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Abstract. A formulation for a partially saturated porous medium undergoing large elas-

tic or elastoplastic deformations is presented. The porous material is treated as a multi-

phase continuum with the pores of the solid skeleton filled by water and air, this last one at

constant pressure. This pressure may either be the atmospheric pressure or the cavitation

pressure. The governing equations at macroscopic level are derived in a spatial and a ma-

terial setting. Solid grains and water are assumed to be incompressible at the microscopic

level. The elasto-plastic behaviour of the solid skeleton is described by the multiplicative

decomposition of the deformation gradient into an elastic and a plastic part. The effec-

tive stress state is limited by the Drucker-Prager yield surface. The water is assumed to

obey Darcy’s law. Numerical examples of the Liakopoulos’ test and of strain localisation

of dense and loose sand conclude the paper.

1 Introduction

This paper presents a formulation for a saturated and partially saturated porous medium

undergoing large elastic or elastoplastic strains. Mechanics of porous materials has a wide

spectrum of engineering applications and hence, in recent years, several porous media

models and their numerical solutions have appeared in the literature. Most of these mod-

els are restricted to fluid saturated materials and have been developed using small strain

assumptions. For soils, large strains result when ultimate or serviceability limit state is

reached, as for example during slope instability or during the consolidation process in

compressible clays. In laboratory, this can be the case of drained or undrained biaxial

tests of sands, where axial logarithmic strains of the order of 0.12-0.15 are reached [1, 2],
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or the case of triaxial tests of peats, where axial strains of the order of 0.15 are mea-

sured. Among others, the phenomenon of strain localisation (i.e. strain accumulation in

well defined narrow zones, also called shear bands) is most typical whereby large inelastic

strains develop, at least inside the bands [1, 2, 3]. Moreover, it reveals also the strong

coupling which occurs between the solid skeleton and the fluids filling the voids of the

porous material.

More recently, porous media models have been extended to large strains, first in the

framework of hypoelastoplasticity and, after the work of J.C. Simo for single-phase ma-

terials, also using hyperelastoplasticity. To the author knowledge, a partially saturated

model has been put forward only in the framework of hypoelastoplasticity, based on an

updated Lagrangian approach, Eulerian strain rate tensor and Jaumann stress rate [4].

In the present contribution, a partially saturated porous media model is developed in the

framework of hyperelastoplasticity, extending the previous work of Sanavia et al. [5].

Conditions of partial saturation are of importance in engineering practice because many

porous materials are in this natural state or can reach this state during deformations.

Some simple examples can be found in soils or in concrete and in biological tissues, which

can contain air or other gases in the pores together with liquids. For instance, this is the

case of the soil zones above the free surface, or the case of deep reservoirs of hydrocarbon

gas. The partially saturated state can also be reached during the deformation due, for

instance, to earthquake in an earth dam or during the particular case of strain localisation

of dense sands under globally undrained conditions, where negative water pressures are

measured and cavitation of the pore water was observed [1, 2].

In the model developed in this paper, the porous medium is treated as an isothermal

multiphase continuum with the pores of the solid skeleton filled by water and air, this

last one at constant pressure (passive air phase assumption). This pressure may either be

the atmospheric pressure or the cavitation pressure (isothermal monospecies approach).

Quasi static loading conditions are considered. The governing equations at macroscopic

level are derived in Section 3 in a spatial and a material setting and are based on aver-

aging procedures (hybrid mixture theory). This model follows from the general Thermo-

Hydro-Mechanical model developed in [6], which is briefly recalled in Section 2 for sake

of completeness. Solid displacements and water pressures are the primary variables. The

solid grains and water are assumed to be incompressible at microscopic level. The elasto-

plastic behaviour of the solid skeleton is described by the multiplicative decomposition of

the deformation gradient into an elastic and a plastic part, as described in Section 3.3. The

modified effective stress in partially saturated conditions (Bishop like stress) in the form

of Kirchhoff measure of the stress tensor and the logarithmic principal strains are used in

conjunction with an hyperelastic free energy function. The effective stress state is limited

by the Drucker-Prager yield surface and a particular ”apex formulation” is presented in

Section 6.1. Water is assumed to obey Darcy’s law. In the partially saturated state, the

water degree of saturation and the relative permeability are dependent on the capillary

pressure by experimental functions. The spatial weak form of the governing equations,

the temporal integration of the mixture mass balance equation, which is time dependent

because of the seepage process of water, and the consistent linearisation are described in
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Section 4, 5 and 6, respectively. In particular, the Generalised Trapezoidal Method is used

for the time integration. Finally, the finite element discretisation in space is obtained by

applying a Galerkin procedure in the spatial setting, using different shape functions for

solid and water (see Section 7).

Numerical examples of this research in progress on large elastic or inelastic strains in

saturated and partially saturated porous media highlight the developments in Section

8. The first one is the simulation of the experimental Liakopoulos’ test, for which the

measured experimental desaturation of the column from the top to the bottom surface

is well described. In the second example, a stability problem on loose or dense sand is

studied. The equivalent plastic strain distribution shows the presence of a localised zone

(Drucker-Prager model is used, with non associated flow rule), with negative water pres-

sures induced by the dilatancy of the dense sand below the cavitation pressure at ambient

temperature (of -96 kPa) inside the shear band. For the aspects of the regularization

properties of the multiphase model at localisation, due to the presence of a Laplacian in

the mass balance equation of the fluids, the interesting reader can see [7] and [8].

As notation and symbols are concerned, bold-face letters denote tensors; capital or lower

case letters are used for tensors in the reference or in actual configuration. The symbol ’·’
denotes a single contraction of (adjacent) indices of two tensors (e.g. a · b = aibi, c · d =

cijdjk), while the symbol ’:’ denotes a double contraction of (adjacent) indices of two ten-

sors of rank two or/and higher (e.g. c : d = cijdij, e : f = eijklfkl). Cartesian co-ordinates

are used throughout.

2 General Mathematical Model of Thermo-Hydro-Mechanical

Transient Behaviour of Geomaterials

The full mathematical model necessary to simulate thermo-hydro-mechanical transient

behaviour of fully and partially saturated porous media is developed in [6] using aver-

aging theories following Hassanizadeh and Gray [9, 10]. The underlying physical model,

thermodynamic relations and constitutive equations for the constituents, as well as gov-

erning equations are briefly summarised for sake of completeness in the present section.

The governing equations of the simplified model used in the finite element discretisation

are described in Section 3.

The partially saturated porous medium is treated as multiphase system composed of

π = 1, · · · , k constituents with the voids of the solid skeleton (s) filled with water (w)

and gas (g). The latter is assumed to behave as an ideal mixture of two species: dry air

(noncondensable gas, ga) and water vapour (condensable one, gw). Using spatial averag-

ing operators defined over a representative elementary volume R.E.V. (of volume dv(x, t)

in the deformed configuration, Bt, see Figure 1, where x is the vector of the spatial co-

ordinates and t is the current time), the microscopic equations are integrated over the

R.E.V. giving the macroscopic balance equations. At the macroscopic level the porous

media material is hence modelled by a substitute continuum of volume Bt with boundary

∂Bt that fills the entire domain simultaneously, instead of the real fluids and the solid
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which fill only a part of it. In these substitute continuum each constituent π has a reduced

density which is obtained through the volume fraction ηπ(x, t) = dvπ(x, t)/dv(x, t) with

the constraint

k∑
π=1

ηπ = 1 (1)

where dvπ(x, t) is the π-phase volume inside the R.E.V. in the actual placement x.

Figure 1: Typical averaging volume dv(x, t) of a porous medium consisting of three con-

stituents [6].

In this formulation heat conduction, vapour diffusion, heat convection, water flow due to

pressure gradients or capillary effects and latent heat transfer due to water phase change

(evaporation and condensation) inside the pores are taken into account. The solid is de-

formable and non-polar, and the fluid, the solid and the thermal fields are coupled. All

fluids are in contact with the solid phase. The constituents are assumed to be isotropic,

homogeneous, immiscible except for dry air and vapour, and chemically non reacting. Lo-

cal thermal equilibrium between solid matrix, gas and liquid phases is assumed, so that

the temperature is the same for all the constituents. The state of the medium is described

by water pressure pw, gas pressure pg, temperature θ and displacement vector of the solid

matrix u.

Before summarising the macroscopic balance equations, we specify the kinematics intro-

ducing the notion of initial and current configuration (Figure 2). In the following, the

stress is defined as tension positive for the solid phase, while pore pressure is defined as

compressive positive for the fluids.

