N N
+ Y enir*T?cos k@+ Y fu, r**? sin k6, (6)
k=1 k=1

where N depends upon € and G, such that

du
max{”u(r, 0) —un(r, 0)llg, ~

du
(. 0) =52 0) | .

ouy

| 550 0) =550 | }<e (7)
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Theorem 2 (Maximum principle). There exist two positive constants K, and K,, which only depend
upon G, such that if u is a solution of (1)—(3) which is C' in G, then for (r, 8) in G,

V (“x) + (uy) < Kl{“ g lljo2ny + I f/”[O,Z'n']} + K5 |l £ ll0.271 (8)

(9)

and

The use of such theorems allows to reduce the solution of the problem consideration to a
minimization problem on the boundary of the region C. Using a minimization technique on a
functional that is introduced as a posteriori estimation of the error depending on the Miranda
maximum principle it is therefore possible to solve the problem.

3. Numerical solution of the initial-value Cauchy problem

Theorem 3. There exists a constant K which only depends upon G and N such that

laxll< K(H+p+e), (10)

byl <rg 'K(H+p+e), (11)

||CN,k||<r0_kK(H+H+€), k=1,...,N, (12)

Ndyill<rg*"K(H+p+e€), k=1,..,N, (13)

levill<rg “ *K(H+p+e), k=1,...,N, (14)

“ka”<rok K(H+p+e), k=1,...,N, (15)
where

H = max{|| F(8) |lj0.2x)> | F1(8) llo 2= 1 G(6) lljo.241 ) (16)
and

r,= inf R(9). (17)

0<f<g2m

The proof of this theorem is given in [4]. By the maximum principle of Miranda [8], it follows
that

max{u(r, ) o, 55 (. )] |55 ]} <k, (18)

where K is a positive constant that depends only upon G. In the remainder of the paper, K shall
denote a sufficiently large positive constant whose dependence on various parameters will be
emphasized only if the dependence is crucial to the discussion.

Let @, denote the finiteset 0 =0, <8, < --- <#6,_, <8, =2u. Replacing a, by a, by by b,
cn.x bY ¢, etc. in (6), denote the resulting function as uy(r, 8; P), where

P=(a, b, Cl""’cN’ dl""7dN’ €1,...5€pN, fl""’fN)
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is a point in Euclidean (4N + 2)-space. Consider the continuous functions

by
—~—
=
j——
]
_*
1y
——
=
-
]
*
2
=
=
p——a
)
~
pa——
e

} (19)

on the compact sets
Dy={P|a,..., fy satisfy the inequalities (10)—(15)
with H + p + ¢ replaced by H + p+ 1}. (20)
Let
Fm = inf Ey .(P). (21)

Since Ey ,, is a continuous function on the compact set D,,, there exists a point Py ,, in Dy such
that

me=EN,m(PN,m)' (22)
Consider the biharmonic functions
Uy (7, 0)=uy(r, 0; Py,), N=12,..., m=0,1,. (23)

For these functions, it follows from the maximum pr1nc1ple of Miranda [8] and the triangle
inequality that for any point (r, 8) in G,

8uN’m

max{|u(r, 6) - (r, 0)’,

550 0) - a“N'"<r 0]

<K{max[w(f, M [0, 271), (7, 1y, [0, 27]), w(g, .., [0, 271])]
+uu'+jN,m+maX[w(uN,m’ Klnm’ { |Z| <d})’

duy
w( ar Klnm7{|2|<d})

Uy .
o[ 252, K, (121243} (49
where for any continuous function g(£) defined on a connected set S,
w(g, m, S)= sup |8(£1) —g(&) 1, (25)
§L.52€8 15— &<y
M= max |6, ,—0], (26)

l<1<
K, is a positive constant depending upon the smoothness of R(8), and d is the diameter of G.
This result comes from the following theorem.
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Theorem 4. There exist two numbers K, and K, depending only on the domain G such that for every
biharmonic function u(x, y), continuous in G with its first derivatives and verifying the boundary
conditions (2) and (3), and with f'(8) and g(8) continuous, it is true that

‘/u§+ui<K1[max|g|+max|f'|]+K2 max | f |, (27)
|u(P)|< K,8[max|f|+max|f"|] +(1+K,0) max|f], (28)

where 8 is the distance of a point P(r, 8) from the boundary of G.

