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A NONCONVEX VARIATIONAL PROBLEM
WITH CONSTRAINTS*

MICOL AMAR! anp CARLO MARICONDA?

Abstract. A multidimensional version of Liapunov-type theorems is proven. As an applica-
tion, it is proven that, under proper hypothesis on the possibly nonconvex function f, the problem
min fo f(u/(t)) dt on the subset of W1:P([0,T],R™) of those functions u satisfying the prescribed
boundary conditions and whose trajectory lies out of a prescribed open subset of R® admits at least
one solution.
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1. Introduction. The most general scalar problem that has been investigated
without the classical Tonelli convexity conditicn on the function £ — h(t, s, £) is that
of minimizing

T
min I(u) = min {/ h(t,u(t),u'(2)) dt} ,
0

uw e WYP([0,T],R"), u(0)=a, u(T)=b

(P')

Under differentiability assumptions on the integrand, this problem was studied by
Aubert and Tahraoui in [2] and (3], Raymond in [11], and Tahraoui in [13].

In the case h(t,s,£) = g(t,s) + f(t,£), this problem was studied by Olech (see
[10]), Marcellini (see [8]), Cellina and Colombo (see [4]), and Raymond (see [12)),
under weaker assumptions on the regularity of g and f.

In particular, in [4] the main tool is a Liapunov-type theorem, which allows the
modification of a solution to the convexified problem in order to obtain a solution of
the original one. The same technique has also been used in [12] and [9)].

For n = 1, i.e., for functions with values in R, a more precise version of Liapunov’s
theorem has recently been given in [1].

THEOREM 1.1. Let @ : [0,T] — 2R be a measurable multifunction with values in
the closed intervals of R. Then for each integrable selection i’ of ®(t), there erists a

measurable selection @' with values in the extreme points of ®(t) such that fo @'(t)dt =
r o @ (t)dt and for each t € [0,T), u(t) < u(t).
This result has been successfully applied in [5] in order to prove that there exists
a dense subset D of C([0,T],R) such that, for g in it, the problem of minimizing

fo u(t)) dt + fo (u'(t)) dt does always admit at least one solution for each f satis-
fylng growth conditions.
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A more than one-dimensional version of the above Liapunov type lemma does not
hold, in general.

Ezample. Let n =2, T =1, ®(t) = {\(1,t) : A €[0,1]}, @ (t) = (& (t), @h(t)) =

(3,(3)t) € ®(t) ae. in [0,1]. Assume, by contradiction, that there exists @ (t) =
(@' (t),42'(t)) €{(0,0),(1,t)} a.e. such that
1 1
(1.1) / () dt =/ () dt,
0 0
a1(t) > u1(t) forae. t€[0,1],
a(0) = (0).

Then there exists a measurable subset E of [0,1] such that

@'(t) = (0,0)xp0,10E + (1,t)xE;

whence, @5(t) = t@](t). Conditions (1.1) and (1.3) and integration by parts of the

second component give
1 1
/ﬂl(t)dt=/ () dt
0 0

so that, by (1.2), @ (t) = @1(t), i.e., xg = 5. This is a contradiction.

Neverthless, we prove here that a multidimensional version of the above theorem
holds if the measurable function @ is identically equal to a convex bounded subset of
R™. As an application, we study the problem of minimizing

T
/ F () de
0

on the subset of WP([0,T],R™) of those functions u satisfying prescribed boundary
conditions and whose trajectory lies out of a prescribed open subset of R™.

2. Notation and preliminary results. In the following, I" will denote an open
convex poligone contained in R™ and, given a,b € R*\I', K will be the set of those
functions u : [0,7] — R" that are in the Sobolev space W!'?((0,T),R™) (p > 1) and
such that u(0) = a,u(T) = b.

Given a set A, we denote by 0A the boundary of A, by extrA4 the extremal points
of A, and by meas(A) the Lebesgue measure of A. Finally, given two vectors v; and
vy of R™, we denote by v, - v2 the usual scalar product in R™ and by |v;| the euclidean
norm of v; in R™.