2.1 Kinematic Equations

At the macroscopic level the multiphase medium is described as the superposition of all π-

phases, whose material points Xπ with coordinates Xπ in the reference configuration Bπ
0 at

time t = t0 can occupy simultaneously each spatial point x in the deformed configuration

Bt at time t. In the Lagrangian description of the motion in terms of material coordinates
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Figure 2: Initial and current configuration of a multiphase medium.

the position of each material point in the actual configuration x is a function of its

placement Xπ in a chosen reference configuration Bπ
0 and of the current time t,

x = χπ(Xπ, t) (2)

with x = xπ or it is given by the sum of the reference position Xπ and the displacement

uπ = (Xπ, t) at time t

x = Xπ + uπ(Xπ, t) (3)

In eq. (2), χπ(Xπ, t) is a continuous and bijective motion function (deformation map) of

each phase because the jacobian Jπ of the each motion function

Jπ = det
∂χπ(Xπ, t)

∂Xπ > 0 (4)

is restricted to be a positive value. The deformation gradient F π(Xπ, t) is defined as

F π = Gradπχπ(Xπ, t) (5)

where the differential operator Gradπ denotes partial differentiation with respect to the

reference position Xπ. Hence, from eq. (4), Jπ = det F π.

The velocity and the acceleration of each constituent are given as

V π =
∂χπ(Xπ, t)

∂t
Aπ =

∂2χπ(Xπ, t)

∂t2
(6)

Due to the non singularity of the Lagrangian relationship (2), the existence of its inverse

function leads to the description of the motion in terms of spatial coordinates,

Xπ = [χπ]−1(x, t) (7)
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The inverse [F π]−1(x, t) of the deformation gradient is given by

[F π]−1 = gradXπ(x, t) (8)

where the differential operator ’grad’ is now referred to spatial coordinates x. The spatial

parametrization of the velocity is given by

vπ = vπ(x, t) = V π ◦ [χπ]−1 (9)

where ’◦’ denotes the composition of functions. The parametrization of the spatial accel-

eration is related to the spatial velocity by the application of the chain rule to (9)

aπ = aπ(x, t) =
∂vπ

∂t
+ gradvπ · vπ = Aπ ◦ [χπ]−1 (10)

Since the individual constituents follow in general different motions, different material

time derivatives must be formulated. For an arbitrary scalar-valued function fπ(x, t) its

material time derivative following the velocity of the constituents π is defined by [6]

Dπfπ

Dt
=

∂fπ

∂t
+ gradfπ · vπ (11)

where fπ(x, t) must be substituted by fπ(x, t) in case of vector or tensor valued function

fπ(x, t). Thus aπ = Dπvπ/Dt.

In multiphase materials theory it is common to assume the motion of the solid as a

reference and to describe the fluids in terms of motion relative to the solid. This means

that a fluid relative velocity and the material time derivative with respect to the solid

are introduced. The solid motion can be described both in terms of material or spatial

coordinates. The second approach is now presented because the most natural numerical

formulation of the elasto-plastic initial boundary value problem is based on the weak form

of the balance equations in a spatial setting.

The fluid relative velocity vπs(x, t) in spatial parametrization or diffusion velocity is given

by

vπs(x, t) = vπ(x, t)− vs(x, t) (12)

and the material time derivative of fπ(x, t) with respect to the moving solid phase (s) is

given by

Dsfπ

Dt
=

Dπfπ

Dt
+ gradfπ · vsπ with vsπ = −vπs (13)

For the section closure, the material and the spatial velocity gradient of the solid will be

recalled. The first one is given as

Ls = GradsV s =
∂F s

∂t
= Ds + W s (14)
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where Ds(Xs, t) and W s(Xs, t) are the symmetric and the skew-symmetric part of

Ls(Xs, t), while the spatial velocity gradient ls(x, t) is defined as the gradient of the

velocity (9) respect to the spatial coordinates, i.e.

ls = gradvs =
∂F s

∂t
· [F s]−1 = ds + ws (15)

where ds(x, t) and ws(x, t) are the symmetric and the skew-symmetric part of ls(x, t),

also called spatial rate of deformation tensor and spin tensor, respectively.

All strain measures and strain rates for each constituent follow similarly to classical non-

linear continuum mechanics, but are not reported here because they are not useful for the

approach developed in the sequel.

2.2 Mass Balance Equations

The averaged macroscopic balance equation for the solid phase is

Dsρs

Dt
+ ρs divvs =

∂ρs

∂t
+ div(ρsv

s) = 0 (16)

where vs(x, t) is the mass averaged solid velocity, ρs(x, t) is the averaged density of the

solid related to the intrinsic averaged density ρs(x, t) by the volume fraction ηs(x, t).

For the generic π-phase the relationship between the averaged density and the intrinsic

averaged density is

ρπ(x, t) = ηπ(x, t)ρπ(x, t) (17)

where the intrinsic density ρπ(x, t) is also named real or true density in the so called

Theory of Porous Media, e.g. [11].

The mass balance equation for water is

Dwρw

Dt
+ ρw divvw =

∂

∂t
(nSwρw) + div(nSwρwvw) = ρwew (18)

where ρwew(x, t) is the quantity of water per unit time and volume lost through evapo-

ration. The corresponding equations for dry air and vapour are respectively

Dgaρga

Dt
+ ρga divvga =

∂

∂t
(nSgρ

ga) + div(nSgρ
gavga) = 0 (19)

Dgwρgw

Dt
+ ρgw divvgw =

∂

∂t
(nSgρ

gw) + div(nSgρ
gwvgw) = ρgwegw (20)

where n(x, t) is the porosity of the medium defined as

n =
dvw + dvg

dv
=

dvvoids

dv
= 1− ηs (21)

and Sw and Sg the water and gas degree of saturation. The following relationships hold

ηw = nSw with Sw =
dvw

dvw + dvg

ηg = nSg with Sg =
dvg

dvw + dvg

(22)

with the saturation constraint Sw + Sg = 1.
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2.3 Linear Momentum Balance Equations

The linear momentum balance equation for the solid and the π-fluid are

divts + ρs[g − as] + ρst̂
s
= 0 (23)

and

divtπ + ρπ[g − aπ] + ρπ[eπ + t̂
π
] = 0 (24)

respectively, where tπ(x, t) is the partial Cauchy stress tensor defined via the constitutive

equation presented in Section 2.6. t̂
π
(x, t) accounts for the exchange of momentum due

to mechanical interaction with other phases, ρπaπ the volume density of the inertial

force, ρπg the volume density of gravitational force and eπ(x, t) takes into account the

momentum exchange due to averaged mass supply or mass exchange between the fluid

and the gas phases and the change of density. The linear momentum balance equation of

the multiphase medium is subjected to the constraint [6]

k∑
π=1

ρπ[eπ + t̂
π
] = 0 (25)

2.4 Angular Momentum Balance Equation

All the phases are considered microscopically non-polar and hence at macroscopic level

the angular momentum balance equation states that the partial stress tensor is symmetric

[6]

tπ = [tπ]T (26)

2.5 Energy Balance Equation and Entropy Inequality

These two relationships are simply quoted from [6]; the second one is useful for the de-

velopment of the constitutive equations.

The energy balance equation for the π-phase may be written as

ρπ
DπEπ

Dt
= tπ : dπ + ρπhπ − divqπ + ρπRπ (27)

where ρπRπ represents the exchange of energy between the π-phase and other phases of

the medium due to phase change and mechanical interaction, qπ is the internal heat flux,

hπ results from the heat sources and dπ is the spatial rate of the deformation tensor. Eπ

accounts for the specific internal energy of the volume element.

The entropy inequality for the mixture is

∑
π

[
ρπ

Dπλπ

Dt
+ ρπeπλπ + div

qπ

θπ
− ρπhπ

θπ

]
≥ 0 (28)

where θπ is the absolute temperature, λπ is the specific entropy of the constituent π and

eπλπ the entropy supply due to mass exchange.
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2.6 Constitutive Equations

The momentum exchange term ρπ t̂
π

of the linear momentum balance equation of the fluid

can be expressed as [6]

ρπ t̂
π

= −µπηπ2

k−1 · vπs + pπ gradηπ with π = g, w (29)

Here k = krπkπ, where kπ(x, t) = kπ(ρπ, ηπ, T ) is the intrinsic permeability tensor of

dimension [L2] depending in the isotropic case on the porosity of the medium, krπ(Sπ) is

the relative permeability parameter and µπ is the dynamic viscosity. The relative perme-

ability is function of the π-phase degree of saturation Sπ and is determined in laboratory

tests (see e.g. [6]).