Relation (28) comes immediately from (27). To show the relation (27) we take a biharmonic
function v(x, y) continuous with the first derivatives in G verifying (2) and such that

Joi+ v} <H max|f’|+H, max|f|, (29)

where H, and H, are convenient constants depending only on G.
It is in fact sufficient to observe that the function u — v is zero on the boundary and such that
the normal derivative satisfies

la—(ua%) <m3X|g|+Hlmax]f'|+H2'max|f| (30)
to obtain
\/(ux_vx)2+ (uy—vy)2 <K1[max|g|+H1 max|f' |+H2 max|f|] (31)

and from all these relations, (27) follows.
From the result in (24), we can state an a posteriori estimate, that may be solved only
numerically, in the following form:

o(P, f)=o(a,b,c,d, e, f)=2F, (32)
where ¢=(cp,...,cy), d=(dy,...,dy), e=(ey,...,ey) and f=(f},..., fx), subject to the
linear inequalities :

| F(6;) — ”N(R(o') g

J J?

P)i<s, j=0,...,m—1, (33)

du
F(6;) [dév(R(a),e, P)] JSE J=0 . m—1, (34)
3
‘G(aj)—%‘,}(zz(@), 0;; P)‘<f, j=0,...,m—1, (35)
F>0, (36)

and the linear inequalities that state the assertion that P is in Dy (20) is equal to Fy .

4. The numerical algorithms

Since the minimization problem of the functional (36) subject to (33)~(35) is a feasible linear
programming problem, it follows that uy , can be determined by its solution [6]. We shall now
consider an alternative method of approximating the solution of (1)—(3) subject to (4) by the
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method of least squares subject to a quadratic constraint. From the fact that u(r, 8) can be
represented in the form

u(r 8)= [ (n(r, 0. DF() 41 0, (1) (1 0, D)g(n)} dre (37)

where v, i =1, 2, 3, are the particular parts of the biharmonic kernel function for G which are
associated with f, f’ and g, it follows that for any compact subset D of G there exists a
constant K depending on D and the v,, i =1, 2, 3, such that for any point (r, §) in D,

Ju ou ,
u(r, )1+ |5 (r, )|+ |55 (r, O)| < KU1 +11 7 12+ 18 11), (38)
where for any function f defined on [0, 2]
2m 1/2
1f 1= [/0 1 £(6) P da] : (39)
In all methods, the values of uy, (d/d8)uy(r(8), 8), (duy/dn) are taken at the points P; as
those of 3m linear functions ¢;, x ;, ¥, of the variables ay, by, ..., fyy, Where
N N
@i(an, by, fun) =an + by} + Y cyprf cos kO + 3 dy,r/ sin k6,
k=1 k=1
N N
+ Y enerf TP cos kB, + Y fr,rfT? sin k6,
k=1 k=1
Xj(aN’ by,.-s fun)
=2byr(a— ) sin §; cos 6,
N
+ cNkkrjk(—sin k6, + r*(a— B) sin 6, cos 6, cos kﬂj)
k=1

+
™M=

dekrjk(cos k6, + r*(a— B) sin 6, cos 6, sin k0»)

J

x~
I
—

enil(k +2)rf**(a — B) sin 6, cos 6, cos k6, — kr}*?* sin k6))

+
M=

x
I
—

™M=

+ ¥ ful(k+2)r/**(a— B) sin 6 cos 6, sin k6, + kr}** cos k6,), (40)

x>
1l
-

N
Y (an, by,.... fuy) =2byr,(a— B) cos(6,—v,) + X caikr/ ™" cos(kb; — 6, +v;)
k=1
N

+ 3 dykr{ ! sin(k6;— 6, + ;)

=~
i
[y

+
M=

eNkrjk+l(2 cos kb, cos(0j - yj) + k cos(kﬂj -0+ Yj))

End
i
—

Faer k(2 sin k6, cos(6, — v,) + k sin(k6; — 6,+7,)),

+
™M=

>
]
—
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197
¥ =ta‘f1(—g L r=r(6‘<)
J 1 J 77"
| Btand|
The points P; are uniformly distributed points over the boundary, here an ellipse ¢ is considered
described by the equation
2 .2 -1,/2
r(6)=(acos®* 8+ Bsin*8) ",

where a and B are the squares of the reciprocal of the semiaxes of .

(41)
To consider the problem as a “linear programming” problem let us introduce a new variable {
such that
lo,— F(8) 1<t Ix;—R(6)1<8 14— G(6)] <4,
which may be written as

(42)
o =< F(6), :

(43)
-G(8).
0(§9 aN’ bN>""fNN)E§’

subject to simultaneous linear inequalities (43).