Let f : R® — R be a nonnecessarily convex and lower semicontinuous function
that satisfies the following growth conditions:

) P —c2 < FE) VEER™ ifp> 1,
() BN —c2 < F(6) VEER ifp=1,

where ¢, and c¢; are real positive constants and 9 : [0,+o0c) — [0,+00) is a convex
and lower semicontinuous function such that lim,_ ;o ’/’(T’") = 400.
Given a function f, we denote by f** its bipolar function.
LEMMA 2.1 (see, for instance, [6, Prop. 1.4.1]). Let f : R* — R be a lower
semicontinuous function. Then f** is the greatest lower semicontinuous and convezx

function not greater than f.
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Let us consider the set

(2.1) E={{eR" : f*(§ < f()}

In the following, we shall assume that E = Uien 4i and f** is affine on every A,,
where A; is a convex open and bounded subset of R”.

Notice that, while the hypothesis on the structure of E is quite natural, the
hypothesis on the form of f** on every A; is a technical hypothesis, which is automat-
ically satisfied only in the scalar case (i.e., when n = 1). On the contrary, when n is
strictly greater than one, this hypothesis is not always fulfilled.

LEMMA 2.2. Let A be a simplez in R, I C [0,T] be a measurable set, u' :
[0,T] — A be a measurable function, and n be a fized vector in R™. Then there exists
a measurable function, w : [0,T] — extr A depending on v/, A, and n, such that

(2.2) /Iw(s) ds = /Iu’(s) ds,

(2.3) vt € [0,T) /0 (w(s) - mxr(s)] ds > / [/(s) - mxr (5)) d.

Proof. Let vg,...,v, be the n+1 vertices of the simplex A; then u/(s) = py(s)vy+
-+ +pn(s)v, for a proper choice of pg, .. ., p, : [0,T] — [0, 1] with Po(8)+ - +pn(s) =

1. Moreover, for every i = 0,..., n, let us define a; := v;-7. Without loss of generality,
we may assume that ag > .- > a,.

We shall prove that there exists a measurable partition Ey, ..., E, of I such that
(2.4) meas (F;) =/p,-(s)ds Vi=0,...,n,

I
t n t n
(2.5) / > _api(s)xi(s)ds < / Y aixe(s)ds Vie[0,T).
0 =0 0 i=o

It is clear that, setting w(s) = Y ., vixg,(s), (2.2) and (2.3) follow from (2.4) and
(2.5). In order to prove (2.4) and (2.5), we proceed by induction. When n = 0, we
have that po(s) = 1; and if we set Ey = I, the thesis is trivially satisfied. Let us
assume now that n > 0. Let 0 =1%o < ¢; <--- < ¢,4; = T be a partition of [0, T} such
that :

tit1
/ XI(S)dsz/pi(S)dS Vi=0,....n
I

t;
Such partition exists since po(s) + -+ + pn(s) = 1. Let us define
E0=[t0,t1]ﬂ.[, and Ei=(ti,ti+1]ﬂf Vi=0,...,n.

First, by the very definition of E;, (2.4) trivially holds. In order to prove (2.5), we
preceed as follows.
Let us define

Ei=E;, pi=p; ¥i=0,...,n-2,

E, 1=E,1UE,, Pn—1 = Pn—1 -+ Pn-

Clearly, Uiy E: = I, Y120 i = 1, and (2.4) is satisfied by E; and 5; for i =

1=0




302 MICOL AMAR AND CARLO MARICONDA

0,...,n — 1. Moreover, the hypothesis of induction assures that

t n—1 tn—1
(2.6) /Za,x}; (s)ds > /(; 2g;aipi(s))g(s)ds

Assume that ¢t < t,. We observe that, in this case, E, N [0,t] = 0; hence for every
i=0,...,n— 1 we have that E; N [0,t] = E; N[0,¢]. Then, by (2.6), it follows that

tn—1
/ZazXE, ds=/ > aixe,(s)ds

1=0

tn—1 tn—1
= [} Doxa o | o)
1=0
J/jE:(hpzs)XI

i=0
Assume now that t, <t < T. Then

t
/za,x;; s)ds—}:almeas /anxgn(s)ds
tn

=0
=Za,~ / P ds+ [ anxe,(5)ds

/tnz—:azpz(s xr(s)ds + an /T"lez s)XI(S)dS+/ xEn(s)ds:|

t:l—(:_ T n— 1
= [ Y anspxa(s)ds + o / > pils)xa(s) ds+ / pn(sm(s)ds]
i=0 tn =0
tn—1 T
=/ Zaip,-(s))g(s)ds+anmeas(En)—an/ pn(8)x1(s) ds
0 =0 ¢
tn—1 t
/Zazpz s)xi(s ds+/ anpn(s)x1(s dS—/ Zazpz s)x1(s) ds.
1=0 L

Hence, also (2.5) holds and the lemma is proved. ”

LEMMA 2.3. Let A be an open conver bounded subset of R*. Then A can be
covered by a countable family of simplezes whose vertices are contained in the boundary
of A.