The partial stress tensor in the fluid phase of linear momentum balance equation (24) is

related to the macroscopic pressure pπ(x, t) of the π phase

tπ = −ηπpπ1 (30)

where 1 is the second order unit tensor.

From the entropy inequality it can be also shown that the spatial solid stress tensor ts(x, t)

of the linear momentum balance equation (23) is decomposed as follows

ts = ηs[ts
e − ps1] (31)

and that the effective Cauchy stress tensor σ′(x, t), which is responsible for all major

deformation in the solid skeleton, is

σ′ = ηsts
e (32)

In eq. (31), ts
e(x, t) is the dissipative part [12] or effective stress tensor of the solid phase,

while ps(x, t) is the equilibrium part, also called solid pressure, with ps = Swpw + Sgp
g.

From the previous equations, it follows that the total Cauchy stress tensor σ = ts+tw +tg

can be written in the usual form used in soil mechanics

σ = σ′ − [Swpw + Sgp
g]1 (33)

The constitutive law for the solid skeleton used in this paper will be discussed in Section

3.

The pressure pg(x, t) is given in the sequel. For gaseous mixture of dry air and water

vapour the ideal gas law is introduced because the moist air is assumed to be a perfect

mixture of two ideal gases. The equation of state of perfect gas (the Clapeyron equation)

and Dalton’s law applied to dry air (ga), water vapour (gw) and moist air (g), yield

pga = ρgaRθ/Ma pgw = ρgwRθ/Mw (34)

pg = pga + pgw ρg = ρga + ρgw (35)
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In the partially saturated zones water is separated from its vapour by a concave meniscus

(capillary water). Due to the curvature of this meniscus the sorption equilibrium equation

gives the relationship between the capillary pressure pc(x, t) and the gas pg(x, t) and

water pressure pw(x, t) [12]

pc = pg − pw (36)

The equilibrium water vapour pressure pgw(x, t) can be obtained from the Kelvin-Laplace

equation

pgw = pgws(θ) exp

(
pcMw

ρwRθ

)
(37)

where the water vapour saturation pressure pgws, depending only upon temperature

θ(x, t), can be calculated from the Clausius-Clapeyron equation or from empirical corre-

lation.

The saturation Sπ(x, t) is an experimentally determined function of capillary pressure pc

and temperature θ

Sπ = Sπ(pc, θ) (38)

For the binary gas mixture of the dry air and water vapour, Fick’s law gives the following

relative velocities vπ
g = vπ − vg, (π = ga, gw), of the diffusing species

vga
g = −MaMw

M2
g

Dg · grad

(
pga

pg

)
= −vgw

g (39)

where Dg is the effective diffusivity tensor and Mg is the molar mass of the gas mixture

1

Mg

=
ρgw

ρg

1

Mw

+
ρga

ρg

1

Ma

. (40)

2.7 Initial and Boundary Conditions

For model closure it is necessary to define the initial and boundary conditions. The initial

conditions specify the full fields of gas pressure, water pressure, temperature, displace-

ments and velocity

pg = pg
0, pw = pw

0 , θ = θ0,

u = u0, u̇ = u̇0, at t = t0.
(41)

The boundary conditions can be imposed values on ∂Bπ or fluxes on ∂Bq
π , where the

boundary is ∂B = ∂Bπ ∪ ∂Bq
π . The imposed values on the boundary for gas pressure,

water pressure, temperature and displacements are as follows:

pg = p̂g on ∂Bg, pw = p̂w on ∂Bw,

θ = θ̂ on ∂Bθ, u = û on ∂Bu for t ≥ t0.
(42)
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The volume average flux boundary conditions for dry air water and species conservation

equations and the energy equation to be imposed at the interface between the porous

media and the surrounding fluid (the natural boundary conditions) are the following:

[ρgavg − ρgvgw
g ] · n = qga on ∂Bq

g

[ρgwvg + ρwvw + ρgvgw
g ] · n = βc[ρ

gw − ρgw
∞ ] + qgw + qw on ∂Bq

c

−[ρwvw∆hvap − λeff∇θ] · n = αc[θ − θ∞] + qθ on ∂Bq
θ

(43)

for t ≥ t0, where n(x, t) is the vector perpendicular to the surface of the porous medium,

pointing toward the surrounding gas, ρgw
∞ (x, t) and θ∞(x, t) are, respectively, the mass

concentration of water vapour and temperature in the undisturbed gas phase distant from

the interface, αc(x, t) and βc(x, t) are convective heat and mass transfer coefficients, while

qga(x, t), qgw(x, t), qw(x, t) and qθ(x, t) are the imposed dry air flux, imposed vapour flux,

imposed liquid flux and imposed heat flux, respectively.

The traction boundary conditions for the displacement field related to the total Cauchy

stress tensor σ(x, t) are

σ · n = t̄ on ∂Bq
u (44)

where t̄(x, t) is the imposed Cauchy traction vector.

3 Macroscopic Balance Equations for an Isothermal Saturated

and Partially Saturated Medium

In this section the macroscopic balance equations for mass and linear momentum of a

simplified model that we shall use in the sequel are obtained. The constitutive equations

for finite elastoplasticity as well as their algorithmic counterpart will close the present

section.

The following assumptions are now introduced in the general model previously presented:

• all the processes are isothermal. This means that the energy balance equation, eq.

(27) is no more necessary;

• at the micro level, the porous medium is assumed to be constituted of incompressible

solid and water constituents, while gas is considered compressible. The averaged

intrinsic density ρπ(x, t), π = s, w, is hence constant, while the averaged density

ρπ(x, t) can vary due to the volume fraction ηπ(x, t). Consequently, the density

of the mixture ρ(x, t), eq. (60) and the porosity n(x, t) can change during the

deformation of the porous medium;

• phase change between the fluid phases is neglected;

• the process is considered as quasi-static, so the solid and fluids accelerations are

neglected;

11
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• the passive air phase assumption will be introduced during the development of the

mathematical model.

The formulation in terms of spatial coordinates is now presented.

3.1 Mass Balance Equation

Taking into account the incompressibility constraint of the solid and water constituents

in (16) and (18), the mass balance equation for the solid and water phase become

∂

∂t
[1− n] + div([1− n]vs) = 0 (45)

∂nSw

∂t
+ div(nSwvw) = 0 (46)

where the definition of the phase averaged density (17) has been introduced, thus elimi-

nating the intrinsic (constant) averaged density ρπ(x, t) (π = s, w). Using the concept of

material time derivative (11), eq. (45) is rewritten as

Ds

Dt
[1− n] + [1− n] divvs = 0 (47)

where the classical relationship

divvs =
DsJs

Dt
[Js]−1 (48)

can be introduced [14] for the solid deformation. The time integration of (47) gives the evo-

lution law for the porosity n(x, t) related to the determinant Js(Xs, t) of the deformation

gradient F s(Xs, t)

n = 1− [1− n0][J
s]−1 (49)

where n0(X
s) is the porosity in the reference configuration at t = t0 (or initial porosity).

Because of the relation ηs(x, t) = 1− n(x, t), eq. (49) can be rewritten as

ηs = ηs
0[J

s]−1 (50)

where ηs
0(X

s) is the solid volume fraction in the reference configuration at t = t0.

The gas mass balance equation

∂

∂t
(nSgρ

g) + div(nSgρ
gvg) = 0 (51)

is obtained by summation of the corresponding equations for the dry air and the water

vapour and taking into account the Dalton’s law (35) and introducing the mass averaged

gas velocity vg = [ρgavga + ρgwvgw]/ρg.
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The sum of the mass balance equation of the three constituents (45), (46) and (51)

produces the following mass balance equation for the mixture under consideration

div([1− n]vs + nSwvw + nSgv
g) = 0 (52)

in which the passive air phase assumption

pg ∼= const. (53)

has been introduced, thus eliminating the terms of (51) depending from the spatial or the

time variation of ρg. This pressure may either be the atmospheric pressure or the cavita-

tion pressure at a certain temperature (e.g. the ambient temperature). The first case is

a common assumption in soil mechanics because in many cases occurring in practice the

air pressure is close to the atmospheric pressure as the pores are interconnected [13]. The

second case derives from the experimental observations [1] and the obtained model is also

called Isothermal Monospecies Approach, which can be used to simulate cavitation at lo-

calisation in initially water saturated dense sands under globally undrained conditions, as

first developed in [7] for the geometrically linear case. In fact, in this situation, neglecting

air dissolved in water, only two fluid phases are present after cavitation: liquid water and

water vapour at cavitation pressure, which can be neglected.

