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Chaos suppression in the SU(2) Yang-Mills-Higgs system
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We study the classical chaos-order transition in the spatially homogeneous SU(2) Yang-Mills-
Higgs system by using a quantal analogue of Chirikov's resonance overlap criterion. We obtain an
analytical estimation of the range of parameters for vrhich there is chaos suppression.
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where

+y~ A A (2)

with T = cr /2, b = 1, 2, 3, generators of the SU(2)
algebra, and where the potential of the scalar field (the
Higgs field) is

V(d') = s 'l4 f'+ &l@ f' . (4)

In recent years there has been much interest in the
chaotic behavior of classical field theories. In particular
Yang-Mills [1,2], Yang-Mills-Higgs [3—5], Abelian-Higgs
[6], and also Chem-Simons [7] systems have been studied.

Usually the order-chaos transition in these systems has
been studied numerically with Lyapunov exponents [8]
and Poincare sections [9]. Less attention has been paid
to analytical criteria. Some authors [4,6] have used the
curvature criterion of potential energy [10], but this cri-
terion guarantees only a local instability and can give
incorrect results (for a inore complete discussion of this
point see [11]).

In this work we study analytically the suppression of
classical chaos in the spatially homogeneous SU(2) Yang-
Mills-Higgs (YMH) system. We apply a quantal analogue
[12] of the Chirikov resonance criterion [13] by using the
semiclassical quantization to calculate the critical value
of the parameters corresponding to the intersection of
two neighboring quantal separatrices [20].

Obviously, the constant Geld approximation implies
that our SU(2) YMH system is a toy model for classi-
cal nonlinear dynamics, with the attractive feature that
the model emerges &om particle physics.

The Lagrangian density for the SU(2) YMH system is
given by [14]

+(Ai+A2)p —(Ai. p) —(A2 g) ]
—V(g), (6)

where P = (P', P, Qs), Ai ——(Ai, Ai, Ai), and A2
(A,', A', , As2).

When p, ) 0 the potential V has a ininimum in ~q7]

0, but for p & 0 the minimum is

2 2

which is the nonzero Higgs vacuum. This vacuum is de-
generate and after spontaneous symmetry breaking the
physical vacuum can be chosen Po ——(0, 0, v). If Ai = qi,
A2 ——q2, and the other components of the Yang-Mills
Gelds are zero, in the Higgs vacuum the Hamiltonian of
the system is

H = 2(pi+ p') + g'v'(q'+ q') + 2g'qiq'

where pI ——qq and pz = g2. Obviously tU 2g tP Is the
mass term of the Yang-Mills fields.

Classical chaos was demonstrated in a pure Yang-Mills
system [1],i.e. , in a zero Higgs vacuum. Here we analyze
the effect of a nonzero Higgs vacuum [3].

We introduce the action-angle variables by the canon-
ical transformation

We work in (2+1)-dimensional Minkowski space (p =
0, 1, 2) and choose spatially homogeneous Yang-Mills and
Higgs fields:

0A„=0/=0, i=1,2;

i.e., we consider the system in the region where space
Buctuations of Gelds are negligible compared to their time
Huctuations.

In the gauge Ao ——0 and using the real triplet repre-
sentati. on for the Higgs field we obtain

2 ' 2 '2
L = —,

'
I

Ai +A2 ~+4' g [2A~j42 2('41'A2)

/2I;l '
q; =

~

*
~

cos0;, p, = (2I,~) sing, , i = 1, 2.
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A1 ——I1 + I2 ) A2 ——I1 —I2 )

01 +1+ g2 & ~2 X1 X2 (io)

H can be written

H = Ag(u+ (A~ —A~) cos (yg~yp) cos (gg —yq).

The Hamiltonian becomes (see also [3])

H = (Il + I2)& + I1I2 cos 01 cos 02.
1 2 2

v2

By the new canonical transformation in slow and fast
variables

rK
Pg(K, Bq) = +—arccos z

—2
~

.
4 &Bi )

The appearance of a separatrix [which is not immedi-
ately obvious in the (p, q) coordinates] accounts as is
well known for the stochastic layers originating near it
[16]. This corresponds to local irregular behavior of the
quantum spectrum; one of its manifestations is the local
shrinking of the level spacing and the tendency to avoid
crossing [16,17].