Proof. Let x1,...,Zn4+1 be n 41 points of the boundary dA of A, such that they
- generate a closed (n + 1)-dimensional simplex denoted by S;. We denote by F; (for
i=1,...,n+ 1) the face generated by

{z1,- -+ Z&iye oy Tna1}
and let ¢; be a point of F} such that
d(g:, 0A) = max{d(z,04) : z € F;}.

Moreover, let v; be the external half-line normal to F; at the point ¢; and let z; ; be
its intersection with 8A. Let Ty, (i = 1,...,n + 1) be the closed (n + 1)-dimensional
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simplex generated by

{931, sy L1, L1435 Tig1y . - -,$n+1},
and set
n+1
Se =510 T

=1
Recursevely, one obtains an increasing family of convex polygons whose vertices lie in

0A; moreover, each Sj+1 is obtained by adding to S ; a finite union of (n+ 1)-simplexes
Tk (1 <k < E(j) < +00) with vertices in 9A4. We claim that

Aclys;.
J
Clearly, it is enough to prove that
(2.7) lim max d(z,8A4) = 0.
J zEGSj

In order to prove (2.7), let us remark that, if it does not hold, there exists do > 0 such
that

max d(z,8A) > d,

IEBS]‘

for each j € N. It follows that, by construction,

>
22(19%:;& d(z,04) > d,

for each j € N and & < k(j), so that the “heights” of the simplexes T} (and hence
their volumes) are bounded below by a positive constant, a contradiction, the set 4
being bounded. a

3. Main results.

THEOREM 3.1. Let A be an open convez and bounded subset of R™, I a measurable
subset of [0,T], v’ : I — A a measurable function, and 1 an arbitrary vector in R™.
Then there exists a function w : I — 0A, depending on v/, A, and n, such that

(3.1) /Iw(s) ds = /Iu’(s) ds,
(3.2) vt € [0, T} /0 [w(s) - nx1(s)] ds > /0 [« (s) - mx1(s)] ds.

COROLLARY 3.2. Assume that A, I, u/, w, andn are as in the previous theorem.
Assume that f : R® — R is lower semicontinuous, f** is affine on A, and f(¢) =
f**(€) when £ € OA. Then

(3.3 Jrrw) ds= [ s as
Proof. Since f** is affine on A, there exist two vectors v; and v, such that

@) =v-E+v VEe 4
hence, by (2.2) of Lemma 2.2, it easily follows that

/1 £ (' (s)) ds = /I F(w(s)) ds.
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Finally, recalling that w takes values in dA and f** coincides with f on 0A, (2.4)
follows. 0
Proof of Theorem 3.1. By Lemma 2.3 A = Ujen Sj» Where S; is a simplex con-
tained in R™ whose vertices belongs to 0A. Let us set, for every 7 € N, I; =
()~2(S;) N I and ) = u'xy; + I; — 55 Applying Lemma 2.2 to uj in I;, we
obtain a function wj : I; — extr §; C A, which satisfies (2.2) and (2.3). Hence,
defining w(s) := _;enw;(8), it is clear that w takes values in A and satisfies (3.1)

and (3.2). 5

—

4. Applications. We consider the following minimum problem with obstacle

T
. !
min /(; flu (t))dt.‘
u(t)gr
As we have already announced in the introduction, our main goal is to prove the
existence of a solution for this minimum problem.

THEOREM 4.1. Let T c R*, K ¢ WYP([0,T],R"), f : R* — R be as in §2.
Assume further that f**(0) = f(0). Then the problem

T
(P) min {/0 F(W/(s))ds : ue K, u(t) ¢ I‘}

admits at least one solution.
Proof. Assume, for the sake of simplicity, that the set defined by

{e e R™: f*(€) < f(©)}

coincides with a simplex E on which f** is affine; by the remark following Lemma 2.1
and by Lemmas 2.3 and 2.2, this is not restrictive. Assume further that n = 2, the
general case being similar. Let p; (i = 1,...,m) be the vertices of I'; by G; we denote
the relative interior of the side P;pir1 and by v; their external normal vector. The set
T being open, there exists a solution i to the associated relaxed problem

T
min {/ ' (s))ds : ueKu(t)é I‘} :
0

Since the measure of the interval {0,T} is finite, for each vertex p; there exists an
oxternal half-line L; containing p; such that, setting N = {t : u(t) € L \ {pi}}, we
have meas(N) = 0.