Introducing the water and the gas velocity relative to the solid, i.e. vws = vw − vs and

vgs = vg − vs, the mixture mass balance equation (52) becomes

div(vs + nSwvws + nSgv
gs) = 0 (54)

The terms nSwvws(x, t) and nSgv
gs(x, t) represent the filtration water and gas velocity,

respectively. The fluid velocity relative to the solid is related to the fluid pressure by the

linear momentum balance equation for fluid phase after the introduction of the consti-

tutive law (29), which gives the Darcy’s law (63), as will be demonstrated in the sequel.

Taking into account the expression of the Darcy’s law for the gas, than the passive air

phase assumption implies that vgs is negligible and hence the mass balance equation for

the mixture (54) becomes

div(vs + nSwvws) = 0 (55)

In case of fully saturated conditions, Sw = 1 and hence the previous equation is reduced

to the one of the saturated model.

3.2 Linear Momentum Balance Equation

Neglecting the inertial term in (23) and (24) the linear momentum balance equation for

the solid, water and gas phase are respectively

divts + [1− n]ρsg + [1− n]ρst̂
s
= 0 (56)
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divtw + nSwρwg + nSwρw[t̂
w

+ ew] = 0 (57)

divtg + nSgρ
gg + nSgρ

g[t̂
g
+ eg] = 0. (58)

The linear momentum balance equation for the mixture

div(ts + tw) + ρg = 0 (59)

is obtained by summation of (56), (57) and (58) because of the constraint (25) and taking

into account of the passive air phase assumption, thus neglecting the term divtg and the

gas density ρg with respect to the water density.

In eq. (59) ρ(x, t) is the density of the mixture

ρ = [1− n]ρs + nSwρw (60)

and ts + tw = σ is the total Cauchy stress, which can be decomposed into the effective

and pressure parts following the principle of effective stress

σ = σ′ − Swpw1 (61)

where σ′(x, t) is the modified effective Cauchy stress tensor, also called Bishop’s stress

tensor in soil mechanics. The linear momentum balance equation of the mixture in terms

of total Cauchy stress assumes the form

divσ + ρg = 0 (62)

Using the constitutive equation (29) for nSπρπ t̂
π
, (π = w, g) and the definition (30) of tπ,

the linear momentum balance equation for water (57) and gas (58) gives the Darcy’s law

nSπvπs =
kkrπ

µπ
· [− gradpπ + ρπg] (63)

for the π-fluid, where krπ = krπ(x, t) is the relative permeability which is an experimen-

tally determined function of the capillary pressure. This law is valid for the transport

of the π-fluid in slow phenomena when the thermal effects are negligible. In the follow-

ing, due to the passive air phase assumption, only the Darcy’s for the water will be used.

Moreover, the equilibrium equation for the fluid pressures, eq. (36), is simplified as follows

pc ∼= −pw (64)

which states that capillary pressures can be approximated as pore water tractions. Hence

the water pressure can change in sign, which means that a partially saturated zone is

developing in the porous medium. The effect of the capillary pressure on the stiffness of

the medium is taken into account by the constitutive laws for Sw(pc) and krw(pc).

As a consequence of the above assumptions, the independent fields of the model are the

14
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solid displacements u(x, t) and the water pressure pw(x, t).

In case of fully saturated conditions, Sw = 1 and krw = 1 and hence eqs. (60), (61) and

(63) are reduced to those of the saturated model.

The Lagrangian counterpart of the mixture balance equations (52) and (59) in terms of

material coordinates is now presented. The linear momentum balance equation is obtained

using the properties that the total 1th Piola-Kirchhoff stress tensor P (Xs, t) can be viewed

as the Piola Transform of the second leg of the total Cauchy stress tensor σ(x, t) [14]

P aB = Js
[
F s−1

]B

b
σab (65)

Multiplying (59) by the jacobian Js, and using the Piola Identity DivsP = Js divσ and

the relation Jsρ = ρ0, the linear momentum balance equation of the mixture in material

setting is

DivsP + ρ0g = 0 (66)

where ’ Divs’ is the divergence operator with respect to material co-ordinates of the solid,

and

ρ0(X
s, t) = ρi

0(X
s, t0) + Sw(Xs, t)[Js(Xs, t)− 1]ρw(Xs, t0)+

+n0(X
s, t0)[Sw(Xs, t)− Sw0(X

s, t0)]ρ
w(Xs, t0)

(67)

is the pull back of the mass density of the mixture ρ(x, t), in which n0(X
s, t0) and

Sw0(X
s, t0) are the initial porosity and water saturation in the reference configuration.

The total 1th Piola-Kirchhoff stress tensor P (Xs, t) results in an additive decomposition

into effective P ′(Xs, t) and water pressure parts using the Terzaghi’s principle in the form

P = P ′ − JsSwpw[F s]−T with P ′ = Jsσ′[F s]−T (68)

The mass balance equation of the mixture in material co-ordinates

Divs(V̄
s
+ NSwV̄

ws
) = 0 (69)

is obtained in similar way multiplying the spatial equation (52) by the jacobian Js and

making use of the Piola Identity applied to the velocities vs and nSwvws

DivsV̄
s
= Js divvs Divs(NSW V̄

ws
) = Js div(nSwvws) (70)

where V̄
ws

is the Piola Transform of vws. N(Xs, t) and SW (Xs, t) are the pull back of

n(x, t) and Sw(x, t), respectively, with n(x, t) = n(x(Xs), t) = N(Xs, t) and Sw(x, t) =

Sw(x(Xs), t) = SW (Xs, t).
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3.3 Constitutive Equation for the Solid Skeleton

The elasto-plastic behaviour of the solid skeleton at finite strain is based on the multi-

plicative decomposition of the deformation gradient F s(Xs, t) into an elastic and plastic

part originally proposed by Lee [15] for crystals

F s = F seF sp. (71)

This decomposition states the existence of a intermediate stress free configuration (Fig-

ure 3) and its validity has been suggested for cohesive-frictional soils by Nemat-Nasser

[16], where the plastic part of the deformation gradient is viewed as an internal variable

related to the amount of slipping, crushing, yielding and, for plate like particles, plastic

bending of the granules comprising the soil.

In this section the superscript ’ s ’ will be neglected and the symbol ’ · ’ will be used for

the material time derivative with respect to the solid skeleton instead of Ds/Dt (as well

as in the remaining part of the paper).

Figure 3: Illustration of the local multiplicative decomposition of the solid deformation

gradient F .

The spatial formulation is used in this section. The treatment of the isotropic elasto-

plastic behaviour for the solid skeleton based on the product formula algorithm proposed

for the single phase material by Simo [17] is now briefly summarised.

The effective Kirchhoff stress tensor τ ′(x, t) = Jσ′(x, t) and the logarithmic principal

values of the elastic left Cauchy-Green strain tensor εA(x, t) are used. In the present

sub-section also the prime ’ ′ ’ for the effective stress tensor will be neglected. The yield

function restricting the stress state is developed in the form of von Mises and Drucker-

Prager [18], to take into account the behaviour of clays under undrained conditions and the

dilatant/contractant behaviour of dense or loose sands, respectively. The return mapping

and the consistent tangent operator is developed, soloving the singular behaviour of the
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Drucker-Prager yield surface in the zone of the apex using the concept of multisurface

plasticity.

The elastic behaviour of the solid skeleton is assumed to be governed by an hyperelastic

free energy ψ(x, t) function in the form

ψ = ψ(be, ξ) (72)

dependent of the elastic left Cauchy-Green strain tensor, be(x, t) = F e · [F e]−1, and the

internal strain like variable, ξ(x, t), equivalent plastic strain. The second law of thermo-

dynamic yields, under the restriction of isotropy, the constitutive relations

τ = 2
∂ψ

∂be · be q = −∂ψ

∂ξ
(73)

and the remaining dissipation inequality

−1

2
τ :

[
[Lvb

e] · [be]−1
]

+ qξ̇ ≥ 0 (74)

where Lvb
e = ḃ

e − l · be − be · lT is the Lie derivative of the elastic left Cauchy-Green

strain tensor be(x, t).

