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Non-prosoluble profinite groups with a rational probabilistic
zeta function

Eloisa Detomi and Andrea Lucchini

(Communicated by R. M. Guralnick)

Abstract. We discuss finiteness properties of a profinite group G whose probabilistic zeta
function Pg(s) is rational. In particular we prove that if Pg(s) is rational and G has a finite
number of non-alternating and non-abelian composition factors in a given composition series,
then G/Frat(G) is finite.

1 Introduction

To a finitely generated profinite group G we associate a formal Dirichlet series Pg(s),
defined as

PG(s):Z% where a,(G) == Y | ug(H).

nelN |G:H|=n

Here ug(H) denotes the M6bius function of the poset of open subgroups of G,
which is defined by recursion as follows: u;(G) =1 and ug(H) = — > g tg(K) if
H < G. We do not know whether the series Pg(s) converges (related questions are
discussed in [1], [6], [7] and [8]), however in this paper we just use the name ‘proba-
bilistic zeta function’ to indicate the inverse of Pg(s) in the ring of formal Dirichlet
series.

In [3] we conjectured that if Pg(s) is rational (i.e. if it is a quotient A(s)/B(s) with
A(s), B(s) Dirichlet polynomials with integer coefficients) then G/Frat(G) is a finite
group, and we proved this conjecture in the particular case of prosoluble groups. Our
aim is now to generalize this result to a wider class of profinite groups.

Let {G;};.n be a countable descending series of open normal subgroups with the
properties that G; = G, ﬂieN G; =1 and G;/G;y is a chief factor of G for each
i € N. As explained in [1], to each chief factor G;/G;.; of G we can associate a Di-
richlet polynomial P;(s) such that Pg(s) can be written as an infinite formal product
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Pg(s) = H Pi(s).

ieN

In the prosolvable case the polynomials P;(s) are very simple; indeed P;(s) =1 —¢;/q;]
where ¢; = |G;/Giy1], ¢; is a non-negative integer and ¢; = 0 if and only if G;/ G, is
a Frattini factor, i.e. G;/G;y) < Frat(G/G;y1). In particular, if G is prosoluble, then
Pg(s) has an Euler factorization over the set of prime numbers and, given that Pg(s)
is rational, each Euler factor is rational and n(G) is finite (where 7(G) is the set of
primes involved in the factorization of the indices of the open subgroups of G).
Working on each Euler factor we were able to prove that if Pg(s) is rational, then
P;(s) =1 for all but a finite number of i € N; equivalently almost every chief factor
G;/ Gy is a Frattini factor, and this implies that G/Frat(G) is finite.

Unfortunately, when G is not prosoluble there is no such nice Euler factorization
of Pg(s) and in addition the factors P;(s) are not such simple polynomials. So, even
the first natural question, to deduce the finiteness of 7(G) from the rationality of
Pg(s), seems to be a hard problem for non-prosoluble groups. However we do obtain
a kind of Euler factorization over the finite simple groups by collecting together, for
each simple group S, all factors P;(s) such that G;/G;;; is isomorphic to a direct
product of copies of S:

Pg(s) = H Es(s), where Eg(s) = H P;(s).
S simple /Gy = S"

At this point we have several unsolved problems: we do not know whether there
are finitely many Euler factors Eg(s); we cannot infer from the rationality of Pg(s)
that each Euler factor Eg(s) is rational, indeed products of non-rational series might
be rational; even if an Euler factor Es(s) is rational, we cannot deduce from this that
there are only finitely many chief factors G;/ G+ = S" corresponding to it.

In this paper we analyze the case when, for all but a finite number of indices i,
the factors G;/G;. are either abelian or direct products of alternating groups. By a
close investigation of subgroup indices in alternating groups, and some new reduction
techniques we obtain the following result:

Main Result (Theorem 6.1). Let G be a finitely generated profinite group such that
almost every composition factor is cyclic or isomorphic to an alternating group. Then
Pg(s) is rational only if G/Frat(G) is a finite group (and in this case Pg(s) is a Di-
richlet polynomial).

