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1. INTRODUCTION

THE CLASSICAL approach to the problem of the calculus of variations of

T
minimizing I(x) = S f@, x(t), x'(t))dt: x(0) = a, (T) = b, x € wbP(0, T, Ry (P)
0

is the following: by imposing superlinear growth conditions at infinity and Tonelli’s assumption
of convexity with respect to x', the integral functional 7 is weakly lower semicontinuous and
each minimizing sequence is contained in a weakly compact set so that each of its limit points
is a solution to (P). However, the above conditions are not necessary in order to obtain
existence.

The first problem that has been investigated outside the realm of 1.s.c. is that of minimizing

T
I(x) = S (¢, x'(t)) dt: x(0) = a, x(T) = b, x e W"P([0,T1, R")

V]
under superlinear growth conditions but without Tonelli’s assumption on f w.r. to x': Olech
proved in [1] that a solution does always exist. When the variable x is involved, some other
existence results have been given in [2-5]. The main difference with respect to the classical
approach is that in their proofs, these authors build a solution. In the case where the indepen-
dent variable is not a scalar, the same reasonings do not hold. The reason is as follows: an
extension of Lyapunov’s theorem on the range of a vector measure [6, Section 16] allows [3-5]
substitution of another function to a solution to the relaxed problem, a candidate for being a
solution to the original problem. This new function is not defined directly; rather, for problems
seeking a solution x(¢), one defines a measurable function u(f) and x(¢) is the primitive of u,
i.e. its integral; instead for problems involving the gradient, a measurable function u is not, in
general, the gradient of some function ¥. Nevertheless, for some nonconvex problems involving
the gradient, a necessary and sufficient condition for the existence of a solution has been given
in [7, 8].

If a weaker growth condition is assumed,

ft, x') = a(t) + ylx'| (y>0,aelh

then Tonelli’s convexity assumption is no longer sufficient for the existence of a solution (see
[6, Section 14]), so that, opposite to the superlinear case, the associated relaxed problem does
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not admit, in general, a solution. The ‘‘convex cases’’ for which a solution exists are treated,
for instance, in [6, Section 14].

In [9], we proved that if f is positive homogeneous of degree ome in x' (i.e. I(x) =
{3 f(x'(t)) dr) is a parametric integral), then Cesari-Tonelli’s convexity assumption [6, 14.1.iv]
can be omitted for the existence of a solution.

Here, we consider the problem of the minimum for the integral functional I(x)

t

’ h(t, x'(¢)) dt

131

Ix) = S

on the set of the absolutely continuous (A.C.) functions x(¢) = (x',...,x"),0=<t, <, <T
such that (¢,, x(¢;), 5, x(f,)) belongs to a prescribed compact subset of R2"+2, Under slow
growth conditions and Tonelli’s assumption on 4, it has been considered in [6, theorem
14.3.i-14.3.ii]. The purpose of this paper is to give conditions not involving convexity w.r. to
x' in order to have a solution.

The idea underlying the proof of the main theorems is the following: under the assumption
that the convex hull of the epigraph of the nonconvex integrand is closed, the relaxed associated
problem can be formulated in the version of [10]. Then each of its minimizers (whether they
exist) can be modified as in [3, 9] in order to obtain a minimizer to the original problem.

ASSUMPTIONS AND PRELIMINARY RESULTS

Let us denote by coepi(h) the convex hull of the epigraph of a function #. We shall assume
the following hypothesis.

Hypothesis ®. The function A: [0, T] X R" — R is such that
(hy) t+~ h(t,x') is measurable for each x';
(hy) x' ~ h(t,x') is continuous for a.e. ¢.

Moreover, there exist a positive constant @ and a function «(-) in L' such that
(hy) h(t,x") = alx'| + a(t).

Our main tool in this approach to nonconvex noncoercive problems is the following
proposition, a consequence of the proof of Cellina-Colombo’s theorem [3] and proposition
1X.3.1 in [10].

ProposiTION 1. Let A satisfy @ such that the relaxed problem (PR) associated to (P) admits at
least one solution. Assume further that coepi(h(t, -)) is closed for a.e. ¢. Then (P) admits at least
one solution.