The evolution equations for the rate terms of the dissipation inequality (74) can be derived

from the postulate of the maximum plastic dissipation in the case of associative flow rules

[17]

−1

2
Lvb

e = γ̇
∂F

∂τ
be (75)

ξ̇ = γ̇
∂F

∂q
(76)

subjected to the classical loading-unloading conditions in Kuhn-Tucker form

γ̇ ≥ 0, F = F (τ , q) ≤ 0, γ̇F = 0 (77)

where γ̇ is the plastic multiplier and F = F (τ , q) the isotropic yield function.

For the computation classical elastoplastic models have been selected. In particular, the

Drucker-Prager and the von Mises yield functions with linear isotropic hardening have

been used in the form, respectively,

F (p, s, ξ) = 3αF p + ‖s‖ − βF

√
2

3
[c0 + hξ] (78)

and

F (s, ξ) = ‖s‖ −
√

2

3
[σ0 + hξ] (79)
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in which p = 1
3
[τ : 1] is the mean effective Kirchhoff pressure, ‖s‖ is the L2 norm of

the deviator effective Kirchhoff stress tensor τ , c0 is the initial apparent cohesion of the

Drucker-Prager model, α and β are two parameter related to the friction angle φ of the

soil

αF = 2

√
2
3
sin φ

3− sin φ
βF =

6 cos φ

3− sin φ
(80)

h the hardening/softening modulus and σ0 is the yield stress in the von Mises law.

3.4 Algorithmic Formulation for Elastoplasticity

The problem of the calculation of be, ξ and τ is solved by an operator split into an elastic

predictor and plastic corrector [19]. The calculation of the trial elastic state (•)tr is based

on the freezing of the plastic flow at time tn+1. The [be
n+1]

tr is hence the push forward of

be
n by means of the relative deformation gradient fn+1 =

∂χn+1

∂xn
= 1 + grad∆un+1, i.e.

[be
n+1]

tr = fn+1b
e
nf

T
n+1 (81)

with ξtr
n+1 = ξn , where ∆un+1 is the incremental displacement in the time interval

[tn, tn+1].

The same value can also be obtained from the reference configuration by the push forward

of [Cp
n]−1 by means of F n+1

[be
n+1]

tr = F n+1[C
p
n]−1F T

n+1 (82)

The corresponding trial elastic stress is obtained from the hyperelastic free energy function

as

τ tr
n+1 = 2

[
∂ψ

∂be · be

]

be
=[be

n+1]
tr

= 2
∂ψ

∂be

∣∣∣∣∣
be

=[be

n+1]
tr

· [be
n+1]

tr (83)

If this trial state is admissible, it does not violate the inequality F tr
n+1 = F (τ tr

n+1, q
tr
n+1) ≤ 0

and the stress state is hence already computed.

Otherwise the return mapping or plastic corrector algorithm is applied to satisfy the

condition Fn+1 = 0. Since during this phase the spatial position χ = χtr is held fixed and

thus l ≡ 0, the evolution equation for the elastic left Cauchy-Green strain tensor becomes

Lvb
e = −2γ̇

∂F

∂τ
be with Lvb

e

∣∣∣∣∣
χ=χtr

= ḃ
e

(84)

This first order differential equation is solved by the product formula algorithm (exponen-

tial approximation of the solution, having 1th order accuracy) during the time interval

[tn, tn+1] [17]

be
n+1

∼= exp

(
−2∆γ

∂F

∂τ

) ∣∣∣∣∣
n+1

· [be
n+1]

tr. (85)
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It should now be noted that be
n+1 commutes with τ n+1 due to the assumption of isotropy

and that [be
n+1]

tr and its principal axis are held fixed during the return mapping; the

spectral decomposition of [be
n+1]

tr, be
n+1 and τ n+1 can hence be written with the same

eigenbases

[be]tr =
3∑

A=1

[λtr
Ae]

2ntr
A ⊗ ntr

A be =
3∑

A=1

[λAe]
2ntr

A ⊗ ntr
A

τ =
3∑

A=1

τAntr
A ⊗ ntr

A

(86)

Using (86) the product formula (85) can be written in principal values in the form

[λAe]
2 = exp

(
−2∆γ

∂F

∂τA

) ∣∣∣∣
n+1

[λtr
Ae]

2. (87)

Taking the logarithm of (87) the following important additive decomposition of the log

strain measure in elastic and plastic parts is obtained [17]

εtr
Aen+1

= εAen+1 + ∆γ
∂F

∂τA

∣∣∣∣∣
n+1

(88)

in which εAe are the principal logarithmic elastic strain εAe = lnλA. This is a very im-

portant consequence of the utilised model because it permits to use the return mapping

of the elasto-plasticity developed for the linear case [19]. From the knowledge of ∆γ the

equivalent plastic strain is computed by the backward Euler integration of eq. (76)

ξn+1
∼= ξn + ∆γ

∂F

∂q

∣∣∣∣∣
n+1

(89)

The principal Kirchhoff stress components are then computed by the hyperelastic consti-

tutive law

τA = 2λAe
∂ψ

∂λAe

=
∂ψ

∂εAe

(90)

where the free energy ψ = ψ̂(εAe, ξ) is now written as function of the principal elas-

tic logarithmic strain components and the equivalent plastic strain (for isotropic linear

hardening)

ψ̂ =
L

2
[ε1e + ε2e + ε3e]

2 + G[ε2
1e + ε2

2e + ε2
3e] +

1

2
hξ2 (91)

where L and G are the elastic Lame’ constants and h the linear hardening modulus.

The strain energy function W = ρs0ψ̂ of the solid skeleton associated to ψ̂ and used in this

paper is the original one proposed by Simo [17]. It is valid only for moderate large elastic
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strain because it does not satisfy the convexity condition for very large elastic strains [20]

but it has been used here because the soils behaves with moderate elastic strains. Some

useful remarks related to the use of this strain energy function can be found e.g. in [21],

in which it has been shown that the finite element computation loses stability at finite

elastic strains.

4 Weak Form: Variational Approach

The weak form of the spatial governing equations presented in the previous section is now

derived obtaining the variational equations formally equivalent to the initial boundary

value problem given by the governing equation and the boundary conditions. This means

that the governing equations (52) and (59) are multiplied by independent weighting func-

tions that vanish on the boundary in which Dirichlet boundary conditions are applied and

are then integrated over the spatial domain, B, with boundary, ∂B. The linear momentum

balance equation of the binary porous media (59) is hence weighted on the domain by the

test function δus corresponding to the solid displacement (or virtual displacement) in the

form ∫

B

[ divσ + ρg] · δusdv = 0 ∀δus (92)

Applying partial integration and the Green’s Theorem in the form (e.g. [14], [20])
∫

B

divσ · δusdv = −
∫

B

σ : gradδusdv +

∫

∂B

t̄ · δusds (93)

to the divergence part of (92) and taking into account the boundary conditions, this

equation is transformed into the weak form

−
∫

B

[σ′ − Swpw1] : gradδusdv+

+

∫

B

ρg · δusdv +

∫

∂B

t̄ · δusds = 0 ∀δus

(94)

where the effective stress principle (61) has been introduced. Using the relation divδus =

gradδus : 1, the previous weak form is transformed in

−
∫

B

σ′ : gradδusdv +

∫

B

Swpw divδusdv+

+

∫

B

ρg · δusdv +

∫

∂B

t̄ · δusds = 0 ∀δus

(95)
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The weak form of the mixture mass balance equation (52) is obtained in a similar way,

introducing the Darcy’s law (63) and using the test function δpw corresponding to pw (or

virtual water pressure)

∫

B

divvsδpwdv +

∫

B

div

(
kkrw

µw
· [− gradpw + ρwg]

)
δpwdv = 0 ∀δpw (96)

Applying the Green’s Theorem to the underlined term of the previous equation, the

following is obtained,

∫

B

divvsδpwdv +

∫

B

[
kkrw

µw
· [ gradpw − ρwg]

]
· gradδpwdv+

+

∫

∂B

qwδpwds = 0 ∀δpw

(97)

where qw(x, t) is the water flow draining through the surface ∂B.

