J. Group Theory **10** (2007), 453–466 DOI 10.1515/JGT.2007.038

Non-prosoluble profinite groups with a rational probabilistic zeta function

Eloisa Detomi and Andrea Lucchini

(Communicated by R. M. Guralnick)

Abstract. We discuss finiteness properties of a profinite group G whose probabilistic zeta function $P_G(s)$ is rational. In particular we prove that if $P_G(s)$ is rational and G has a finite number of non-alternating and non-abelian composition factors in a given composition series, then G/Frat(G) is finite.

1 Introduction

To a finitely generated profinite group G we associate a formal Dirichlet series $P_G(s)$, defined as

$$P_G(s) = \sum_{n \in \mathbb{N}} \frac{a_n(G)}{n^s}$$
 where $a_n(G) := \sum_{|G:H|=n} \mu_G(H)$.

Here $\mu_G(H)$ denotes the Möbius function of the poset of open subgroups of G, which is defined by recursion as follows: $\mu_G(G) = 1$ and $\mu_G(H) = -\sum_{H < K} \mu_G(K)$ if H < G. We do not know whether the series $P_G(s)$ converges (related questions are discussed in [1], [6], [7] and [8]), however in this paper we just use the name 'probabilistic zeta function' to indicate the inverse of $P_G(s)$ in the ring of formal Dirichlet series.

In [3] we conjectured that if $P_G(s)$ is rational (i.e. if it is a quotient A(s)/B(s) with A(s), B(s) Dirichlet polynomials with integer coefficients) then G/Frat(G) is a finite group, and we proved this conjecture in the particular case of prosoluble groups. Our aim is now to generalize this result to a wider class of profinite groups.

Let $\{G_i\}_{i \in \mathbb{N}}$ be a countable descending series of open normal subgroups with the properties that $G_1 = G$, $\bigcap_{i \in \mathbb{N}} G_i = 1$ and G_i/G_{i+1} is a chief factor of G for each $i \in \mathbb{N}$. As explained in [1], to each chief factor G_i/G_{i+1} of G we can associate a Dirichlet polynomial $P_i(s)$ such that $P_G(s)$ can be written as an infinite formal product

This research is partially supported by MIUR (project Teoria dei gruppi e applicazioni).

Eloisa Detomi and Andrea Lucchini

$$P_G(s) = \prod_{i \in \mathbb{N}} P_i(s).$$

In the prosolvable case the polynomials $P_i(s)$ are very simple; indeed $P_i(s) = 1 - c_i/q_i^s$ where $q_i = |G_i/G_{i+1}|$, c_i is a non-negative integer and $c_i = 0$ if and only if G_i/G_{i+1} is a Frattini factor, i.e. $G_i/G_{i+1} \leq \operatorname{Frat}(G/G_{i+1})$. In particular, if G is prosoluble, then $P_G(s)$ has an Euler factorization over the set of prime numbers and, given that $P_G(s)$ is rational, each Euler factor is rational and $\pi(G)$ is finite (where $\pi(G)$ is the set of primes involved in the factorization of the indices of the open subgroups of G). Working on each Euler factor we were able to prove that if $P_G(s)$ is rational, then $P_i(s) = 1$ for all but a finite number of $i \in \mathbb{N}$; equivalently almost every chief factor G_i/G_{i+1} is a Frattini factor, and this implies that $G/\operatorname{Frat}(G)$ is finite.

Unfortunately, when G is not prosoluble there is no such nice Euler factorization of $P_G(s)$ and in addition the factors $P_i(s)$ are not such simple polynomials. So, even the first natural question, to deduce the finiteness of $\pi(G)$ from the rationality of $P_G(s)$, seems to be a hard problem for non-prosoluble groups. However we do obtain a kind of Euler factorization over the finite simple groups by collecting together, for each simple group S, all factors $P_i(s)$ such that G_i/G_{i+1} is isomorphic to a direct product of copies of S:

$$P_G(s) = \prod_{S \text{ simple}} E_S(s), \text{ where } E_S(s) = \prod_{G_i/G_{i+1} \cong S^{r_i}} P_i(s).$$

At this point we have several unsolved problems: we do not know whether there are finitely many Euler factors $E_S(s)$; we cannot infer from the rationality of $P_G(s)$ that each Euler factor $E_S(s)$ is rational, indeed products of non-rational series might be rational; even if an Euler factor $E_S(s)$ is rational, we cannot deduce from this that there are only finitely many chief factors $G_i/G_{i+1} \cong S^{r_i}$ corresponding to it.

In this paper we analyze the case when, for all but a finite number of indices i, the factors G_i/G_{i+1} are either abelian or direct products of alternating groups. By a close investigation of subgroup indices in alternating groups, and some new reduction techniques we obtain the following result:

Main Result (Theorem 6.1). Let G be a finitely generated profinite group such that almost every composition factor is cyclic or isomorphic to an alternating group. Then $P_G(s)$ is rational only if $G/\operatorname{Frat}(G)$ is a finite group (and in this case $P_G(s)$ is a Dirichlet polynomial).