2 Notation and preliminary results

Let G be a finitely generated profinite group and let {G;}, . be a fixed countable
descending series of open normal subgroups with the properties that G, = G,
ﬂiE]N G; =1 and G;/G,;, is a chief factor of G. For each i € N there exist a simple
group S; and a positive integer r; such that G;/G;1 = S;". Moreover, as described in
[1], for each 7 € N, a finite Dirichlet series
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Pi(s) = Zb"*” (2.1)

S
neN n

is associated with the chief factor G;/G;;1 and Pg(s) can be written as an infinite
formal product of the finite Dirichlet series P;(s):

Pg(s) = H Pi(s).

ieN

We recall some properties of the series P;(s). If S; is cyclic of prime order p;, then
Pi(s) =1—¢;/(p)’, where ¢; is the number of complements of G;/G;11 in G/Gjyy. It
is more difficult to compute the series P;(s) when S; is a non-abelian simple group. In
this case an important role is played by the group L; = G/Cg(G;/Giy1). This is a
monolithic primitive group whose unique minimal normal subgroup is isomorphic to
G;i/Gi1 = S/'. If n # |S;|", then the coefficient b; , in (2.1) depends only on L;; more
precisely we have

bi,n = Z ,UL’(H)
|Li:H|=n
Li=H soc(L;)

It is not easy to compute the coefficient b; , even for n # |S;|". Some help comes from
knowledge of the subgroup X; of AutS; induced by the conjugation action of the
normalizer in L; of a composition factor of the socle S/ (note that X; is an almost
simple group with socle isomorphic to S;). Let us describe some results that one can
apply in this context.

Let L be a monolithic primitive group with N =socL =T} x --- x T, and T; =~ S
a finite non-abelian simple group and let X be the subgroup of Aut S induced by the
conjugation action of N (7;) on 7). As described in [2, Section 1], L can be viewed
as a subgroup of X ! Sym(r), with N = soc L = S” contained in the base X" of this
wreath product. To compute the number

b, = Z u (H), forn#|S|",
|L:H|=n
L=HN

we have to consider only the subgroups with non-trivial Moébius function. If H is a
maximal subgroup of L, then y; (H) = —1. On the other hand y; (H) # 0 only if H
is an intersection of maximal subgroups of L. Now recall that if M is a maximal
supplement to N in L, then there are two possibilities: either M N N is a subdirect
product of S” (a maximal subgroup of diagonal type) or M NN =~ U" with U < S (a
maximal subgroup of product type); in the second case if 1 # U, then there exists a
maximal supplement Y of S in X such that M is conjugate to (¥ ¢ Sym(r)) N L. We
will say that n is a useful index of L if b, # 0 and there exists a prime p which divides
|S| but does not divide n.
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Lemma 2.1. If n is a useful index of L, then there exists a subgroup Y of X such that
X=YSandn=|X:Y|.

Proof. Since b, # 0, there exists H < Lwith HN = L, |L: H|=nand y; (H) # 0. In
particular A must be an intersection of maximal subgroups of L and all of these
maximal subgroups must be of product type, since otherwise |.S| would divide |L : M|
(and consequently 7) for some maximal subgroup M containing H. At this point it is
easy to check (see for example the proof of [2, Lemma 5]) that HNN =~ (Y NS)" for
a suitable supplement Y of S in X.

Lemma 2.2. Let u be a positive integer such that there exists a prime p which divides |S|
but does not divide u, and let U be the set of subgroups Y with index u in X and with
the property that YS = X. If U # & and every subgroup of U is maximal, then u” is a
useful index of L and b, < 0.

Proof. By the same arguments of the previous lemma, all subgroups M of L with
MN =L and |L : M| = u" are maximal; moreover, by [2, Lemma 2], the set .# of
maximal subgroups of L with these properties is non-empty. Hence b, = —|.#| < 0.

Given a prime ¢, we denote by v,(n) the largest integer r such that ¢” divides n. If ¢
divides |S|, we will say that a useful index n of L is g-useful if n is divisible by g.

Lemma 2.3. Assume that L is monolithic primitive group with soc L = (Alt(m))" and
that m is not a prime, and let q be the largest prime with ¢ < m. Define w as follows:

(")) rmeteo,

126 if m= 10,
10 if m=6.

w =

Then b,,r < 0 and w" is the smallest q-useful index in L.