Remarks: it can be observed that the weak forms (95) and (97) are very similar to those of

the geometrically linear theory, e.g. [6], by substituting the deformed integration domain,

B, with the undeformed one, B0. Moreover, in the small strain theory divvs = ε̇ : 1 where

ε is the small strain tensor of the solid skeleton, while in finite strain divvs = J̇s/Js. In

small strain theory the additive decomposition of the strain tensor ε in elastic and plastic

parts is also possible, thus rendering the computation of the constitutive tangent operator

in the linearisation of the weak form particularly easy.

5 Time Discretisation

Time integration of the weak form of the mass balance equation (97) over a finite time

step ∆t = tn+1 − tn is necessary because of the time dependent term divvs.

The Generalised Trapezoidal Method is here used, as shown for instance in [6]. Because

of the dependency of the integration domain from the time, we rewrite the weak forms

(95) and (97) with respect to the undeformed domain as follows:

∫

B0

[τ ′ − JsSwpw1] : gradδusdV −
∫

B0

ρ0g · δusdV−

−
∫

∂B0

T̄ · δusdA = 0 ∀δus

(98)
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∫

B0

Js divvsδpwdV +

∫

B0

[
Js kkrw

µw
· [ gradpw − ρwg]

]
· gradδpwdV +

+

∫

∂B0

QwδpwdA = 0 ∀δpw

(99)

where τ ′ is the modified effective Kirchhoff stress tensor and T̄ = P · N and Qw =

NSW V̄
ws · N are, respectively, the traction vector and the water flow computed with

respect to the undeformed configuration. The form of eqs. (98) and (99) is also useful

for the subsequent linearisation, because it will be easily performed with respect to the

undeformed (fixed) domain.

Equation (99) is now rewritten at time tn+1 using the relationships

J̇s
n+β =

Js
n+1 − Js

n

∆t
(100)

(•)n+β = [1− β](•)n + β(•)n+1 = (•)n + β[(•)n+1 − (•)n] (101)

with β = (0, 1], obtaining

∫

B0

[Js
n+1 − Js

n]δpwdV −∆t

∫

B0

[JsvD · gradδpw]n+βdV +

+∆t

∫

∂B0

Qw
n+βδpwdA = 0 ∀δpw

(102)

where vD = −kkrw

µw · ( gradpw − ρwg) is the Darcy’s velocity of the water.

The weak form of the linear momentum balance equation (98) is directly written at time

tn+1 because it is time independent

∫

B0

[
[τ ′ − JsSwpw1] : gradδus

]

n+1

dV −
∫

B0

ρ0n+1g · δusdV−

−
∫

∂B0

T̄ n+1 · δusdA = 0 ∀δus

(103)
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Linearised analysis of accuracy and stability suggest the use of β ≥ 1
2
. In the examples

section, implicit one-step time integration has been performed (β = 1).

The weak forms (102) and (103) represent a non-linear coupled equations system where

the non linearities are introduced by the finite kinematics and the constitutive laws.

6 Consistent Linearisation

The non linear equation system (102, 103) can be written in the following compact form

G(χs, η) = 0, where η = [δus, δp
w]T . (104)

For its numerical solution iterative methods have to be employed and the linearisation at

χ̄s is hence necessary

G(χ̄s,η, ∆u) ∼= G(χ̄s, η) + DG(χ̄s,η) ·∆u ∼= 0 (105)

where ∆u = [∆us, ∆pw]T and DG ·∆u = d
dα

G(χ̄s + α∆u)|α=0 is the directional deriva-

tive or Gateaux derivative of G at χ̄s in the direction of ∆u (e.g. [14], [22] for single

phase material). Since the equation system G is composed of the weak form of the linear

momentum balance equation (GLBE) and of mass balance equation (GMBE), then

DG ·∆u =




DGLBE ·∆us + DGLBE ·∆pw

DGMBE ·∆us + DGMBE ·∆pw


 . (106)

Using the symbol (•)k+1
n+1 to indicate the current iteration in the current time step, the

linearisation on the configuration (•)k
n+1 is written as

DGk
n+1 ·∆uk+1

n+1 = −Gk
n+1 (107)

and the solution vector u = [us, p
w]T is then updated by the incremental relationship

uk+1
n+1 = uk

n+1 + ∆uk+1
n+1 (108)

For an efficient numerical performance of the scheme (107) the consistent linearisation is

applied [22] in which the linearisation of the integrated constitutive equation (86) plays

a central role (this concept was first pointed out in [23] for the geometrically linear case).

The linearisation of eqs. (102) and (103), performed in the undeformed configuration, B0,

and then pushed forward in the deformed configuration, B, gives the following result:
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• for the linear momentum balance equation

∫

B

[ gradδus : cep : sym( grad∆us) + σ′ : gradT δus grad∆us]dv+

+

∫

B

Swpw gradδus : [ gradT ∆us − div∆us1]dv−

−
∫

B

ρwSwδus · g div∆usdv −
∫

B

[pw ∂Sw

∂pw
+ Sw] divδus∆pwdv

(109)

• for the mass balance equation

∫

B

δpw div∆usdv + β∆t

∫

B

kkrw

µw
gradδpw · grad∆pwdv+

+β∆t

∫

B

gradδpw ·
[[1− n

k

∂k

∂n
+ 1

]kkrw

µw
[ gradpw − ρwg] div∆us

]
dv−

−β∆t

∫

B

gradδpw ·
[
2kkrw

µw
sym( grad∆us) · gradpw

]
dv+

+β∆t

∫

B

gradδpw ·
[
kkrw

µw
ρw grad∆us · g

]
dv+

+β∆t

∫

B

k

µw

∂krw

∂pw
gradpw · gradδpw∆pwdv

(110)

In the directional derivative DGLBE ·∆us the term

∫

B

[ gradδus : cep : sym( grad∆us) + σ′ : gradT δus grad∆us]dv (111)

contains cep, the spatial constitutive operator following the linearisation of (86)

cep
n+1 =

3∑
A=1

3∑
B=1

aep
ABn+1

[ntr
A ⊗ ntr

A ]⊗ [ntr
B ⊗ ntr

B ]+

+2
3∑

A=1

τAn+1c
tr(A)
n+1

(112)
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It is useful to remark that in (112) only the second order tensor aep = ∂τA/∂εtr
B depends

on the specific model of plasticity and the structure of the return mapping algorithm in

principal stretches, while the tensors c
tr(A)
n+1 and ntr

A ⊗ ntr
A are independent of the specific

plastic model used. Moreover it is easy to proof that the moduli aep have a form identical

to the algorithmic elastoplastic tangent moduli of the infinitesimal theory [17]. The ex-

pression for c
tr(A)
n+1 can obtained by linearisation of the eigenbases dyadic ntr

A ⊗ ntr
A in the

spatial setting

c
tr(A)
n+1 =

∂[ntr
A ⊗ ntr

A ]

∂g
(113)

where g is the spatial metric, or by pull back [14] of ntr
A ⊗ntr

A , subsequent to linearisation

in the material setting using the relations e.g. of [24] and then by push forward of the

linearisation in spatial setting. The expression for the 2-D problem is derived in the next

subsection.

6.1 Drucker-Prager Model with Linear Isotropic Hardening: Return Map-

ping and Algorithmic Tangent Moduli with Apex Solution

Originally the return mapping algorithm was developed for J2-plasticity. Extension of

this method to the Drucker-Prager model can be made taking into account a special

treatment of the corner region using the concept of multi-surface plasticity, as developed

in [25] in case of perfect plasticity and deviatoric non-associative plasticity. In this paper

the return mapping and the algorithmic tangent moduli will be obtained for isotropic

linear hardening/softening and volumetric-deviatoric non-associative plasticity. To this

end, a plastic potential function Q(p, s, ξ) similar to (78) is defined, where the dilatancy

angle ϕ is introduced.

The key idea is based on the fact that the return mapping algorithm developed without any

special treatment of the apex region leads to physically meaningless results (i.e. ||sn+1|| <
0) for a certain range of trial elastic stress. Once the plastic consistency parameter ∆γn+1

is computed by the return mapping, this happens when the following relationship obtained

from the updated deviatoric components of the stress tensor

||sn+1|| = ||str
n+1|| − 2G∆γn+1 ≥ 0 (114)

is violated. Without going into details, violation of inequality (114) and the consistency

condition Fn+1 = F (τ n+1, ξn+1) = 0 yields the inequality for which the return mapping

needs to be modified, i.e.:

ptr
n+1 >

3αQK

2G
||str

n+1||+
βF

√
2
3

αF

[ ||str
n+1||
2G

h
√

1 + 3α2
Q + cn

]
(115)
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where the indexes F and Q of α and β are referred to the yield and the plastic potential

surface, respectively.