2 Notation and preliminary results

Let *G* be a finitely generated profinite group and let $\{G_i\}_{i \in \mathbb{N}}$ be a fixed countable descending series of open normal subgroups with the properties that $G_1 = G$, $\bigcap_{i \in \mathbb{N}} G_i = 1$ and G_i/G_{i+1} is a chief factor of *G*. For each $i \in \mathbb{N}$ there exist a simple group S_i and a positive integer r_i such that $G_i/G_{i+1} \cong S_i^{r_i}$. Moreover, as described in [1], for each $i \in \mathbb{N}$, a finite Dirichlet series

Profinite groups with rational probabilistic zeta function

$$P_i(s) = \sum_{n \in \mathbb{N}} \frac{b_{i,n}}{n^s} \tag{2.1}$$

is associated with the chief factor G_i/G_{i+1} and $P_G(s)$ can be written as an infinite formal product of the finite Dirichlet series $P_i(s)$:

$$P_G(s) = \prod_{i \in \mathbb{N}} P_i(s).$$

We recall some properties of the series $P_i(s)$. If S_i is cyclic of prime order p_i , then $P_i(s) = 1 - c_i/(p_i^{r_i})^s$, where c_i is the number of complements of G_i/G_{i+1} in G/G_{i+1} . It is more difficult to compute the series $P_i(s)$ when S_i is a non-abelian simple group. In this case an important role is played by the group $L_i = G/C_G(G_i/G_{i+1})$. This is a monolithic primitive group whose unique minimal normal subgroup is isomorphic to $G_i/G_{i+1} \cong S_i^{r_i}$. If $n \neq |S_i|^{r_i}$, then the coefficient $b_{i,n}$ in (2.1) depends only on L_i ; more precisely we have

$$b_{i,n} = \sum_{\substack{|L_i:H|=n\\L_i=H\operatorname{soc}(L_i)}} \mu_{L_i}(H).$$

It is not easy to compute the coefficient $b_{i,n}$ even for $n \neq |S_i|^{r_i}$. Some help comes from knowledge of the subgroup X_i of Aut S_i induced by the conjugation action of the normalizer in L_i of a composition factor of the socle S_i^r (note that X_i is an almost simple group with socle isomorphic to S_i). Let us describe some results that one can apply in this context.

Let *L* be a monolithic primitive group with $N = \operatorname{soc} L = T_1 \times \cdots \times T_r$ and $T_i \cong S$ a finite non-abelian simple group and let *X* be the subgroup of Aut *S* induced by the conjugation action of $N_L(T_1)$ on T_1 . As described in [2, Section 1], *L* can be viewed as a subgroup of $X \wr \operatorname{Sym}(r)$, with $N = \operatorname{soc} L = S^r$ contained in the base X^r of this wreath product. To compute the number

$$b_n = \sum_{\substack{|L:H|=n\\L=HN}} \mu_L(H), \quad \text{for } n \neq |S|^r,$$

we have to consider only the subgroups with non-trivial Möbius function. If H is a maximal subgroup of L, then $\mu_L(H) = -1$. On the other hand $\mu_L(H) \neq 0$ only if H is an intersection of maximal subgroups of L. Now recall that if M is a maximal supplement to N in L, then there are two possibilities: either $M \cap N$ is a subdirect product of S^r (a maximal subgroup of diagonal type) or $M \cap N \cong U^r$ with U < S (a maximal subgroup of product type); in the second case if $1 \neq U$, then there exists a maximal supplement Y of S in X such that M is conjugate to $(Y \wr \text{Sym}(r)) \cap L$. We will say that n is a *useful index* of L if $b_n \neq 0$ and there exists a prime p which divides |S| but does not divide n.

455

Lemma 2.1. If n is a useful index of L, then there exists a subgroup Y of X such that X = YS and $n = |X : Y|^r$.

Proof. Since $b_n \neq 0$, there exists $H \leq L$ with HN = L, |L : H| = n and $\mu_L(H) \neq 0$. In particular H must be an intersection of maximal subgroups of L and all of these maximal subgroups must be of product type, since otherwise |S| would divide |L : M| (and consequently n) for some maximal subgroup M containing H. At this point it is easy to check (see for example the proof of [2, Lemma 5]) that $H \cap N \cong (Y \cap S)^r$ for a suitable supplement Y of S in X.

Lemma 2.2. Let u be a positive integer such that there exists a prime p which divides |S| but does not divide u, and let \mathcal{U} be the set of subgroups Y with index u in X and with the property that YS = X. If $\mathcal{U} \neq \emptyset$ and every subgroup of \mathcal{U} is maximal, then u^r is a useful index of L and $b_{u^r} < 0$.

Proof. By the same arguments of the previous lemma, all subgroups M of L with MN = L and $|L: M| = u^r$ are maximal; moreover, by [2, Lemma 2], the set \mathcal{M} of maximal subgroups of L with these properties is non-empty. Hence $b_{u^r} = -|\mathcal{M}| < 0$.

Given a prime q, we denote by $v_q(n)$ the largest integer r such that q^r divides n. If q divides |S|, we will say that a useful index n of L is q-useful if n is divisible by q.