(44)

To consider our problem as a “least squares” problem let us rename the vector

(ay, byy--.s fyn) as X =(Xg, Xq,..., X4n+1)- The functions (40) will then be written as follows:
4AN+1 4N+1 4N+1

¢ = L YinXus X;j= 2—- WinXps

n=0 p=0

V= 2 z,%,

(45)
u=0
Now, let us consider the polynomial of second degree with respect to the x,:
m—1
— T RN 12 r PEIRN 12 r RSN 12\
Lyn= _LO WE) —o ] +A(8) — x| +[G6) —¥;] |-
j=

(46)
We want to determine the point in (4N + 2)-dimensional Euclidean space which makes Ly ,, a
minimum. We consider the solution of the following simultaneous equations:
AN +1

> Agx,=B;, §=0,...,4N+1,
=0

(47)
where
m—1
By = (F(aj)yjs+F1(0j)V"18+G(aj)zﬁ)’
Jj=0
m—1
As,= Y, (Yuys+wuw,
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A new method is considered in the following to solve the biharmonic problem by a recursive
projection algorithm [1-3]. We want to approximate a function f() using a function f*(8) that
can be expressed as a linear combination

f*(0)=00¢0(0)+cl¢1(0)+ c e (0) (48)
of k + 1 functions ¢, ¢y,..., ¢,, which are chosen in advance and ¢, c,..., ¢, are coefficients
whose value is to be determined. The function f is known at the m distinct points P, j=
0,...,m—1. We want to determine the k + 1 parameters ¢, ¢y, ..., ¢;, such that f*(8,) =£(6,)
holds exactly or as close as possible at all the m points. In the case of least-squares approxima-
tion we determine the coefficients such that the Euclidean norm of the error function f* —f
becomes as small as possible, that is, such that

m—1
If*=fl3= "X 1£*(6)—7(6,)?
=0

becomes as small as possible.

In our case the k + 1 functions are the 4N + 2 functions of the biharmonic polynomial ¢, =1,
¢, =r*(8),..., ¢, and the undetermined coefficients are (ay, by, ..., fynx). The chosen points P,
are such that the number of the equations is less than the number of the unknowns and then we
have an undetermined least squares problem that becomes an overdetermined least squares
problem adding the tangential and normal derivatives known at the P, points (3m > 4N + 2). It
is possible to obtain the solution to this linear system, in the least squares sense, through the
recursive projection algorithm with the assumption that we consider the real vector space of
functions £ in which the Euclidean norm becomes the inner product of two real-valued
continuous functions:

m—1
I-13=(s.8)= X 7(6)g(6).
j=0
Then we define 3m linear functionals

Ly;(4.) = 4.(6).
sz(¢#)=%(ej), j=0,....m—1, (49)
L3j(¢”)=a—:"(0,), p=0,...,4N+1,
with
Li,(f)=F(8). Ly,(f)=F(8), Ly(f)=G(6). (50)

Then the overdetermined linear system represented by Ax = b with A4 a real (3m X (4N + 2))-
matrix and b a (3m)-vector assume the form:

¢0(0j) ¢1(0j) ¢4N+1(0j) F(aj)

d¢ do Ay,

7)) g8 - —gg @) |x)=|H)], j=0,...m-1,
¢ ¢ dan

S0 (8)  5.08) o =58 G(6)

(51)
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or, in the functional form:

Llj(%) L1j(¢1) Llj(¢4N+1) Llj(f)
sz(%) sz(‘ibl) sz(¢4N+1) (x)= Lz;(f) . (52)
Laj(%) L3j(¢1) e L3j(¢4N+1) L3j(f)

If we consider the (4N + 2)-dimensional linear subspace spanned by the functions ¢, the
least-squares problem may be proposed as a geometric problem in a function space, because we
look for the direction of the vector having the shortest distance to the vector represented by f.
Then, if we are interested only in computing the approximate value, it is not necessary to
compute the coefficients x, and we can use the E-algorithm [1] after modifying the initializations
according to the Miihlbach—Neville-Aitken algorithm [9].
Having
m—1

L(f) =f(0)7 (fa g) = go (Llj(f)Llj(g) + L2j(f)L2j(g) + L3j(f)L3j(g))’
(53)

where 6 is the angle whose values must be extrapolated, we utilize the recursive formulas

(n) (n) (n) k 1 f*("+1)
J& =[] +¢k—1k¢(n+1) "
o1 — +11)" 34
o= 2+ H T AT ik L k2
with the initializations
" L(¢o) ] ¢o)
@ = (o )2 (g, 0) E L p ), (55)
(0> o) (0> o)

and we shall obtain
4*13(2)1 = L(f* )

5. Some numerical results

Considering the comparison among the different methods some tables have been prepared
where the input parameters are the integers N and m, and the two parameters a and 8 of the
ellipse, with & = 0.5 and 8 = 1.0. The results are presented for linear programming, least squares
and the E-algorithm applied to three functions: f=rcos 8, f=1+ x?y and f=1 + sinh y sin x.
The case of the third function is the most interesting because this function cannot be expressed
as a sum of a finite number of terms of a biharmonic function.