In this case, the stress region characterised by (115) may be treated like a corner region in

non-smooth multi-surface plasticity. To this end a second yield condition F2 is introduced

in addition to (78) as

F2(p, ξ) = 3αF p− βF

√
2

3
[c0 + hξ] (116)

which is derived from (78) with the condition ||s|| = 0 and the plastic evolution equations

need to be modified following the Koiter’s generalisation introducing a second plastic

consistency parameter γ̇2 related to F2. Hence the evolution eqs. (75) will be substituted

by the generalised plastic evolution laws

Lvb
e = −2

∑
i

γ̇i
∂Fi

∂τ
be, i = 1, 2 (117)

ξ̇ =
∑

i

γ̇i
∂Fi

∂q
, i = 1, 2 (118)

The algorithmic tangent moduli are computed by linearisation of the computed Kirchhoff

stress tensor. Two tangent moduli are obtained, the first one valid for the stress state where

the Drucker-Prager model is satisfied, i.e. for the stress for which eq. (115) is violated, the

second one for the stress state which belongs to the corner region. The computed moduli

for the two cases are respectively:

• for the non corner zone:

aep
n+1 = c1K1⊗ 1 + 2G

[
I − 1

3
1⊗ 1

] [
1− 2G∆γn+1

||str
n+1||

]
−

−6αQKG

c2

1⊗ ntr
n+1 −

6αF KG

c2

ntr
n+1 ⊗ 1−

−4G2

[
1

c2

− ∆γn+1

||str
n+1||

]
ntr

n+1 ⊗ ntr
n+1

(119)

where the coefficients c1 and c2 are

c1 =

[
1− 9αF αQK

c2

]
, c2 = 9αF αQK + 2G + βF h

√
2

3
[1 + 3α2

Q]
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• for the corner zone:

aep
n+1 =

[
K1⊗ 1 +

K

2αQG(∆γ1 + ∆γ2)n+1

1⊗ str
n+1

]
c3 (120)

where the coefficient c3 is

c3 =
αQβF

√
2
3
h[∆γ1 + ∆γ2]n+1

3αF K
√

∆γ2
1n+1 + 3α2

Q[∆γ1 + ∆γ2]2n+1 + αQβF

√
2
3
h[∆γ1 + ∆γ2]n+1

It can be observed that the moduli (120) are non symmetric even for associated plastic-

ity, while (119) are non symmetric only for non associated plasticity. In case of perfect

plasticity (h = 0) the coefficient c3 and hence the moduli of eq. (120) vanish. In case

of geometrically non-linear analysis, this implies that only the geometrical part of the

stiffness matrix is activated. Moreover, the moduli (120) are reduced to those of the von

Mises model by selecting α = 0 and β = 1.

7 Finite Element Discretisation in Space

The suitable spatial Finite Element formulation is derived by applying the well known

Galerkin procedure, in which the weighting functions are approximated by the same shape

functions used to approximate the driving variables (isoparametric finite elements). This

means that the geometry, Xs, the current configuration, x, the displacement field, us,

the water pressure, pw, the incremental generalised displacement, ∆u = [∆us, ∆pw]T ,

and the variations, η = [δus, δp
w]T , are interpolated within a finite element by the same

type of functions. In the present setting different shape functions are chosen for quantities

associated respectively to the solid and the fluid, thus satisfying the LBB condition for the

locally undrained case. Standard procedures have been applied, following any text books

on FEM. With respect to the small strain case, the discretisation of the spatial form of the

linearised system of equations is made taking into account that each quantity is referred

to the spatial coordinates, x, instead of the coordinates of the undeformed configuration,

Xs. (In the present formulation quadrilateral Q2Q1 or S2Q1 elements have been used for

the Liakopoulos’ test and the localisation example, respectively). The solid displacement

u(x, t) and the water pressure pw(x, t) are hence expressed in the whole domain by global

shape function matrices Nu(x) and Nw(x) and the nodal value vectors ū(t) and p̄(t)

u = Nuū, pw = Nwp̄. (121)

The linearised system of equations (107) in matrix form can be expressed as
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[
KT + Kgeom.

sw −cswQsw

Qws − β∆tQgeom.
sw β∆tH

] [
∆ū

∆p̄

]
= −

[
Gu

Gp

]
(122)

which is non symmetric. Owing to the strong coupling between the mechanical and the

pore fluid problem a monolithic solution of (122) is preferred using a Newton scheme. As

far as the numerical performance of the proposed implementation is concerned, it can be

outlined that quadratic rate of convergence for the global Newton iteration in each step

has been obtained in the computation. A typical rate is reported is Table 1.

INCREMENT NO.: 50

Iteration n.: 0 Residuum Norm: 1.53800E-03

Iteration n.: 1 Residuum Norm: 1.18553E+01

Iteration n.: 2 Residuum Norm: 1.40621E+01

Iteration n.: 3 Residuum Norm: 1.23343E+00

Iteration n.: 4 Residuum Norm: 6.19783E-02

Iteration n.: 5 Residuum Norm: 2.09049E-05

Iteration n.: 6 Residuum Norm: 6.28546E-09

INCREMENT NO.: 75

Iteration n.: 0 Residuum Norm: 1.59534E-03

Iteration n.: 1 Residuum Norm: 9.82091E+00

Iteration n.: 2 Residuum Norm: 1.42705E+01

Iteration n.: 3 Residuum Norm: 1.41873E+00

Iteration n.: 4 Residuum Norm: 6.81044E-02

Iteration n.: 5 Residuum Norm: 2.85757E-05

Iteration n.: 6 Residuum Norm: 8.62292E-09

Table 1: Rate of convergence for the implemented Newton-Rapson scheme (from the

second example, using Drucker-Prager law with ϕ = 50).

8 Numerical Examples

It is difficult to choose appropriate tests to validate the model developed in the previous

sections and its implementation in the computer code. Indeed there are no analytical so-

lution for this type of coupled problems (to the author’s knowledge), where deformations

of the solid skeleton are studied with saturated-unsaturated flow of mass transfer. There

are also very few documented laboratory experiments. One of these is the experiment

conducted by Liakopoulos [26] on the isothermal drainage of water from a vertical column

of water saturated sand (Figure 4). A column of perspex, 1 meter high, was packed by Del

Monte sand and instrumented to measure the moisture tension at several points along the

column. Before starting the experiment (t < 0) water was continuously added from the
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top and was allowed to drain freely at the bottom through a filter. The flow was carefully

regulated until the tensiometers read zero pore pressure. At t = 0 the water supply was

ceased and the tensiometers reading were recorded. Only the porosity and the hydraulic

properties of Del Monte sand were measured by [26] by an independent set of experiments,

while the mechanical parameters are those of [27], where the Liakopoulos’ test with

a geometrically linear model is studied. The material parameters and the experimen-

tal constitutive laws for Sw(pc) and krw(Sw) used in the computation are listed in Table 2.

1.0 m

0.1 m

impervious and
 constrained
boundary

open to flow

constrained
boundary
free water outflow

Figure 4: Scheme of the Liakopoulos’ test.

Porosity n = 0.2975

Isotropic permeability k = 4.3 · 10−6m/s

Solid grain density ρs = 2000kg/m3

Water density ρw = 1000kg/m3

Gravity acceleration g = 9.81m/s2

Water saturation Sw = 1.0− 1.9722 · 1011pc2.4279

Relative permeability for water krw = 1.0− 2.207(1− Sw)1.0121

Solid bulk modulus [27] K = 2166.77kN/m2

Solid shear modulus [27] G = 464.29kN/m2

Table 2: Material parameters used in the computation of the Liakopoulos’ test.

The column is discretised with 10 Q2Q1 finite elements for the solid displacements and

the water pressure, respectively (i.e. 9 nodes for the solid, 4 nodes for the fluid). The
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Figure 5: Water pressure vs. column height.

upper and lower boundaries are drained (water pressure is hence assumed to be at

atmospheric value), while the other boundaries are impervious. Horizontal displacements

are constrained on the lateral surfaces while the bottom surface is also vertically

constrained. Zero initial conditions are assumed and gravity acceleration is considered

during the computation, since the gravity load is the driven force of the experiment. The

hyperelastic constitutive law of eq.(91) is utilized for the solid skeleton. The experiment

reveals the desaturation of the column from the top to the bottom surface. This behaviour

is well described from the model, as it can be observed in Figure 5, where only capillary

pressures (negative water pressures) appear.