Lemma 2.3. Assume that L is monolithic primitive group with soc $L = (Alt(m))^r$ and that m is not a prime, and let q be the largest prime with $q \leq m$. Define w as follows:

$$w = \begin{cases} \binom{m}{q-1} & \text{if } m \notin \{6, 10\}, \\ 126 & \text{if } m = 10, \\ 10 & \text{if } m = 6. \end{cases}$$

Then $b_{w^r} < 0$ and w^r is the smallest q-useful index in L.

Proof. First note there there exists a prime p which divides |Alt(m)| but does not divide w. Indeed we take p = 3 if m = 6, p = 5 if m = 10, while in the other cases there exists a prime p with m/2 (e.g. by Nagura's result [9]). Note that either <math>m = 6 or $X \in \{Alt(m), Sym(m)\}$. In any case, by Lemma 2.1 and Lemma 2.2, it suffices to prove that

- (1) X contains a supplement Y of S with |X : Y| = w, and
- (2) if U is a supplement of S in X with index |X : U| at most w and a multiple of q, then |X : U| = w and U is a maximal subgroup.

These statements can easily be verified when $m \in \{6, 10\}$, so assume that $m \neq 6, 10$. First note that given a subset $\Delta \subset \Omega = \{1, ..., m\}$ of size $|\Delta| = q - 1$, the subgroup $Y = (\text{Sym}(\Delta) \times \text{Sym}(\Omega \setminus \Delta)) \cap X$ is a maximal subgroup with index w in X. Now let U be a supplement of S in X with index x = |X : U|, where q divides x and $x \le w$. Since

$$x \leqslant w < \binom{m}{m-q+2}$$

and $m - q + 2 \le m/2$, then by [4, Theorem 5.2 A, B] one of the following holds. (a) There exists $\Delta \subseteq \{1, \dots, m\}$ such that

$$|\Delta| = k < m - q + 2$$
 and $X_{(\Delta)} \leq U \leq X_{\{\Delta\}}$.

Considering the indices we get that x, and hence q, divides m!/(m-k)!. Since m/2 < q < m, we have $v_q(m!) = 1$, so that $v_q((m-k)!) = 0$ and thus m-k < q. As k < m-q+2 we conclude that k = m - q + 1; thus x = w and $U = X_{\{\Delta\}}$ is maximal.

k < m-q+2 we conclude that k = m-q+1; thus x = w and $U = X_{\{\Delta\}}$ is maximal. (b) *m* is even and *U* has index $x = \frac{1}{2} \binom{m}{m/2}$. When $m \ge 30$, Nagura's result [9] gives that q > 5/6m and this implies that

$$x > \binom{m}{\lfloor 5/6m \rfloor - 1} \ge \binom{m}{q - 1} = w.$$

It can be checked by direct computation that

$$x > \binom{m}{q-1} = w$$

even for m < 30, $m \notin \{6, 10\}$. This contradicts $x \leq w$.

(c) m = 9 or 8 and X has index 120, 15 or 30. Since none of these indices is divisible by q = 7, this case never occurs.

Lemma 2.4. Assume that *L* is a monolithic primitive group with soc $L = (Alt(m))^r$ and m > 10. Let *p*, *q* be primes with p < q < m and let α be the minimal useful index with the properties that $v_p(\alpha) = 0$ and $v_q(\alpha) = r$. If $\alpha < {m \choose q-1}^r$, then $b_{\alpha} < 0$.

Proof. By Lemma 2.1 there exists a supplement Y to S in X with index w such that $\alpha = w^r$; clearly $v_p(w) = 0$, $v_q(w) = 1$ and $w < \binom{m}{q-1}$. Let z be the minimal index of a supplement to S in X with the properties that $v_p(z) = 0$ and $v_q(z) = 1$; then $z \leq w < \binom{m}{q-1}$. We claim that every supplement Y of S with index z in X is a maximal subgroup. Since $z < \binom{m}{q-1}$ and m > 10, we can apply [4, Theorem 5.2 A, B] which says that Y is either a maximal subgroup M with index $\binom{m}{k}$ and a subgroup of index m!/(m-k)! where $k < \min\{q-1, m-q+1\}$. Note that, as q divides z, then $v_q(m!/(m-k)!) \ge 1$. If q-1 > m/2, then m < 2q and $v_q(m!) = 1$; since k < m-q+1, we get that m-k+1 > q and hence q does not divide m!/(m-k)!, a contradiction; so this case never occurs. Therefore $q-1 \le m/2$. Then k < q-1 < q and q does not divide k!, and hence

$$v_q\left(\binom{m}{k}\right) = v_q(m!/(m-k)!) = 1.$$

Moreover, as $\binom{m}{k}$ divides z, we have $v_p\binom{m}{k} = 0$. By minimality of z, we have $z = \binom{m}{k}$ and Y = M is a maximal subgroup, as claimed.

By Lemma 2.2 it follows that z^r is a useful index of L and $b_{z^r} < 0$; by minimality of α we conclude that $\alpha = z^r$ and $b_{\alpha} < 0$.