The approximate Hamiltonian (16) depends only on
the actions so that a semiclassical quantization formula
can be obtained by the Bohr-Sommerfeld quantization
rules [15,18]. Set Bq ——mph and Bq ——mph, then, up to
terms of order h, the quantum spectrum is

We now eliminate the dependence on the angles to or-
der 1/v4 by resonant canonical perturbation theory [1S].
First we average on the fast variable y1. This yields

1E, , = m g h(u + K (m g h, my h),32v

where K is implicitly de6ned by the relation

(2o)

and

1
dye cos (gy + yg) cos (yy —yg)

27K 0

1= —(2 + cos 4gg),8 (12)

2 (mph)~(2+ cos4z) —K
m2h = +— dx 21

7r 2+ cos4x

with a = —4, b =
4 for 0 ( K ( (mph), and a =

(K, Bq), b = P+(K, Bq) for (mph) ( K ( 3(mph)
On the separatrix, where K = (mph), mq ——knmq,

with

H, ( = Ag(u + (A, —A~) (2 + cos 4yg).
32v (13)

4

1+cos4x
2+ cos4x (22)

The dependence on y2 is now eliminated by a second
canonical transformation. The Hamilton- Jacobi equation
for the perturbation part is indeed

(BS)
A', —

~ ~

(2+cos4yg) = K,
(oX~)

It is immediately seen that for m1 fixed the function
K, and hence the semiclassical energy E. .. is a de-
creasing function of the secondary quantum number m2,
and we have a quantum multiplet [19].

We can calculate the value of the coupling constant
1/v corresponding to the intersection of the separatrices
of two neighboring quantum multiplets:

OS A~i(2 + cos 4yq) —K
|9+2 2 + cos 4+2

and thus the Hamiltonian becomes

1
H = Bg + K(Bg, Bp),

where

(is)

(16)

1
(m, + 1)h~ +,K [(mg + 1)h, n(mg + 1)h]32v

1= mph(u + K(mph, amph), (23)32v

and so

1 OS
B1 —A1 ) B2 d/22' 0+2

(17)
1 —32h~

v K[(mq + 1)h, n(mq + 1)h] —K(mph, amah)

(24)
It appears Rom the structure of this equation that the
motion of our system is similar to that of a simple pen-
dulum: for 0 ( K ( B1 rotational motion, for K = B1
separatrix, and for B1 ( K ( 3B1 libratiorial motion.
On the separatrix we have Bz~(2 + cos 4yq) = K, and

In this way we have, in some sense, the quantal counter-
part [12] of the method of overlapping resonances devel-
oped by Chirikov [13). The denominator can be evaluated
by the Taylor expansion and finally

b

B2 ——+— dx
Bi~(2+ cos 4z) —K

2+ cos4x (18)

where a = —4, b =
4 for rotational motion, and a =

(K, Bq), b = P+(K, Bz) for librational motion, with

v2 OK BK
BB1 BB2 - Bi=mi h, Bg —~my h

K is implicitly defined by the relation

(2s)
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F[Bg, B2, K(Bg, B2))

or

7r 4= B2 —— dx
2

4

Biz (2 + cos 4x) —K
2+ cos4x (26)

F(Bg) B2) K) = B2 —4(Bg, K) = 0.

As a function of C', 1/v can be written

where

t9K
84'

lim
Km B12 BB1 B1——m1h

(28)

BC 1 4 1

BK ~ =, g(2 + cos 4x) [B~2(2 + cos 4x) —K]

04 2 4 Bi2(2 + cos 4x)
BBg vr . B,(2+. cos 4x) —K (29)

A similar procedure has been used for a more schematic
model in [20]. The result is

v2

16(d

mph
(3o)

where mph E (the energy of the system) and tu

(2v2g ) ~ . Therefore, the chaos-order transition depends
on the parameter A = v g/E: if 0 ( A ( ~2/32

a relevant region of the phase space is chaotic, but if) v 2/32 the system becomes regular. This result
shows that the value of the Higgs field in the vacuum
v plays an important role: for large values, it makes
the system regular, in agreement with previous numerical
calculations [3]. Also the Yang-Mills coupling constant g
has the same role. Instead, if v and g are fixed. there is
an order-chaos transition increasing the energy E.

In conclusion, we have shown for the spatially homo-
geneous SU(2) YMH system that the quantum resonance
criterion, which describes the onset of widespread chaos
associated to semiclassical crossing between separatices
of different quantum multiplets, gives an analytical esti-
mation of the classical chaos-order transition as a func-
tion of the Higgs vacuum, the Yang-Mills coupling con-
stant, and the energy of the system.

We observe that a classical chaos-order transition has
been found numerically for the monopole solution [4] and
the sphaleron solution [5] of the SU(2) YMH theory. In
the future it will be of great importance to Gnd analyti-
cal estimations of the onset of chaos also for these more
realistic solutions.
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