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Abstract

The gauge mechanism is a generalization of the momentum map which links conservation
laws to symmetry groups of nonholonomic systems. This method has been so far employed
to interpret conserved quantities as momenta of vector fields which are sections of the con-
straint distribution. In order to obtain the largest class of conserved quantities of this type,
we extend this method to an over—distribution of the constraint distribution, the so—called
reaction—annihilator distribution, which encodes the effects that the nonholonomic reaction
force has on the conservation laws. We provide examples showing the effectiveness of this gen-
eralization. Furthermore, we discuss the Noetherian properties of these conserved quantities,
that is, whether and to which extent they depend only on the group, and not on the system.
In this context, we introduce a notion of ‘weak Noetherianity’. Finally, we point out that the
gauge mechanism is equivalent to the momentum equation (at least for locally free actions), we
generalize the momentum equation to the reaction—annihilator distribution, and we introduce
a ‘gauge momentum map’ which embodies both methods. For simplicity, we treat only the
case of linear constraints, natural Lagrangians, and lifted actions.

Keywords: Nonholonomic systems, First integrals, Symmetries of nonholonomic systems, Non-
holonomic momentum map, Momentum equation, Reaction—annhilator distribution, Nonholonomic
Noether theorem, Gauge momenta, Gauge momentum map, Weakly Noetherian first integrals.

MSC:

1 Introduction

A. The link between symmetries and conservation laws of nonholonomic systems has been ex-
tensively studied, particularly for the case of natural Lagrangians and lifted actions, which is the
case we consider in this article, see e.g. [2, 18, 19, 21, 3, 12, 7, 13, 26, 17, 22, 6, 14, 28, 15] and
references therein. Due to the reaction forces exerted by the nonholonomic constraint, only certain
components of the momentum map of a lifted action which leaves the Lagrangian invariant are
conserved quantities.
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However, a ‘gauge-like’ mechanism which is more general than the momentum map has been
devised to link symmetry groups to conservation laws of nonholonomic systems [5]. Within this
method, first integrals are produced as momenta of certain vector fields which are tangent to the
group orbits, but need not be infinitesimal generators of the group action. (Here, the ‘momentum’
of a vector field defined on the configuration manifold is the Hamiltonian of its (co)tangent lift;
later on, we will however reserve this term for the components of the momentum map). So far, the
study of this gauge mechanism has been restricted to the consideration of vector fields which are
sections of the constraint distribution, that is, using a common terminology, which are horizontal
vector fields. Accordingly, we will call horizontal gauge momenta the resulting conserved momenta.

More precisely, as proposed in [5], the gauge method consists of the idea of constructing horizon-
tal vector fields which generate conserved momenta as pointwise linear combinations of infinitesimal
generators of the group action, with coefficients which are smooth functions on @. Even though
this method is in principle constructive, to our knowledge it has not been employed so far to
find new first integrals of specific nonholonomic systems. Instead, the effectiveness of this idea
was demonstrated by showing that a number of known first integrals of sample nonholonomic
systems, whose relation to a symmetry group was previously unknown, are in fact related to it
in this gauge-like way [5, 22]. In our opinion, the gauge mechanism has a significant conceptual
interest, in that it points out a precise way of extending, beyond the momentum map, the link
symmetries—conservation laws for nonholonomic systems.

In view of this, in this article we will show that the gauge mechanism can be extended beyond
the horizontal case, and can accordingly account for more conservation laws than what known so
far. Moreover, we will study some of the properties of the conserved ‘gauge momenta’ it produces,
and we will clarify its relation to the nonholonomic momentum map and momentum equation of
[7, 9, 10], that we will extend as well beyond the horizontal case.