3 The number of non-isomorphic composition factors

Assume that G is a finitely generated profinite group, choose a descending series $\{G_i\}_{i \in \mathbb{N}}$ as described in Section 2 and assume that almost every composition factor is cyclic or isomorphic to an alternating group. Let $\pi(G)$ be the set of prime divisors of indices of open subgroups of G. The aim of this section is to prove that if the formal series $P_G(s) = \sum_n a_n/n^s$ is rational, then $\pi(G)$ is finite. We start by noting that if $P_G(s)$ is rational then the set π of primes p such that there exists n divisible by p with $a_n \neq 0$ is finite. Moreover we have:

Lemma 3.1. Assume that $P_G(s)$ is rational and let p be a prime with $p \notin \pi$; then, for any $i \in I$, the following assertions hold.

- (1) If G_i/G_{i+1} is a non-Frattini abelian chief factor, then $|G_i/G_{i+i}|$ is not a p-power.
- (2) If G_i/G_{i+1} is non-abelian, then the almost simple group X_i has no maximal subgroups of p-power index which are supplements for $S_i = \operatorname{soc} X_i$ in X_i .

Proof. We first note that *G* has no subgroup with index a power of a prime *p*. Indeed, if we consider the minimal *p*-power index, say p^t , of a subgroup of *G*, then every subgroup *H* with index p^t is definitely a maximal subgroup, so that $\mu_G(H) = -1$ and therefore the coefficient $a_{p^t} = \sum_{|G:H|=p^t} \mu_G(H)$ is non-zero, against the definition of π . If G_i/G_{i+1} is a non-Frattini chief factor of *p*-power order, then there is a complement to G_i/G_{i+1} in G/G_{i+1} , while if X_i is almost simple and contains a subgroup *Y* with $|X_i:Y| = p^t$ and $X_i = YS_i$, then if *t* is minimal, by [2, Lemma 2], L_i , and consequently *G*, has a maximal subgroup of index p^{tr_i} .

In the case of prosolvable groups, Lemma 3.1 leads immediately to the conclusion that $\pi(G)$ is finite if $P_G(s)$ is rational. The same is true also under our weaker hypothesis, but the argument is more complicated. We will need the following lemma.

Lemma 3.2. Let \mathscr{F} be a finite set of simple groups. Assume that, for any $i \in \mathbb{N}$, if $P_i(s) \neq 1$, then S_i is isomorphic to an element of \mathscr{F} . Then $\pi(G)$ is finite.

Proof. Let $p \in \pi(G)$. Then p divides $|G_i/G_{i+1}|$ for an index $i \in \mathbb{N}$; let i be the minimal index with this property. If G_i/G_{i+1} is abelian, then $|G_i/G_{i+1}| = p^{r_i}$ and, by the Schur–Zassenhaus Theorem, G_i/G_{i+1} is a complemented chief factor. Since $P_i(s) = 1$

if and only if G_i/G_{i+1} is a Frattini chief factor, it follows that p is a prime divisor of |S| for some $S \in \mathscr{F}$. Therefore $\pi(G)$ is finite.

Proposition 3.3. Let G be a finitely generated profinite group such that almost every composition factor is cyclic or isomorphic to an alternating group. If $P_G(s)$ is rational then $\pi(G)$ is finite.

Proof. Using the notation introduced in Section 2, we have

$$P_G(s) = \sum_n a_n / n^s = \prod_{i \in \mathbb{N}} P_i(s),$$

where $P_i(s)$ is the finite Dirichlet series associated to the chief factor G_i/G_{i+1} . Let *I* be the set of indices such that either S_i is cyclic of order n_i or $S_i \cong \operatorname{Alt}(n_i)$ is an alternating group and such that $P_i(s) \neq 1$. Since all but a finite number of composition factors are abelian or alternating groups, if we restrict the product to the subset *I*, we still get that $Q(s) = \sum_n c_n/n^s = \prod_{i \in I} P_i(s)$ is rational. In particular, we can choose a prime number u > 10 such that $a_n = c_n = 0$ whenever *n* is divisible by a prime $q \ge u$. Our goal is to prove that $n_i < u$ for every $i \in I$; from this and Lemma 3.2 it follows that $\pi(G)$ is finite. Assume for a contradiction that the set

$$I_u = \{i \in I \mid n_i \ge u\}$$

is non-empty. By Lemma 3.1, for each $i \in I_u$, the number n_i is not a prime and S_i is of alternating type; that is, $S_i \cong Alt(n_i)$. Now we define

$$r = \min\{r_i \mid n_i \ge u\} = \min\{r_i \mid i \in I_u\},$$
$$m = \min\{n_i \mid r_i = r, i \in I_u\};$$

as u > 10, we can choose two primes p and q such that m/2 and <math>q is the largest prime not greater then m; note that m is not prime, so that $q \ne m$, and that $u \le q$. Now consider the set Λ of all integers n divisible by q but not by p. If $n \in \Lambda$ and $b_{i,n} \ne 0$, then $n_i \ge q > p$, so $i \in I_u$ and n is a useful index for L_i ; hence, by Lemma 2.1, n is an r_i th power and $v_q(n) \ge r$. Moreover if i is an index of I_u such that $m = n_i$ and $r = r_i$, then, by Lemma 2.3, $v = \binom{m}{q-1} \in \Lambda$ and $b_{i,v^r} < 0$. Choose $\alpha \in \Lambda$ minimal with the properties that there exist $i \in I_u$ such that $r_i = r$, $v_q(\alpha) = r$ and α is a useful index for L_i : then $\alpha \le v^r$. Note that if $n \in \Lambda$ is a useful index for L_i , then either $v_q(n) > r$ or $r_i = r$, $v_q(n) = r$ and $n \ge \alpha$. This implies in particular that the coefficient c_α of $1/\alpha^s$ in $Q(s) = \prod_{i \in I} P_i(s)$ is