Proof. First note there there exists a prime p which divides |Alt(m)| but does not di-
vide w. Indeed we take p = 3 if m = 6, p = 5 if m = 10, while in the other cases there
exists a prime p with m/2 < p < ¢ < m (e.g. by Nagura’s result [9]). Note that either
m =6 or X € {Alt(m),Sym(m)}. In any case, by Lemma 2.1 and Lemma 2.2, it suf-
fices to prove that

(1) X contains a supplement Y of S with |X : Y| = w, and

(2) if U is a supplement of S in X with index |X : U| at most w and a multiple of ¢,
then |X : U| = w and U is a maximal subgroup.

These statements can easily be verified when m € {6, 10}, so assume that m # 6, 10.
First note that given a subset A = Q = {I,...,m} of size |A| = ¢ — 1, the subgroup
Y = (Sym(A) x Sym(Q\A)) N X is a maximal subgroup with index w in X. Now let
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U be a supplement of S in X with index x = |X : U|, where ¢ divides x and x < w.
Since

m
x<w<
<m—q+2)

and m — ¢ + 2 < m/2, then by [4, Theorem 5.2 A, B| one of the following holds.
(a) There exists A = {1,...,m} such that

[Al=k<m—q+2 and X(A)SUSX{A}

Considering the indices we get that x, and hence ¢, divides m!/(m — k)!. Since

m/2 < g < m, we have v,(m!) = 1, so that v,((m — k)!) = 0 and thus m — k < q. As

k < m —q+ 2weconclude that k = m — g + 1; thus x = wand U = X{, is maximal.
I( m

(b) m is even and U has index x = 5( 7>)- When m > 30, Nagura’s result [9] gives
that ¢ > 5/6m and this implies that

7> (issomi—1) = (,71) =

It can be checked by direct computation that

m
X > =W
(q—1>

even for m < 30, m ¢ {6,10}. This contradicts x < w.
(c) m =9 or 8 and X has index 120, 15 or 30. Since none of these indices is divisi-
ble by ¢ = 7, this case never occurs.

Lemma 2.4. Assume that L is a monolithic primitive group with soc L = (Alt(m))" and
m > 10. Let p, q be primes with p < q < m and let o be the minimal useful index with
the properties that v,(o) = 0 and vy(o) = r. If o < (qu> , then b, < 0.

Proof. By Lemma 2.1 there exists a supplement Y to S in X with index w such that
o= w'; clearly v,(w) =0, v,(w) =1 and w < ( " ). Let z be the minimal index of
a supplement to S in X with the properties that v,(z) =0 and v,(z) = 1; then
z<w< q”jl . We claim that every supplement Y of S with index z in X is a max-
imal subgroup. Since z < q"fl) and m > 10, we can apply [4, Theorem 5.2 A, B]
which says that Y is either a maximal imprimitive subgroup, and we are fin-
ished, or Y lies between a maximal subgroup M with index (’,f’) and a sub-
group of index m!/(m — k)! where k < min{g — 1,m — ¢ + 1}. Note that, as g divides
z, then v,(m!/(m—k)!) = 1. If ¢—1>m/2, then m < 2¢q and v,(m!) = 1; since
k<m—gq+1, wegetthat m — k+ 1 > ¢ and hence ¢ does not divide m!/(m — k)!, a
contradiction; so this case never occurs. Therefore ¢ — 1 <m/2. Thenk <qg—1<g¢q

and ¢ does not divide k!, and hence
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vq(<’Z>) = v,(m!/(m — k)!) = 1.

Moreover, as () divides z, we have v, ((})) = 0. By minimality of z, we have z = (')

and Y = M is a maximal subgroup, as claimed.
By Lemma 2.2 it follows that z" is a useful index of L and b, < 0; by minimality of
o we conclude that « = z" and b, < 0.

3 The number of non-isomorphic composition factors

Assume that G is a finitely generated profinite group, choose a descending series
{Gi},cn as described in Section 2 and assume that almost every composition factor is
cyclic or isomorphic to an alternating group. Let 7z(G) be the set of prime divisors of
indices of open subgroups of G. The aim of this section is to prove that if the formal
series Pg(s) = >, a,/n® is rational, then 7(G) is finite. We start by noting that if
Pg(s) is rational then the set 7 of primes p such that there exists # divisible by p with
a, # 0 is finite. Moreover we have:

Lemma 3.1. Assume that P(s) is rational and let p be a prime with p ¢ 7; then, for any
i € 1, the following assertions hold.