The second example deals with the analysis of a representative square domain of water

saturated porous material loaded by a rigid footing (Figure 6).

Figure 6: Rigid footing on a square domain of porous elastoplastic material.

This example was solved in [28] using the linear theory. The BVP is now solved numer-
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ically using the formulation developed in the previous sections. Plain strain conditions

are assumed. The homogeneous soil domain has side length of l = 10m, with the rigid

footing spanning over 5m at the right part of the top surface. On the boundary, the

horizontal and vertical displacements are constrained respectively on the left and bottom

surface. Drainage of the water is allowed only through the unloaded part of the top sur-

face of the domain. The solid skeleton is assumed to obey the elastoplastic von Mises or

the Drucker-Prager constitutive model, both with isotropic linear softening behaviour as

a phenomenological description of damage effects. The material parameters used in the

computation are listed in Table 3.

Solid bulk modulus K = 8333kN/m2

Solid shear modulus G = 3486kN/m2

initial yield stress y0 = 100kN/m2

linear softening modulus h = −10kN/m2

initial apparent cohesion c0 = 100kN/m2

angle of internal friction φ = 200

angle of dilatancy ϕ = −100, 00, +50, +100

isotropic permeability k = 0.0001m/s

Solid grain density ρs = 2000kg/m3

Water density ρw = 1000kg/m3

gravity acceleration g = 9.81m/s2

Water saturation Sw = 1.0− 1.9722 · 1011pc2.4279

Relative permeability for water krw = 1.0− 2.207(1− Sw)1.0121

Table 3: Material parameters used in the computation of the localisation example.

The von Mises law has been selected as a reference material law used to test the implemen-

tation and to describe qualitatively the mechanical behaviour of clays under undrained

conditions, while the Drucker-Prager law has been chosen to simulate the behaviour of

dilatant/contractant geomaterials such as dense and loose sands, respectively. The load-

ing is applied quasi-statically to the rigid footing by displacement control with a constant

vertical velocity of 5e− 3m/s until the maximum displacement is obtained. The domain

has been discretised using 20 x 20 S2Q1 elements for the solid and the fluid mesh (i.e. 8

nodes for the solid, 4 nodes for the fluid).

Figure 7 shows the distribution of the equivalent plastic strain at the end of the load

history (0.5m in this case) on the deformed configuration using the von Mises material

model. No magnification of the displacements has been used in this and all the following

figures. The plastic zone indicates the pronounced accumulation of inelastic strains in a

narrow band, while the deformed configuration outlines the classical slip of a part of the

domain on the other. Figure 8 shows the excess water pressures at the end of the load

history (values expressed in kPa), where only positive pressure values can be observed

due to the compressive load in a solid skeleton with isochoric plastic flow.
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VAR1
1.445
1.252
1.059
0.867
0.674
0.482
0.289
0.096

Figure 7: Equivalent plastic strain contour using von Mises law.

ZDOF
39.751
34.782
29.813
24.844
19.876
14.907

9.938
4.969

Figure 8: Excess water pressure contour using von Mises law (kPa).

32



The Erwin Stein Award

The effect of the plastic dilatancy/contractancy is shown by analysing the square panel

using the Drucker-Prager material law. The sample has been solved using different values

of the angle of dilatancy: 00, +50, +100 and −100. In particular, Figures 9 and 10 show

the equivalent plastic strain and the excess water pressure distribution at the end of the

load history in case of zero dilatancy (which means isochoric plastic flow). The resulting

shear band and the deformation pattern are hence very similar to those obtained using

the von Mises material law, as it can be observed by comparison with Figures 7 and 8.

Increasing the value of the angle of dilatancy (ϕ = 50 and 100, see Figures 11 and 12,

respectively), an increase of the horizontal displacement of the right side of the panel, due

to the increase of volumetric plastic strain with dilatancy, can be observed. The opposite

behaviour appears in case of negative value of the dilatancy angle, see Figure 13, where

the equivalent plastic strain contour in case of dilatancy angle of −100 is depicted.

The effect of the plastic dilatancy/contractany is evidenced also in the contour of the

water pressures. In fact the variation of the porosity with the deformation of the medium,

see eq.(49) and the localisation of the dilatant plastic strains imply the presence of

negative water pressure, with the lowest values inside the plastic zones (Figures 14 and

15), as opposed to the case of contractant plastic flow (Figure 16). The presence of

negative pressures is not surprising. In fact, it was experimentally observed at localisation

by [1] and [2] during biaxial tests of globally undrained dense sands under imposed

displacements. In particular, the value of −80 and −91kPa was measured by the two

authors, respectively. At those pressures, partially saturated condition due to cavitation

of the pore water was observed, which means the presence of the vapour phase separated

from the liquid phase by a meniscus. The values of negative water pressures below the

cavitation pressure computed in the numerical example of Figure 15 suggest the presence

of cavitation phenomenon inside shear band and close to it.

The dilatant behaviour of the used constitutive model for the solid skeleton is shown

also in Figure 17 where the contour of the porosity for the case of Drucker-Prager with

dilatant angle of 100 and friction angle of 200 is depicted. It can be observed that the

porosity increase only inside the shear band, while decrease outside it (the initial value

at t = 0 was 0.3). Figure 18 shows the contour of the water saturation for the same

example, where in particular it can be observed the desaturation of the zones occupied

by the shear band and of that close to it.

The effect of the plastic dilatancy/contractany is evidenced also in Figures 19 and 20,

where water velocity in case of dilatant and contractant material is shown. Different

directions of the fluid can be noted, flowing into the band in case of dilatant material,

out of it in the other case.

Remarks: negative water pressures start from the top surface, close to the left corner

of the foundation, where the dilatant shear band first appears, and propagate inside

the plastic zone following the evolution of the shear band. Then, they propagate also

outside the band due to the filtration process generated by the high pressure gradient in

conjunction with the quasi-static process, until they occupy almost all the domain, as it
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VAR1
0.349
0.305
0.262
0.218
0.174
0.131
0.087
0.044

Figure 9: Equivalent plastic strain contour using Drucker-Prager law with ϕ = 00.

ZDOF
92.925
80.535
68.145
55.755
43.365
30.975
18.585

6.195

Figure 10: Excess water pressure contour using Drucker-Prager law with ϕ = 00 (kPa).
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VAR1
1.332
1.166
0.999
0.833
0.666
0.500
0.333
0.167

Figure 11: Equivalent plastic strain contour using Drucker-Prager law with ϕ = 50.

VAR1
1.198
1.048
0.899
0.749
0.599
0.449
0.300
0.150

Figure 12: Equivalent plastic strain contour using Drucker-Prager law with ϕ = 100.
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can be observed in Figure 15. This phenomenon is dependent on the value of the time step:

decreasing its value, a reduced zone with negative water pressure has been observed, but

it is always present. The localisation of the negative pressures could be probably easily

captured in the dynamic case, as shown in ([7], [29], [30]) using a geometrically linear

model.

Conclusions

This paper shows a mathematical model and the related finite element discretisation

of quasi-static and isothermal inelastic saturated and partially geomaterials, assuming

incompressible constituents at microscopic level. The governing equations are derived in

material and spatial formulation. The elasto-plastic behaviour of the solid skeleton is based

on the multiplicative decomposition of the deformation gradient in an elastic and plastic

part and is developed in spatial setting. The solid effective stress is hyperelastic or limited

by the von Mises or the Drucker-Prager yield criterion with isotropic linear softening. A

particular apex formulation is developed for the later case. The water behaves following

Darcy’s law. Consistent linearisation of the non-linear equation system and finite element

formulation are derived. Numerical results of this research in progress on large elastic or

inelastic strains in saturated and partially saturated porous media are shown.
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Figure 14: Water pressure contour using Drucker-Prager law with ϕ = 50 (kPa).
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Figure 15: Water pressure contour using Drucker-Prager law with ϕ = 100 (kPa).
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Figure 17: Porosity contour using Drucker-Prager law with ϕ = 100.
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Figure 18: Water saturation contour using Drucker-Prager law with ϕ = 100.
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Figure 19: Water velocity close the shear band using Drucker-Prager law with ϕ = 100.
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0.085

Figure 20: Water velocity close the shear band using Drucker-Prager law with ϕ = −100.
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