$$c_{\alpha} = \sum_{i \in I_u, r_i = r} b_{i,\alpha}$$

If $r = r_i$ and $m = n_i$, then v^r is the minimal *q*-useful index for L_i and thus $b_{i,\alpha} \le 0$. Now let $i \in I_u$ with $r_i = r$, $n_i \neq m$ and assume that $b_{i,\alpha} \neq 0$. Since $n_i > m$ we get Eloisa Detomi and Andrea Lucchini

$$\alpha \leqslant \binom{m}{q-1}^r < \binom{n_i}{q-1}^r,$$

and we conclude by Lemma 2.4 that $b_{i,\alpha} < 0$. Since $b_{i,\alpha} \neq 0$ for at least one index *i*, this gives that $c_{\alpha} = \sum_{i} b_{i,\alpha} \neq 0$. But *q* divides α and $q \ge u$, and this contradicts the choice of *u*.

4 Infinite products of formal Dirichlet series

Let \mathscr{R} be the ring of formal Dirichlet series with integer coefficients. For every prime number p we consider the ring endomorphism of \mathscr{R} defined by

$$F(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \mapsto F^p(s) = \sum_{(n,p)=1} \frac{a_n}{n^s}$$

The following observation is crucial for the proof that if G is prosoluble and $P_G(s)$ is rational, then G/Frat(G) is finite:

Lemma 4.1. Let p be a prime and $\{F_i(s)\}_{i \in I}$ be a family of finite Dirichlet series. If $\prod_{i \in I} F_i(s)$ is rational, then $\prod_{i \in I} F_i^p(s)$ is rational.

Note that if the chief factor G_i/G_{i+1} is abelian, then the Dirichlet series $P_i(s)$ is very simple: $P_i(s) \neq 1$ if and only if G_i/G_{i+1} is non-Frattini; in particular if $|G_i/G_{i+1}| = p_i^{r_i}$, then

$$P_i(s) = 1 - \frac{c_i}{\left(p_i^{r_i}\right)^s}$$

where c_i is the number of complements of G_i/G_{i+1} in G/G_{i+1} . When G is prosoluble, we consider the set I_p of the indices $i \in I$ such that G_i/G_{i+1} is non-Frattini and has order a *p*-power: $P_G(s)$ is the product of the Euler factors

$$E_p(s) = \prod_{i \in I_p} \left(1 - \frac{c_i}{(p^{r_i})^s} \right)$$

where p runs through the set of primes. If $P_G(s)$ is rational, then, by Proposition 3.3 and Lemma 4.1, every Euler factor $E_p(s)$ is rational and $E_p(s) = 1$ for all but a finite number of primes p. So, in the solvable case, it was sufficient to work on the Euler factors, proving that if $E_p(s) = \prod_{i \in I_p} P_i(s)$ is rational, then the set I_p is finite. We succeeded in proving this, thanks to the following consequence of the Skolem– Mahler–Lech Theorem:

Proposition 4.2 ([3, Proposition 3.2]). Let $I \subseteq \mathbb{N}$ and let q, r_i, c_i , be positive integers for each $i \in I$. Assume that the product

460

Profinite groups with rational probabilistic zeta function

$$F(s) = \prod_{i \in I} \left(1 - \frac{c_i}{(q^{r_i})^s} \right)$$

is rational and that there exists a prime t such that t does not divide r_i for any $i \in I$. Then I is finite.

The earlier approach fails in the general case, since the finite series $P_i(s)$ are more complicated and may involve many non-trivial terms. However we will be able to prove that if the product $P_G(s) = \prod_{i \in I} P_i(s)$ is rational, then it is possible to construct nice subseries $P_i^*(s)$ of $P_i(s)$ (all of the kind $1 + \gamma_i/w^{r_is}$ for a fixed w), such that the product $\prod_{i \in I} P_i^*(s)$ is still rational and satisfies the assumption of Proposition 4.2. The technical result we will employ in order to do this is the following:

Proposition 4.3. Let F(s) be a product of finite Dirichlet series:

$$F(s) = \prod_{i \in I} F_i(s), \text{ where } F_i(s) = \sum_{n \in \mathbb{N}} \frac{b_{i,n}}{n^s}$$

Let q be a prime and Λ the set of positive integers divisible by q. Assume that there exists a set $\{r_i\}_{i \in I}$ of positive integers such that if $n \in \Lambda$ and $b_{i,n} \neq 0$ then n is an r_i -th power of some integer and $v_q(n) = r_i$. Define

$$w = \min\{x \in \mathbb{N} \mid v_q(x) = 1 \text{ and } b_{i,x^{r_i}} \neq 0 \text{ for some } i \in I\}.$$

If F(s) is rational, then the product

$$F^*(s) = \prod_{i \in I} \left(1 + \frac{b_{i,w^{r_i}}}{(w^{r_i})^s} \right)$$

is rational.

