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Abstract

We give two short and elementary proofs of a characterization of constants function by
Brezis. Whereas the original proof involves some refined arguments on Sobolev spaces
and BV functions, ours are based either on convolutions or on a sort of nonsmooth Mean
Value Theorem which is new to our knowledge.
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1 Introduction

We deal with the following nice characterization of constant functions, formulated by H.
Brezisin [1].
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Proposition 1.1 (H. Brezis) Let Q2 be a connected open set in RN and let
f: Q2 — R be a measurable function such that

// |f|y_m|N+1 dz dy < +oo. (1.1)

Then f is a.e. equal to a constant.

We refer to [1] for some connections of the result with the VMO functions and related
results on the degree theory for classes of discontinuous maps and lifting of maps with
values in the unit circle. We are mainly concerned here with the proof of Proposition 1.1.
Indeed, in spite of the simplicity of the statement of Proposition 1.1, its original proof
actually involves a refined characterization of BV functions (it is first shown that f is BV
and then that the total mass of the measure V f is zero); actually it is pointed out in Remark
1 of [1] that the author does not know a direct, elementary proof of the result. The purpose
of this short note is to present a couple of proofs with no connections to BV or Sobolev
spaces.

We first present a self contained argument based on convolutions; in the final part of the
paper we give a short proof of Theorem 4.1, a more general result again due to Brezis, as an
application of a Mean Value Theorem under mild assumptions that is new to our knowledge.
Actually, both methods could be used either for Proposition 1.1 or for Theorem 4.1.

We denote by B,.(z) (or simply B, if z = 0) the ball of radius r of center x in RY; %
is the unit sphere and H®* is the Hausdorff o.—dimensional measure.

2 A convolution argument

We give here a proof of Proposition 1.1 based on a convolution argument.

Proof of Proposition 1.1. It is not restrictive to assume that f is bounded (otherwise one
considers arctan(f) instead of f). We first consider the case where N = 1 and prove that
f is constant on any [a,b] C €. Lete < dist([a, b], 0Q2); the change of variables y = = +¢

in (1.1) yields that
1 [*f@+t) - f@)
/0 ?/a " dadt < +oo. (2.1)

Claim: Condition (2.1) implies that f is constant on [a, b]. Indeed, since 1/¢ is not summable
around 0, there exists a sequence t,, converging to 0 such that

. /” S i) =S 4, o,

n—+oo a

for every t > 0, (f(x +1t) — f(z))/t is the derivative of the Lipschitz function ¢ * f,
where ¢; is the mollifier ¢~ x_¢ o). Moreover ¢y, * f converges to f a.e.: if y, z are two
points of [a, b] where the sequence converges we have

b
£() = @) = lim g, = £(2) =1, * S <tim [ [, + @) dz =0
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we deduce that f is constant a.e. in [a, b).

Let N > 1and Z € Q; let r > 0 be such that 2r < dist(Z, 8Q). Fix a smooth mollifier
¢r with support in B,.. We shall show that V (¢, * f)(Z) = 0: since ¢, * f converges to
[ ae. for r tending to 0, the same argument will imply that f is constant. The change of
variables y = z +t6 (§ € L, t > 0) and (1.1) yield

" oN-1 |f(x +10) — f(z)] -1
/0 N /E / - de dHN 1 (6) dt < +oo.

tN+1

Fubini Theorem implies that, for a.e. 6 in I,

/r/ @) = F@ 4 gt < 4o, (2.2)
o JB.(®

t2

Fix 6 such that (2.2) holds; let B’ be the orthogonal projection of B, (Z) onto the plane
through T that is perpendicular to 6 and let S, be the chord in direction @ of B, (T) whose
intersection with B’ is 2. By Fubini Theorem and by (2.2)

[ / 0 +10) = SE) s < oo

for ae. 2’ in B'. Therefore, by applying the arguments of the just proven one dimensional
case of Proposition 1 we infer that, for a.e. 2/, f is constant on the chord S, in direction

6. Since ¢, is null on 0B, then / 65?; (Z — z)dH'(z) = 0 and thus the integral
s

!

8(;2,« (Z — z)f(z) dH' () is null for a.e. z’. Thus, by a further application of Fubini
St
Theorem, the partial derivative %(% * fIT) = 3893 * f(%) equals
[, ma-or@a= [ [ % et e o
B,.(F) o6 rJst o0

By choosing IV linearly independent values of § we get that Vier* f)(E) = 0.

Remark 2.1 Our proof of Proposition 1.1 is self contained and relies on the proper-
ties of the smooth functions ¢, * f. However, the final part of the proof could be
carried out in an alternative way once it is shown that f is constant on a.e. chord
of B.(T) in direction 6: by taking a set of N linearly independent values of 8 such
that (2.2) holds, we obtain that f is constant on a.e. chord of B, (Z) that is parallel
to one of these N vectors; it follows (for instance from [2, Lemma 2]) that f is
constant a.e.. Our convolution argument actually gives an alternative proof of the
just quoted result.

3 A nonsmooth mean value theorem

The following sort of Mean Value Theorem provides an alternative way of proving Propo-
sition 1.1. To avoid repetitions we will actually apply it in the next section to prove a more
general result.
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Theorem 3.1 (A Nonsmooth Mean Value Theorem) Let (Y, || - [|) be a normed linear
space; let Q be an open connected subset of RY, and let p: Q@ — Y be continuous.
Assume that there exist N independent vectors ui,...,un such that

weq lminf I|¢(y+tui) Wl _, (=1, N).

(3.1)

Then @ is constant on .