Fix G; and consider the “external” unbounded set O; defined by the interior of
the region delimited by the half-lines L;, Li+1 and the side G;, jointly with the side
Gi itself.

Clearly, each O; is open in the relative topology of R?\ T'; moreover, the solution
i does not belong to I'. Hence, the inverse image of O ={J; O; under ¢ is a countable
union of relative open intervals (c, 8;) of [0,T]: for every j € N let i(j) be such that

u(ay,B5) C Oigs)-
Let us define by K the subset of [0, T} where fot' does not coincide with f**od/, i.e.,
K= @) YE) = {t: f@®) # f@ )}

and set, for each j € N,
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Now, for each j, @/(S;) C E, on which f** is affine; by Corollary 3.2 there exists a
measurable function

gj . Sj — R2
with values in OF (on which f** = f) satisfying

(4.1) /aj(t)dt=/ @' (t) dt,

(4.2) J J

t

vVt € [aj, B;] / oj(8) - vigs)xs; () ds > / @'(s) - vig)xs, (s) ds,

,(4'3) / Flo;@) dt = / FE () d

Let @ : [0, 7] — R2 be the measurable function defined by

@ =u'xp Ny, s; + D 05X,
JEN

The growth conditions on f and relation (4.1) show, together with Vitali’s convergence
theorem, that @’ € LP. Let @ be the function defined by

u(t) =a+/0 @' (s) ds.

We claim that @ is a solution to (P).
Clearly, by (4.1) and the definition of & we have

4(0) = @(0), w(T) = a(T).
In order to prove that

(4.4) /OTf( ) dt = / £ (@ (1)) dt = min / e

(t)ff‘

we first remark that [0, 7] can be partitioned as a disjoint union of four measurable
subsets N, Dy, Dy, D3 where

=Us; =300k, D= ONETNG, Dy =57 (- )

By (4.3) we have

(4.5) F@ (1)) dt = / £ (@ (1)) dt:
Dy D,

by the very definitions of 4 and K we have
forae t€[0,T]\K  f(@(t)=f(@Q®)=f"(@ 1)

so that in particular

(4.6) (@ () dt = / £ (@ (1)) dt.
: Do Do
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Finally, by [7, Lemma 7.7), on 27! ({p1,.-.,Pm}) = D3 we have @’ = 0 a.e.; since by
the very definition 4’ = 0 on D3 and by our assumption f**(0) = f(0)

forae. t€Ds  f(@(t) = f(0) = f**(0) = f*(@'(¢¥))
so that

(4.7) F(@ (1)) dt = f (@ (®)) de.
D3 Dj

Taking into account that NV has measure zero, equalities (4.5), (4.6), and (4.7) together
give (4.4).
At this stage we only need to show that

Vee[0,T]: alt) ¢T.

Fix ¢ in [0, T]: either there exists jo € N such that ¢ € (a;,,3;,) or ¢ does not belong

to 271(0). In the first case let i € N be such that @y, Bj,) C Oy; in order to prove
that 4(t) ¢ T" it is enough to show that

(4.8) () v > alt) v

Since @' =@’ on [0,T]\ |J; S; then by (4.1) and (4.2) we have
(a(t) — a(t) - vs = /0 (@(s) - @(s)) - vi ds
= [(@©) -6 - vixo,s, () ds
0
= > [ -t was

{7:S;Co.t]}

+ /Ot(%(S) —@(s)) - vixs,, (s) ds
N /o (050 (8) = @'(s)) - vixs,, (s) ds > 0,

which proves (4.8).

In the second case (¢ ¢ @~ !(O)) there is no interval (o, B;) containing ¢. It
follows that for each j in N either S; C [0,¢] or §; N [0,£] = 0. As a consequence we
have

a(t) — a(t) = /0 t @'(s) — @' (s)ds
= [ @) =7 (6Dxus, ()
- ¥ [ a-was

{7:5;Clo,t]}

—

Equality (4.1) yields 4(t) = @(¢); in particular %(t) ¢ T, the conclusion follows.
As a consequence of the proof of the above theorem, we have the following result,
with no assumption on the bipolar of f in 0.
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THEOREM 4.2. Let I' C R™ be an open half-space, K ¢ WYP([0,T],R?), f :
R™ — R be as in §2. Then the problem

T
min / F(s))ds : ue K, u(t) ¢ T
0

admits at least one solution.
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