Proof. Observe that in the product

$$F(s) = \prod_{i \in I} F_i(s) = \sum_{n \in \mathbb{N}} \frac{c_n}{n^s}$$

each integer *n* such that $c_n \neq 0$ satisfies $n \ge w^{v_q(n)}$. Moreover for $n = w^{v_q(n)}$ the coefficient c_n of F(s) is in fact the coefficient of $1/n^s$ in the product $F^*(s)$:

$$F^*(s) = \prod_{i \in I} \left(1 + \frac{b_{i, w^{r_i}}}{(w^{r_i})^s} \right) = \sum_{t \in \mathbb{N}} \frac{c_{w^t}}{(w^t)^s};$$

this means that we are able to recognize the powers of $1/w^s$, and hence $F^*(s)$, as a subseries of F(s).

Let F(s) be rational and let A(s) be a finite Dirichlet series such that A(s)F(s) is a finite Dirichlet series. Let

$$A(s)=\sum \frac{a_n}{n^s};$$

we set

$$\xi = \min\{x \in \mathbb{Q} \mid x = n/w^{v_q(n)} \text{ and } a_n \neq 0\}$$

and

$$\mathcal{N} = \{ n \in \mathbb{N} \mid n/w^{v_q(n)} = \xi \text{ and } a_n \neq 0 \} = \{ \xi w^m \in \mathbb{N} \mid a_{\xi w^m} \neq 0, m \in \mathbb{N} \}.$$

Finally we define the new series

$$A^*(s) = \sum_{n \in \mathcal{N}} \frac{a_n}{n^s} = \sum_m \frac{a_{\xi w^m}}{(\xi w^m)^s}.$$

We now prove that $A^*(s)F^*(s)$ is a finite Dirichlet series, from which it follows that $F^*(s)$ is rational.

Note that

$$A^*(s)F^*(s) = \sum_{\substack{\zeta_{W}^m \in \mathcal{N} \\ t \in \mathbb{N}}} \frac{a_{\zeta_{W}^m \mathcal{C}_{W'}}}{(\zeta_{W}^{(m+t)})^s}.$$

We examine the coefficient of $1/(\xi w^{(m+t)})^s$ in A(s)F(s): this is the sum

$$\sum_{ln=\xi w^{(m+i)}} a_l c_n \quad \text{where } l \in \mathbb{N}, \ n \ge w^{v_q(n)}.$$

Take *l* and *n* such that $a_l c_n \neq 0$ and $ln = \xi w^{(m+t)}$. If $n > w^{v_q(n)}$ then

$$\xi w^{(m+t)} = \ln > l w^{v_q(n)}$$

and, since $v_q(n) + v_q(l) = m + t$, this gives $l/w^{v_q(l)} < \xi$, a contradiction. Hence $n = w^{v_q(n)}$ and c_n/n^s is a term of $F^*(s)$. Moreover

$$\xi w^{(m+t)} = nl = w^{v_q(n)}l$$

implies $l/w^{v_q(l)} = \xi$ and hence $l \in \mathcal{N}$. This means that the coefficient of $1/(\xi w^{(m+t)})^s$ in A(s)F(s) is the coefficient of $1/(\xi w^{(m+t)})^s$ in $A^*(s)F^*(s)$, and since A(s)F(s) is a finite series, we conclude that $A^*(s)F^*(s)$ is finite, too. Profinite groups with rational probabilistic zeta function

5 Chief factors

In this section we will prove that given a finitely generated profinite group G with $\pi(G)$ finite, there exists a prime t such that for every primitive monolithic image L of G, t does not divide the composition length r of soc $L = S^r$, where S is a simple group.

Let π be a finite set of primes and let \mathscr{S} be the set of finite simple groups S such that $\pi(S) \subseteq \pi$; by the classification of finite simple groups \mathscr{S} is finite. Now let \mathscr{D} be the set of quasisimple groups X such that $X/Z(X) \in \mathscr{S}$; since the universal cover of a finite non-abelian simple group is finite, it follows that the set \mathscr{D} is finite. Then, for every prime p, define α_p to be the largest prime divisor of the degree of an absolutely irreducible $\mathbb{F}_p X$ -module, for $X \in \mathscr{D}$. Finally we set

$$\eta = \max(\{\alpha_p\}_{p \in \pi} \cup \pi).$$

Lemma 5.1. Let *H* be a finite π -group. Let *n* be the degree of an irreducible linear representation over a finite field *F* of the group *H*. If *q* is a prime divisor of *n*, then $q \leq \eta$.

Proof. By a result of Brauer there exists a field extension L of F such that L is a splitting field for H and all of its subgroups, and the degree |L:F| divides $\varphi(\exp(H))$. Let V be an irreducible FH-module of dimension n and let W be an irreducible constituent of $V_L = V \otimes_F L$. Then

$$\dim_F(V) = n = r \cdot \dim_L(W),$$

where r divides |L:F|, and hence divides $\varphi(\exp(H))$; if $\pi(H) = \{p_1, \ldots, p_r\}$ and $\exp(H) = p_1^{m_1} \ldots p_r^{m_r}$, then

$$\varphi(\exp(H)) = \prod_{m_i \neq 0} (p_i - 1) p_i^{m_i - 1}.$$

It follows that each prime divisor of r, dividing $\varphi(\exp(H))$, is bounded by $\max{\pi(H)} \subseteq \max{\pi}$; this implies that we may assume that F = L or, equivalently, that without loss of generality F is algebraically closed.