Proof. Assume first that N = 1, thus Q is an interval I and, with no restriction, u; = 1.
Given a,b € I with a < b, we prove that ¢{a) = ¢(b). For ¢ > 0, consider the set
T ={te[a,b]: ||o(t) — p(a)|| <e(t—a)}. Clearly T is non-empty, since a € T', and is
closed by continuity of ¢; hence T" has a maximum. Let ¢ = maxT'. We claim that ¢ = b.
If not, (3.1) implies the existence of £ > ¢ such that || () — @(c)||/(t — ¢) < &; but then
lo(e) —w(a)|l < e(c—a) and [|p(F) —¢(c)l| < e(f—c) imply () — p(a)|| < &(t ~a),
and hence f € T. Butf > ¢ = max T, a contradiction. Thus ||o(b) —¢(a)| < e(b—a), for
every € > 0, and then @(a) = ¢(b). Assume now that N > 1. The case IV = 1 shows that
¢ is constant on every line segment contained in §2 and parallel to one of the u;’s. Then
¢ is constant on every parallelotope spanned by vectors parallel to the u;’s, and hence is
locally constant on §2; thus constant on £2 by connectedness.

4 A more general theorem

Theorem 4.1 below is an extension of Proposition 1.1; it is referred to as a theorem of H.
Brezis in [3, Theorem 3.1] where it is proven via some fine properties of Sobolev spaces
or BV functions. An alternative proof of Theorem 4.1 could be given by using again a
convolution argument as in Section 2. However we present here a short alternative proof of
it as an application of Theorem 3.1.

Let (pe )0 be a family of radial mollifiers, i.e. p. are measurable on [0, +o0],

pe > 0; /pe<|a:|)dw=1; >0 tim [ pellal)dz=o0.
RN e~V Jzl>8

Theorem 4.1 (H. Brezis) Let Q@ be a connected open set in RY and
w:[0, +-00[— [0, +00[ be a convez function such that w(0) =0 and w(t) >0 if ¢ > 0.
Let f: Q0 — R be measurable and such that

lim//w(w) (ly —z|)dedy =0 4.1
Yim |, w—a )W ) de dy (4.1)
for a family (pe)eso of radial mollifiers. Then f is a.e. equal to a constant.

Remark 4.1 As it is pointed out in [1], Theorem 4.1 implies Proposition 1.1. We
mention that the conclusion of Theorem 4.1 holds true if w : [0, +oo[— [0, +oo[ is
a continuous function such that liminf; . w(t)/t = @ > 0 and w(0) = 0; indeed
this latter condition is equivalent to the fact that w is bounded below by a convex
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function @ such that @(0) = 0 and &(t) > 0 for t > 0. In the case where w(t) = tP the
result is [1, Theorem 1]; the claim follows there from the characterization of Sobolev
spaces (p > 1) or of BV functions (p = 1) formulated in [1]. In this general case,
with w(t) instead of ¢?, the original proof of Theorem 4.1 involves the properties of
Orlicz Sobolev spaces (see [4]).

Proof of Theorem 4.1. We may assume that f is bounded; otherwise, w being increasing,
we could replace f by arctan(f). Let T € Q and 2r < dist(Z, 89). Set

[ (fetn-i@I\

Notice that, by Jensen’s inequality, for every y in B, \ {0} we have

w<y)ziBT|w<ﬁ / B ’f(””“,’;[f(“’”)'dsc) B = Vol(B,).  (42)

The change of variables (z, y) — (z,z + y) together with (4.1) yields that

| Fet 1@ _
i [ oo [ o (PRI oy = i [ puuhuiray =0

By passing to polar coordinates y = 6 (t > 0, § € %) then we get

lim TtN_lpE(t)E(t)dt=0, P(t) = /2 P(t0) dHN ~1(9). (4.3)

e—0 0

Letd < r. If¢(¢) > a > 0on[0,5] then the Lh.s. of (4.3) is greater than

s
alim [ Vo (tHN (D) dt:alim/ pe(lyl) dy = a,
e—=0 Jo e—0 Bs
a contradiction. Thus, there exists a positive sequence ¢, converging to 0 such that
lim ¥(t,) = lim / Y(tn8) dHV 1) = 0.
n-—o0 n—o0 »
Since 4 is positive, passing to a subsequence (that we call again t,,) we obtain
lim ¥(t,0) =0 forae 6e¥. (4.4)
n—oo
Fix 0 such that (4.4) holds. It follows from (4.2) and (4.4) that

n—t+oo \ |By| /B, @ tn

Now w is strictly increasing and thus

i [ @t t0) — )

=t JB (z) tn

dz =0. (4.5)
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Choose N independent values u1, ..., uy of 8 such that (4.5) holds; set B' = B,9(Z) and
let p : B’ — L1(B') be the translate of f defined by (y) = f(- + y). Now,

lle(y +16) — o)l s :/ [fw+y+t0) — flw+y)

; : dw= (z=w+y)

/ |f (@ +t0) — f(2)] dm</ fe+t0) = F@l 0 0<t<r/2)
y+B t " /@) t '

The continuity of the translate and Theorem 3.1 implies that « is constant on B’;thus fis
constant a.e. on B,./2(Z): the conclusion follows, Q being connected.

Remark 4.2 It is pointed out in the proof of [3, Theorem 1.5] that, assuming f €
Weloi (Q), then (4.5) implies that f is constant; the new fact here is that we just
assume that f is measurable. Notice that the conclusion of Theorem 4.1 could also
be obtained from (4.5) by slightly modifying the arguments of Section 2.
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