(1) If Gi/ Gy is a non-Frattini abelian chief factor, then |G;/ G| is not a p-power.

(2) If G;/Giyy is non-abelian, then the almost simple group X; has no maximal sub-
groups of p-power index which are supplements for S; = soc X; in X;.

Proof. We first note that G has no subgroup with index a power of a prime p. Indeed,
if we consider the minimal p-power index, say p’, of a subgroup of G, then every
subgroup H with index p' is definitely a maximal subgroup, so that u;(H) = —1 and
therefore the coefficient a,r = > ;_, 1tg(H) is non-zero, against the definition of
7. If G;/Gi41 is a non-Frattini chief factor of p-power order, then there is a comple-
ment to G;/Gi;1 in G/G.1, while if X; is almost simple and contains a subgroup Y
with |X;: Y| = p’ and X; = YS,, then if ¢ is minimal, by [2, Lemma 2], L;, and con-
sequently G, has a maximal subgroup of index p”i.

In the case of prosolvable groups, Lemma 3.1 leads immediately to the conclusion
that 7(G) is finite if Pg(s) is rational. The same is true also under our weaker hy-
pothesis, but the argument is more complicated. We will need the following lemma.

Lemma 3.2. Let F be a finite set of simple groups. Assume that, for any i € N, if
Pi(s) # 1, then S; is isomorphic to an element of 7. Then n(G) is finite.

Proof. Let p e n(G). Then p divides |G;/ G| for an index i € N; let / be the mini-
mal index with this property. If G;/ G, is abelian, then |G;/G;y 1| = p" and, by the
Schur—Zassenhaus Theorem, G;/Gi;; is a complemented chief factor. Since P;(s) = 1
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if and only if G;/G; is a Frattini chief factor, it follows that p is a prime divisor of
|S| for some S € #. Therefore 7(G) is finite.

Proposition 3.3. Let G be a finitely generated profinite group such that almost every
composition factor is cyclic or isomorphic to an alternating group. If Pg(s) is rational
then 7n(G) is finite.

Proof. Using the notation introduced in Section 2, we have

Pgs(s) = Zan/ns = H Pi(s),

ielN

where P;(s) is the finite Dirichlet series associated to the chief factor G;/G;.;. Let I be
the set of indices such that either S; is cyclic of order n; or S; =~ Alt(n;) is an alter-
nating group and such that P;(s) # 1. Since all but a finite number of composition
factors are abelian or alternating groups, if we restrict the product to the subset 7, we
still get that Q(s) = ", ¢,/n® = [[;.; Pi(s) is rational. In particular, we can choose a
prime number « > 10 such that a, = ¢, = 0 whenever n is divisible by a prime ¢ > u.
Our goal is to prove that n; < u for every i € I; from this and Lemma 3.2 it follows
that (G) is finite. Assume for a contradiction that the set

I,={iel|n; > u}

is non-empty. By Lemma 3.1, for each i € I, the number »; is not a prime and S; is of
alternating type; that is, S; = Alt(n;). Now we define

r=min{r; |n; = u} = min{r;|i e L},

m=min{n; |r; =r,iel,};

as u > 10, we can choose two primes p and ¢ such that m/2 < p < ¢ < m and q is the
largest prime not greater then m; note that m is not prime, so that ¢ # m, and that
u < q. Now consider the set A of all integers n divisible by ¢ but not by p. If ne A
and b; , #0, then n; > g > p, so iel, and n is a useful index for L;; hence, by
Lemma 2.1, n is an r;jth power and v,(n) > r. Moreover if i is an index of 7, such that
m =n; and r = r;, then, by Lemma 2.3, v = q’fl € A and b; ,» < 0. Choose a € A
minimal with the properties that there exist i € I, such that r; = r, v () =rand o is a
useful index for L;: then o < v”. Note that if n € A is a useful index for L;, then either
vg(n) > rorr; =r, vy(n) =r and n > «. This implies in particular that the coefficient
¢y of 1/a* in Q(s) = [[;c; Pi(s) is

Cy = Z bl‘,a.

iel,,ri=r

If r =r; and m = n;, then v" is the minimal g-useful index for L; and thus b; , < 0.
Now let i € [, with r; = r, n; # m and assume that b; , # 0. Since n; > m we get
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o< m -\ < i r
T\g—1 g-1)’
and we conclude by Lemma 2.4 that b, , < 0. Since b; , # 0 for at least one index i,

this gives that ¢, = >, b;, # 0. But ¢ divides « and ¢ > u, and this contradicts the
choice of u.