We shall prove the lemma by induction on |H|. If V is an imprimitive FH-module, say $V = W^t$, then H has a transitive representation with degree t, for a π -number t, and W is an FK-irreducible module where $K = N_H(W)$; since $n = t \cdot \dim W$, a prime divisor q of n divides either t, whence $q \in \pi$, or $q \leq \eta$, by the inductive assumption.

So we can assume that H is an absolutely irreducible primitive group. Then there are primitive groups $H_i \leq \operatorname{GL}(n_i, F)$ where $n = n_1 \dots n_r$ such that $Z_i = Z(H_i) \cong F^*$, each H_i/Z_i is a homomorphic image of H (hence a π -group) and every normal subgroup of H_i is scalar or irreducible (see e.g. [10, §II 2.3]). Thus we are reduced to proving that each prime divisor q of n_i is bounded by η .

If H_i contains a non-scalar soluble normal subgroup, then we choose A to be minimal with this property: we conclude that A is an r-group for a prime r and n_i is a power of r, so that $r \in \pi$ and n_i is a π -number.

Otherwise, if all soluble normal subgroups of *G* are scalar, we choose a minimal normal subgroup N/Z_i of H_i/Z_i ; then N' is an irreducible normal subgroup with degree n_i and is the central product of Q_1, \ldots, Q_s for some $Q_i \in \mathcal{D}$; thus $n_i = k_1 \ldots k_s$ where k_i is the degree of an absolutely irreducible representation of Q_i , and therefore each prime divisor of k_i is bounded by α_p .

Corollary 5.2. Let G be a finitely generated profinite group. If $\pi(G)$ is finite, then there exists a prime t such that, for every $i \in I$, the composition length r_i of the chief factor G_i/G_{i+1} is not divisible by t.

Proof. Let *u* be a prime divisor of r_i where $G_i/G_{i+1} \cong S_i^{r_i}$. If S_i is abelian, then Proposition 5.1 gives $u \leq \eta$; otherwise soc $L_i = S_i^{r_i}$ where *S* is a finite non-abelian group and r_i is the degree of a transitive representation of a finite image of *G*, so that $u \in \pi(G)$.

6 The main theorem

Theorem 6.1. Let G be a finitely generated profinite group such that almost every composition factor is cyclic or isomorphic to an alternating group. Then $P_G(s)$ is rational only if G has finitely many non-Frattini chief factors, i.e. only if G/Frat(G) is a finite group.

Proof. Let us use the notation introduced in Section 2 and let I^* be the set of indices such that $P_i(s) \neq 1$ and S_i is either cyclic of order n_i or isomorphic to $Alt(n_i)$. If $P_G(s)$ is rational, then clearly also $\prod_{i \in I^*} P_i(s)$ is rational. Moreover, if for a given integer n the set $\{i \in I^* | n_i = n\}$ is finite, then the product

$$\prod_{\substack{i \in I^*\\n_i \neq n}} P_i(s)$$

is again rational. Define J to be the subset of I^* of the indices *i* with the property that $n_i = n_j$ for infinitely many $j \in I^*$; since by Proposition 3.3 there is a bound on the set $\{n_i\}_{i \in I^*}$, the set J differs from I^* for a finite number of indices and thus the product

$$\prod_{i\in J} P_i(s)$$

is still rational. Our claim is that J is empty; this will imply that there are only finitely many non-Frattini chief factors and consequently that G/Frat(G) is a finite group (see e.g. [3, Theorem 4.3]). Assume by contradiction that J is non-empty and set

$$m_0 = \max\{n_i \mid i \in J\},\$$

$$q = \text{largest prime} \leqslant m_0,\$$

$$m = \min\{n_i \mid n_i \ge q, i \in J\}$$

$$p = \text{largest prime} < q.$$

We will work on the product $\prod_{i \in I} P_i^p(s)$ of the finite Dirichlet series

$$P_i^p(s) = \sum_{p \neq n} \frac{b_{i,n}}{n^s}.$$

Since $\prod_i P_i(s)$ is rational, then also $\prod_i P_i^p(s)$ is rational (see Corollary 4.1). Let Λ be the set of positive integers *n* divisible by *q* but not by *p*. Note that for any choices of *i*, if $n \in \Lambda$ and $b_{i,n} \neq 0$, then $n_i \ge q > p$ and, by Lemma 2.1, there exists a subgroup Y_i of index x_i in X_i such that $n = x_i^{r_i}$; hence $v_q(n) = r_i v_q(x_i)$. On the other hand, $q > m_0/2$ implies that $n_i < 2q$, which means that $v_q(x_i) \le 1$ and thus $v_q(n) = r_i$. Let