Sketch of the proof. Let X be a solution to (PR). Then by the proof of lemma IX.3.1 in [10],
there exist measurable

DiseeesPu12 [0, T] =[O, 1]<Zpi 1), Uiy oers Uny1: [0, T > R”

such that

=L pvs NG ED) = L pi(Oh(, vi().
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Now, the same argument of the proof of [3, theorem 1] enables us to find a measurable
partition E,, ..., E,,; of [0, 7] such that

n+1 T n+1
Y vixg, € L', S Y v;()xg,(t) dt = X(T) — X(0),
i=1 0i=1

and
T n+1 T
S h<t, ) vi(t)XE,-(t)> dt =S h**(¢, X'(2)) dt.
0 i=1 0
Clearly,
t n+l
x(t) = x(0) + S Y vi()xg,(s) ds d
0i=1

is a solution to (P).

Remark 1. Ekeland and Temam [10, lemma IX.3.3] proved that, for any function 4 satisfying
(hy), (h,) and bounded below by c|x’'|? + y(t) (c > 0, p > 1, y € L"), then coepi(k(¢, -)) is closed
a.e. for ¢.

Instead, it can be easily shown that, under slow growth conditions, the same conclusion does
not hold, in general.

For n = 1, coepi(h) is closed if, for instance, 4 is continuous and 2 = A** in the complement
of an interval I = [a, b] in which the graph of A** is a line joining the points [a, A(a)] and
[b, h(b)]. In fact, in this situation coepi(#) coincides with the epigraph of A**, a closed set (the
function /4 being continuous).

Remark 2. In [9, 11], we proved that coepi(h) is closed if & is positive homogeneous of degree
one, so that, by [6, theorem 14.1.iv] the relaxed associated problem admits at least one solution.
Then, by proposition 1, so does the original problem.

Let us denote by H(¢, p, u) the parametric integrand associated to the bipolar 2**(¢, x') of h
[6, Chapter 14] defined by

H:[0,T] X 10, +oo[ Xx R" > R
u
t,p,u) — ph**<t, —>.
@p s

As described in [6], the function H is convex in (p, u#). As a consequence, if ~A** is supposed to
be continuous, if (¢, ) is fixed and we allow p > 0 to approach zero, then H(¢, p, u) must
approach a finite limit or +oco. This limit is taken as the definition of H(t, 0, u). Since
H(, kp, ku) = kH(t, p, u) for all k£ > 0, we define H(z, 0,0) to be zero, so that the homo-
geneity property holds for k£ = 0. It can be shown [6] that if A** is continuous in its domain and
H(t, 0, u) is finite everywhere then H(¢, p, u) is continuous in [0, T] X [0, + [ x R".

MAIN RESULTS

Let K,, K, be two compact subsets of R"*! such that, for every (¢;,x;, %, x,) € Ky X K;,
we have ¢, < ¢, and set K = K; X K,. We consider the problem of the minimum of the
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integral
7]
h(t, x'(¢)) dt

131

I(x) = S

in the class Q of all A.C. functions x(¢) = (x!, ..., x"), (¢, x(t,), t,, x(t,)) € K (we say that
these are the admissible trajectories). The following existence theorems are the nonconvex
analogues of [6, theorems 14.3.i and 14.3.ii].

THEOREM 1. Let A satisfy hypothesis ® and be such that coepi(h(z, -)) is closed a.e. for ¢.
Assume further that the bipolar of 4 is of class @! in its domain and that its associated
parametric integrand H is continuous in [0, T'] X [0, + e[ X R". Moreover, assume that

0H
vtel0,T], vuelR, lu| = 1: 5(t,0,u)=—co

and there are constants M,, M,, é > 0 such that for all ¢t € [0,T], (p,u) € [0, +o[ X R",
Ipl + |ul = 1 and ¢* with |t* — ¢| < & we have

oH
‘—(.;(t**,p, u)| = MiH(t,p,u) + M,.

Then, I(x) has an absolute minimum in the class of all admissible trajectories.

THEOREM 2. Let A be independent of ¢, satisfy hypothesis ® and be such that coepi(h(-)) is
closed for a.e. t. Assume that the parametric integrand H associated to the bipolar of 4 is
continuous in [0, +o[ X R” with continuous partial derivative dH/dp in [0, + [ x R"/{0, 0}.
Assume further that for every u # 0 we have

oH
—({,p,u) =0 if and only if p = 0.
ap
Then, I(x) has an absolute minimum in the class Q of all admissible trajectories.