4 Infinite products of formal Dirichlet series

Let # be the ring of formal Dirichlet series with integer coefficients. For every prime
number p we consider the ring endomorphism of # defined by

“~ ay ay
F(s):zﬁ — FP(s) = -

n=1 (n,p)=1

The following observation is crucial for the proof that if G is prosoluble and Pg(s)
is rational, then G/Frat(G) is finite:

Lemma 4.1. Let p be a prime and {F;(s)},.,; be a family of finite Dirichlet series. If
[L;c; Fi(s) is rational, then []; ., F! (s) is rational.

Note that if the chief factor G;/G;; is abelian, then the Dirichlet series P;(s)
is very simple: P;(s) # 1 if and only if G;/G;; is non-Frattini; in particular if
(Gi/Gis1| = pl', then

Ci

P,(S)ZI—W

where ¢; is the number of complements of G;/G;;; in G/G;1. When G is prosoluble,
we consider the set J, of the indices i € I such that G;/G;,; is non-Frattini and has
order a p-power: Pg(s) is the product of the Euler factors

o TH( )

iel,

where p runs through the set of primes. If Pg(s) is rational, then, by Proposition 3.3
and Lemma 4.1, every Euler factor E,(s) is rational and E,(s) = 1 for all but a finite
number of primes p. So, in the solvable case, it was sufficient to work on the Euler
factors, proving that if E,(s) = ][, Pi(s) is rational, then the set I, is finite. We
succeeded in proving this, thanks to the following consequence of the Skolem-—
Mabhler—Lech Theorem:

Proposition 4.2 ([3, Proposition 3.2]). Let I = N and let q, r;, c;, be positive integers
for each i € 1. Assume that the product
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ro =110 -gy)

is rational and that there exists a prime t such that t does not divide r; for any i € I.
Then I is finite.

The earlier approach fails in the general case, since the finite series P;(s) are more
complicated and may involve many non-trivial terms. However we will be able to
prove that if the product Pg(s) =[], ; P:i(s) is rational, then it is possible to con-
struct nice subseries P} (s) of P;(s) (all of the kind 1 + y;/w" for a fixed w), such that
the product [[,_; P} (s) is still rational and satisfies the assumption of Proposition 4.2.
The technical result we will employ in order to do this is the following:

Proposition 4.3. Let F(s) be a product of finite Dirichlet series:

F(s) = HE(S), where Fi(s) = h

S
iel nelN
Let g be a prime and A the set of positive integers divisible by q. Assume that there

exists a set {r;};; of positive integers such that if n € A and b; , # 0 then n is an ri-th
power of some integer and v,(n) = r;. Define

w=min{x € N|v,(x) =1 and b; . # 0 for some i € I'}.

If F(s) is rational, then the product

is rational.

Proof. Observe that in the product

each integer n such that ¢, # 0 satisfies n > w% . Moreover for n = w% the co-
efficient ¢, of F(s) is in fact the coefficient of 1/n* in the product F*(s):

ro=TI(+ ) S

iel teN

this means that we are able to recognize the powers of 1/w*, and hence F*(s), as a
subseries of F(s).
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Let F(s) be rational and let A(s) be a finite Dirichlet series such that A(s)F(s) is a
finite Dirichlet series. Let

ay
A(s) = ;;
we set
¢=min{x e Q|x =n/w"" and a, # 0}
and

N ={neN|n/w" =¢and a, # 0} = {Ew™ € N|agm # 0,m e N}.