$$w = \min\{x \in \Lambda \mid b_{i,x^{r_i}} \neq 0 \text{ and } v_q(x) = 1\}.$$

By Proposition 4.3 applied to $\prod_i P_i^p(s)$, it follows that the product

$$\prod_{i\in J} \left(1 + \frac{b_{i,w^{r_i}}}{w^{r_i \cdot s}}\right)$$

is rational. By Proposition 3.3 we have that $\pi(G)$ is finite, and hence, by Corollary 5.2, there exists a prime *t* such that *t* does not divide r_i for every $i \in J$. Now it is sufficient to prove that $b_{i,w^{r_i}} \leq 0$ for every $i \in J$ and $b_{i,w^{r_i}} < 0$ for infinitely many $i \in J$ to reach a contradiction and prove the theorem; indeed by the Skolem–Mahler–Lech Theorem (Proposition 4.2) it follows that if $b_{i,w^{r_i}} \leq 0$ for every $i \in J$, then $b_{i,w^{r_i}} = 0$ for all but a finite number of indices $i \in J$.

We have two possibilities:

Case 1: m = q. If $b_{i,q^{r_i}} \neq 0$ then X_i has a subgroup of index q and therefore i is one of the infinitely many indices of J such that $n_i = m = q$. If S_i is abelian then $b_{i,q^{r_i}} < 0$; otherwise $S_i = \text{Alt}(q)$ and every supplement with index q is maximal, so that $b_{i,q^{r_i}} < 0$ by Lemma 2.2. It follows that w = q and $b_{i,w^{r_i}} < 0$ for infinitely many $i \in J$.

Case 2: m > q. In this case, both m_0 and m are non-prime, since otherwise we would have $m_0 = q = m$ or m = q. Moreover, if $n \in \Lambda$ and $b_{i,n} \neq 0$, then $n_i \ge q$ hence $n_i \ge m > q$; in particular S_i is non-abelian, for otherwise $n = q^{r_i}$ and $n_i = q$. We claim that

$$w = \begin{cases} \binom{m}{q-1} & \text{if } m \notin \{6, 10\}, \\ 126 & \text{if } m = 10, \\ 10 & \text{if } m = 6, \end{cases}$$

and $b_{i,w^{r_i}} \leq 0$ for every $i \in J$. Whenever $n_i = m$ (and this holds for infinitely many $i \in J$), by Lemma 2.3 the number w^r is the smallest *q*-useful index in L_i and $b_{i,w^{r_i}} < 0$. For $n_i < m$ there are no *q*-useful indices, so let $n_i > m$. As *q* is still the largest prime less than or equal to n_i , and n_i is not a prime, we can apply Lemma 2.3. If $n_i \notin \{6, 10\}$, then the minimal *q*-useful index in L_i prime to *p* is

$$\binom{n_i}{q-1}^{r_i} > \binom{m}{q-1}^{r_i} = w^{r_i}$$

since $n_i > m$. We cannot have $n_i = 6$ since then $n_i = m$, and so the last cases are $n_i = 10$ and m = 8 or m = 9; the minimal q-useful index in L_i is then 126^{r_i} which is larger than $\binom{m}{q-1}^{r_i}$ for both m = 8, 9 (with q = 7). This proves that $b_{i,w^{r_i}} \le 0$, and so our discussion is complete.

References

- E. Detomi and A. Lucchini. Crowns in profinite groups and applications. In *Non-commutative algebra and geometry*, Lecture Notes in Pure Appl. Math. 243 (Chapman & Hall/CRC, 2006), pp. 47–62.
- [2] E. Detomi and A. Lucchini. Profinite groups with multiplicative probabilistic zeta function. J. London Math. Soc. (2) 70 (2004), 165–181.
- [3] E. Detomi and A. Lucchini. Profinite groups with a rational probabilistic zeta function. J. Group Theory 9 (2006), 203–217.
- [4] J. Dixon and B. Mortimer. *Permutation groups*. Graduate Texts in Math. 163 (Springer-Verlag, 1996).
- [5] P. Hall. The Eulerian functions of a group. Quart. J. Math. Oxford Ser. (2) 7 (1936), 134– 151.
- [6] A. Lubotzky and D. Segal. Subgroup growth. Progress in Math. 212 (Birkhäuser Verlag, 2003).
- [7] A. Mann. A probabilistic zeta function for arithmetic groups. *Internat. J. Algebra Comput* 15 (2005), 1053–1059.
- [8] A. Mann. Positively finitely generated groups. Forum Math. 8 (1996), 429–459.
- [9] J. Nagura. On the interval containing at least one prime number. *Proc. Japan Acad.* **28** (1952), 177–181.
- [10] A. E. Zalesskij. Linear groups. In Algebra, IV, Encyclopaedia Math. Sci. 37 (Springer-Verlag, 1993), pp. 97–196.

Received 28 April, 2006; revised 14 September, 2006

- Eloisa Detomi, Dipartimento di Matematica Pura ed Applicata, Università di Padova, via Trieste, 63, 35121 Padova, Italy E-mail: detomi@math.unipd.it
- Andrea Lucchini, Dipartimento di Matematica, Università di Brescia, Via Valotti, 9, 25133 Brescia, Italy E-mail: lucchini@ing.unibs.it