The accuracy of the approximation obtained in the first method is expressed by the value of ¢.
The approximation obtained over the entire ellipse was good only where a small value of { was
obtained.
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Table 1 Table 2
Results concerning the function f=r cos 8 Results concerning the function f=1+ x2y
m 4N+2 ¢ (LP-90) [ (least E,
squares)  (E-alg.) m 4N+2 ¢ (LP-90) [ (least E,
" 7z PP PYET 14 squares) (E-alg.)
“4 O uU.Lz U.l/o < 1u -
8 6 <10 <10-¢ <10°13 6 14 0.36 0.58 <1071
8 10 <107¢  <107° <1072 8 14 <107*  <107¢  <107"
10 14 0.93 0.75 <107
12 14 <107° <10~ <1071
Table 3
Results concerning the function f =1+sinh y sin x (linear programming method)
m 4N +2 ¢ R E, E, , Ey ) E,
8 14 0.28 0.03 0.19 0.11 0.06 0.28
8 22 <107? <107* <10~? <1072 <107? <1073
16 14 0.38 0.14 0.29 0.23 0.19 0.38
16 22 0.24 0.08 0.23 0.19 0.15 0.31
32 22 0.02 0.01 0.02 0.02 0.01 0.02

In the second method the approximation is measured by the quantity

/

Qiaa (A
JIrE \-r

Ly

I3

3k
+

b))
Fa) L}

and the solutions obtained for the coefficients of the biharmonic functions have been applied on
as many as 1000 points.
In the third method E; represents the value | f(8) — f *(8) | over the boundary of .
In Tables 3-5, R means the error at the origin and E; 4, E;,,, E;, are respectively the
computed suprema of |u —uy|=]|f—f* | on the three ellipses &, which belong to the region G,

| PO 7

concentrical and homothetical with &, with ratio u with respect to e.
Table 4
Results concerning the function f =1+sinh y sin x (least squares method)
m AN +2 ! R E E . Es E,

8 14 0.28 <1077 <1072 <1072 <1072 0.04

8 22 <107’ <1077 <107? <10~? <10~° <1073
16 14 0.20 0.04 0.09 0.09 0.07 0.08
16 22 0.14 0.04 0.08 0.09 0.06 0.02
16 42 <1074 0.03 0.10 0.05 0.06 <1073
32 14 0.175 <108 0.06 0.03 <1072 0.08
32 22 <1072 <107¢ <1072 <1072 <1073 <1072
32 42 <1073 <1076 <107¢ <107° <1076 <107°
32 62 <10°¢ <107 <107° <107¢ <107¢ <1076
64 42 0.175 <1072 0.04 0.01 <1072 o4
64 62 0.175 <1072 0.02 0.01 <1072 0.04
64 82 <1071 <1072 0.02 0.01 <1072 0.04
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Table 3
Results concerning the function f =1+sinh y sin x (E-algorithm)

m 4N R Ey 4 Ey Es 4 E,

8 14 <1072 1.0 0.14 0.04 0.01

8 22 <1072 0.55 0.03 <1072 <1072
16 14 <1072 0.74 0.01 0.03 0.01
16 2 <1073 0.12 <1072 <1072 <1073
16 42 <1078 <1074 <107¢ <1077 <1077
32 14 <1072 0.46 0.06 0.02 <1072
32 22 <1074 0.07 <1072 <1072 <1073
32 42 <1078 <10~* <1073 <1073 <1077
32 62 <10~°¢ <1073 <1073 <107° <1073
64 42 <1077 0.03 <1072 <1072 <1072
64 62 <10~* 0.06 <1072 0.02 <1072
64 82 <1073 0.88 0.08 0.01 <1072

Since the experiments have been made on some known function f, the order of approximation
is evaluated in points that are not taken as nodes.

The E-algorithm compares very well in accuracy with the other methods, however, the
algorithm is totally reapplied on each test point. If only a few points are needed, the algorithm is

At amt Fumean dhha samtant A crlacry AF tlhha A msacsicabian s dimnas Fooadle dian

very convenieiit [romi tne poiint oi view o1 tne computing tiime; 1ur thermore, the accur acCy appcars

to be greater than for the other methods. In this case the RPA [3] can be used instead of the

E- n]onnthm for 1mn]Pm9n h e hfn(‘Pdl"‘P
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