Finally we define the new series

* _ @ — dewm
4 (S) - Z ns Z (me)X :

ne AN m

We now prove that 4*(s)F*(s) is a finite Dirichlet series, from which it follows that
F*(s) is rational.
Note that

aiw mCypt

A ($)F*(s) = W

Ewme N
teN

We examine the coefficient of 1/(Ew(*))* in A(s)F(s): this is the sum

Z aty where [ € N, n= 14/”!1<”>.
In=Ew(m+0)
Take / and # such that a;¢, # 0 and In = Ew) If n > w¥(® then

EWHD = [n > Tyt

and, since v,(n) +v,(l) =m+1t, this gives //w%!) < ¢ a contradiction. Hence
n=w%" and c,/n® is a term of F*(s). Moreover

Ewmtt = pf = wu]
implies //w%() = & and hence / € .#". This means that the coefficient of 1/(Ew("+9)*

in A(s)F(s) is the coefficient of 1/(Ew+0)* in 4*(s)F*(s), and since A(s)F(s) is a
finite series, we conclude that A4*(s)F*(s) is finite, too.
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5 Chief factors

In this section we will prove that given a finitely generated profinite group G with
7(G) finite, there exists a prime ¢ such that for every primitive monolithic image L
of G, t does not divide the composition length r of soc L = S”, where S is a simple
group.

Let 7 be a finite set of primes and let . be the set of finite simple groups S such
that 7(S) < =; by the classification of finite simple groups & is finite. Now let 2 be
the set of quasisimple groups X such that X /Z(X) € ; since the universal cover of a
finite non-abelian simple group is finite, it follows that the set 2 is finite. Then, for
every prime p, define o, to be the largest prime divisor of the degree of an absolutely
irreducible IF, X-module, for X € 2. Finally we set

n= max({ap}pen U 77,').

Lemma 5.1. Let H be a finite n-group. Let n be the degree of an irreducible linear
representation over a finite field F of the group H. If q is a prime divisor of n, then

q<.

Proof. By a result of Brauer there exists a field extension L of F such that L is a
splitting field for H and all of its subgroups, and the degree |L : F| divides p(exp(H)).
Let V' be an irreducible FH-module of dimension n and let W be an irreducible
constituent of V; = V ® L. Then

dimg(V) =n=r-dimg (W),

where r divides |L: F|, and hence divides ¢(exp(H)); if n(H) = {p1,...,p,} and

exp(H) = p{" ... p!", then

p(exp(H)) = H (pi — l)p;"ifl‘

m;#0

It follows that each prime divisor of r, dividing ¢(exp(H)), is bounded by
max{zn(H)} < max{z}; this implies that we may assume that F = L or, equivalently,
that without loss of generality F is algebraically closed.

We shall prove the lemma by induction on |H|. If V' is an imprimitive FH-module,
say V' = W', then H has a transitive representation with degree ¢, for a z-number 1,
and W is an FK-irreducible module where K = Ny (W); since n = ¢ - dim W, a prime
divisor ¢ of n divides either 7, whence ¢ € 7, or ¢ < 7, by the inductive assumption.

So we can assume that H is an absolutely irreducible primitive group. Then there
are primitive groups H; < GL(n;, F) where n = ny ...n, such that Z, = Z(H;) =~ F*,
each H;/Z; is a homomorphic image of H (hence a n-group) and every normal sub-
group of H; is scalar or irreducible (see e.g. [10, §II 2.3]). Thus we are reduced to
proving that each prime divisor ¢ of n; is bounded by #.
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If H; contains a non-scalar soluble normal subgroup, then we choose 4 to be
minimal with this property: we conclude that A4 is an r-group for a prime r and n; is a
power of r, so that r € 7 and #; is a 7-number.

Otherwise, if all soluble normal subgroups of G are scalar, we choose a minimal
normal subgroup N/Z; of H;/Z;; then N’ is an irreducible normal subgroup with
degree n; and is the central product of Qy, ..., Q, for some Q; € 2; thus n; = ky ... k;
where k; is the degree of an absolutely irreducible representation of Q;, and therefore
each prime divisor of k; is bounded by o,.

Corollary 5.2. Let G be a finitely generated profinite group. If n(G) is finite, then there
exists a prime t such that, for every i € I, the composition length r; of the chief factor
G;/ Gy is not divisible by t.

Proof. Let u be a prime divisor of r; where G;/Gi = S/". If S; is abelian, then
Proposition 5.1 gives u < ; otherwise soc L; = S;” where S is a finite non-abelian
group and r; is the degree of a transitive representation of a finite image of G, so that
uen(G).