Proof of theorem 1. We claim that the gelaxed problem

", x'(1)) de an .

minimize /**(x) = S
3]

admits a solution in the class of all admissible trajectories. For this purpose, we show that the
assumptions of [6, theorem 14.3.i] are satisfied.
Let ¢ > 0 and « € L! be such that

A(t, x') = alx'| + at).

Since the map x’ — a|x’| + «f(t) is convex and continuous, then the above inequality holds for
h** instead of h. As a consequence, if x(¢), ¢, < ¢ < t, is an admissible trajectory, then we have

t

2alx'(t)l dr — S 2|a(t)| dr.

3}

T**(x) = S
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Hence, if ¢ € [, t,], the following inequality holds
|x(¢) — x(t))| = AI**x) + D, 2

where A = 1/aand D = ([§|a(t)| dt)/a.
Let C, be the projection of the compact subset K, of [0, T] X R" onto R". Then, if we fix xin Q
and if y is any admissible trajectory such that I**(y) < I'**(x), by (2) we have

y(@#) e C, + BAI**x) + D) = C,

B() denoting the closed ball in R” of radius ().

It follows that the relaxed problem (1) is equivalent to minimizing 7** in the class of all A.C.
functions x with (¢, x(¢)) € [0,T] X C and (¢,, x(t,), t,, x(¢,)) € K. Hence, the sets C and K
being compact, in order to prove the above assumption, it is enough to show that condition (1)
of [6, theorem 14.3.i] holds if it is applied to the parametric integral associated to H.

Let C:t = t(s), X = X(s), 0 <s <L be a rectifiable parametric curve with graph in
[0,T] x C such that (2(0), X(0), t(L), X(L)) € K, t(s) being monotone nondecreasing and s
being the arc length parameter.

Let

L

g**(©) = j H(t(s), t'(s), X'(¢(s))) ds
0

be the parametric integral associated to the nonparametric integral I**, By the above argu-
ments, it turns out that there exist A > 0 and D such that

L(C) < AF**() + D.

Hence, condition (1) holds if we set ®(¢) = A& + D. Then, proposition 1 yields the conclusion.
The proof of theorem 2 is based on the same arguments and on [6, theorem 14.3.ii].

Remark 3. It does not seem reasonable, in order to satisfy the assumptions of theorems 1 and
2, to require conditions only on A instead of A**. For instance, the function defined by

h(&) = [£1(1 + sin27&))

is such that the limit as p approaches zero of its associated parametric integrand H(p, u) =
|u|(1 + sin(2m(u/p))) does not exist, whereas the parametric integrand H associated to the
bipolar of &, given by H(p, u) = |u|, is continuously differentiable in [0, + o[ X R.

Example. 1et us consider the following nonconvex continuously differentiable function A
defined by

N+ &Y if|é] = 7,

hic) = {\/(1 + %) + cos(6) + 1 otherwise.

Let x, be the point in ]0, n[ such that 4'(x,) = 0. It can be shown that the bipolar of # is given by

h(&) if [&] = xo3
h(x,) if |&] < x,.

GE {
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We claim that the parametric integrand H associated to the bipolar of £ satisfies the conditions
of theorem 2.

In fact, A(¢) = |£| and remark 1 shows that coepi(/) is closed. Furthermore, H is clearly of
class @!, and, if we let u # 0, its partial derivative with respect to p is given by

P |ul
N A, 12>
Vo + v T ET
oH u\ u,  (u ||
—(p,u) = h<—>——h’<—> if 1= — = xp;
p p/ p \p p°
. |ul
h(x,) 1f75x0.

Since A(x,) # 0 and for each & € [x,, 7), we have h'(£) # h(£)/¢ then (3H/dp)(u, p) = 0 if and -
only if p = 0. ‘
The problem of

1

minimizing S h(x'(t)) dt: x(0) = a, x(1)=15b
0

admits, by theorem 3, at least one solution.
Clearly, if |b — a| < x, then each measurable selection u(¢) of {—x,, X} satisfying

1
S u(s)ds=»b —a

0

is the derivative of an admissible minimizer. Otherwise, if |b — a| > x,, a minimizer cannot be
easily found.

Let us remark further that, in general, there are solutions to the relaxed problem that are not
solutions to the original one. This is the case, for instance, if ¢ = b = 0: in this situation
X(t) = 0 is a solution to (PR) but /(0) > 1**(0).

Acknowledgement—I wish to thank the referee for the useful comments which improved the readability of the paper.
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