6 The main theorem

Theorem 6.1. Let G be a finitely generated profinite group such that almost every
composition factor is cyclic or isomorphic to an alternating group. Then Pg(s) is ra-
tional only if G has finitely many non-Frattini chief factors, i.e. only if G/Frat(G) is a
finite group.

Proof. Let us use the notation introduced in Section 2 and let /* be the set of indices
such that P;(s) # 1 and S; is either cyclic of order n; or isomorphic to Alt(n;). If Pg(s)
is rational, then clearly also [],.,. Pi(s) is rational. Moreover, if for a given integer n
the set {i € I* | n; = n} is finite, then the product

IT Pits)

iel*
ni#n

is again rational. Define J to be the subset of 7* of the indices i with the property that
n; = n; for infinitely many j € I*; since by Proposition 3.3 there is a bound on the set
{ni};c;-, the set J differs from 7 for a finite number of indices and thus the product

HPi(S)

is still rational. Our claim is that J is empty; this will imply that there are only finitely
many non-Frattini chief factors and consequently that G/Frat(G) is a finite group
(see e.g. [3, Theorem 4.3]). Assume by contradiction that J is non-empty and set
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my = max{n; |i e J},
q = largest prime < my,
m =min{n; |n; = q,i€J},

p = largest prime < g¢.

We will work on the product [, P/(s) of the finite Dirichlet series

bi.n
Pl(s)=) .

pAn

Since []; Pi(s) is rational, then also [, P?(s) is rational (see Corollary 4.1). Let A be
the set of positive integers n divisible by ¢ but not by p. Note that for any choices of
i,if ne A and b;, # 0, then n; > ¢ > p and, by Lemma 2.1, there exists a subgroup
Y; of index x; in X; such that n = x/’; hence v,(n) = rivy(x;). On the other hand,
g > myg/2 implies that n; < 2¢, which means that v,(x;) < 1 and thus v,(n) = r;. Let

w=min{x € A|b; «s # 0 and v,(x) = 1}.
By Proposition 4.3 applied to []; P (s), it follows that the product

bi, w'i
II(1+%)

ieJ

is rational. By Proposition 3.3 we have that n(G) is finite, and hence, by Corollary
5.2, there exists a prime ¢ such that ¢ does not divide r; for every i € J. Now it is suf-
ficient to prove that b; ,» < 0 for every i € J and b; ,,» < 0 for infinitely many i € J to
reach a contradiction and prove the theorem; indeed by the Skolem—Mahler—Lech
Theorem (Proposition 4.2) it follows that if b; , < 0 for every i € J, then b; ,,n =0
for all but a finite number of indices i € J.

We have two possibilities:

Case 1: m = q. If b; 4 # 0 then X; has a subgroup of index ¢ and therefore i is one of
the infinitely many indices of J such that n; = m = ¢. If S; is abelian then b; ,» < 0;
otherwise S; = Alt(¢) and every supplement with index ¢ is maximal, so that
bi 4v < 0 by Lemma 2.2. It follows that w = g and b; ,,» < 0 for infinitely many i € J.

Case 2: m > q. In this case, both my and m are non-prime, since otherwise we would
have my=q =m or m = q. Moreover, if ne€ A and b;, #0, then n; > g hence
n; = m > ¢; in particular S; is non-abelian, for otherwise n = ¢" and n; = q. We
claim that

(q’f 1) if m ¢ {6,100},

126 if m =10,
10 if m=26,
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and b; ,,» <0 for every i € J. Whenever n; = m (and this holds for infinitely many
i € J), by Lemma 2.3 the number w" is the smallest ¢g-useful index in L; and b; ,,» < 0.
For n; < m there are no g-useful indices, so let n; > m. As ¢ is still the largest
prime less than or equal to n;, and n; is not a prime, we can apply Lemma 2.3. If
n; ¢ {6,10}, then the minimal g-useful index in L; prime to p is

no\" S m i N
=W
q—1 qg—1

since n; > m. We cannot have n; = 6 since then n; = m, and so the last cases are
n; = 10 and m :r§ or m = 9; the minimal g-useful index in L; is then 126" which is
larger than (q’fl> for both m = 8,9 (with ¢ = 7). This proves that b; ,,» <0, and so
our discussion is complete.
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