B. Our approach rests on a recent characterization, due to [15], of the effects that the reaction
force exerted by the nonholonomic constraint has on the conservation of the momentum of a
vector field on the configuration manifold. As shown in [15], these effects can be encoded in a
certain distribution R° on the configuration manifold ), which is called the reaction—annihilator
distribution. The fiber Ry of this distribution over a point ¢ € @ is the annihilator of all reaction
forces on constrained motions through ¢, and contains the fiber D, of the constraint distribution.

Any first integral linear in the velocities is the momentum of infinitely many vector fields, only
one of which is horizontal [19]. Therefore, considering non-horizontal vector fields does not produce
new first integrals, but this freedom can be used to select vector fields with some properties—such
as to be tangent to the orbits of a group action. From this perspective, the unique role of the
distribution R° emerges from the fact that it is the largest distribution for which the following
is true: any vector field which is a section of R°, and whose lift to TQ preserves the Lagrangian,
generates a conserved momentum [15]. As a particular case, infinitesimal generators of the group
action which are sections of R° generate conserved components of the momentum map [15]. (See
Section 2 for precise statements).

Thus, we will extend the gauge mechanism to sections of R° and obtain in this way the largest
class of first integrals which can be interpreted as conserved ‘gauge momenta’ (Proposition 3). This
study will require a formalization of the gauge mechanism itself, that in [5] was only illustrated
on examples. In doing this, we will find convenient to formulate the gauge mechanism in terms
of vector fields tangent to the group orbits, rather than in terms of pointwise linear combinations
of infinitesimal generators (these two characterizations are equivalent if the action is, for instance,
locally free, see Section 3C).

The conserved gauge momenta so obtained can be classified into four classes (components of
the momentum map or ‘gauge momenta’; generated by sections of D or by sections of R°). The
interrelation among these four classes is somewhat subtle, and we will produce examples of gauge
momenta which illustrate all possible cases. In particular, we will show on an ad hoc example (a
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five-dimensional version of the nonholonomic particle of [25]) that there are indeed conserved gauge
momenta whose unique horizontal generator is not tangent to the group orbits, but nevertheless,
they possess generators with this property which are sections of R°.

We will also investigate whether the conserved quantities provided by the gauge mechanism have
the (‘Noetherian’) property of the ordinary momentum map, that is, whether they are conserved
quantities for all systems with invariant Lagrangian (and given nonholonomic constraint). This
property is shared, in particular, by the momenta of horizontal infinitesimal generators, while
horizontal gauge momenta satisfy a weaker version of it, that we will call ‘weak Noetherianity’, that
is, they are first integrals for any invariant Lagrangian with fixed kinetic energy (Proposition 5).

C. The gauge mechanism has a very close connection with the nonholonomic momentum map
and momentum equation introduced in [7] and then variously generalized [9, 10, 27]. In its original
formulation [7], the momentum equation is the balance equation of the momentum of a horizontal
vector field which, at each point, coincides with the value at that point of an infinitesimal generator
of the group action. This is equivalent to saying that such a vector field is a pointwise linear com-
bination of infinitesimal generators of the action—just as in the gauge method as introduced in [5].
However, this connection between the two methods seems to have passed completely unnoticed so
far, presumably because of the fact that the gauge method has not received much attention and of
the fact that, in the studies of the momentum equation, the emphasis has not been primarily on
producing conservation laws (but see [28]).

Like the gauge mechanism, also the momentum equation has been considered so far only in the
horizontal case. We will show that it is valid for all sections of the reaction—annihilator distribution
R°, and not only for the horizontal ones. This will in fact provide a distinct introduction of the
distribution R°, as the largest distribution on the configuration manifold for which the momentum
equation holds (Proposition 6). We will then compare this extension of the momentum equation
to (our formulation of) the gauge mechanism and we will prove that they are equivalent for locally
free action, in the precise sense that the conserved solutions of the momentum equation are exactly
the conserved gauge momenta.

In doing this, we will introduce a gauge momentum map which unifies the gauge approach and
the nonholonomic momentum map. The gauge momentum map is defined on the space of sections
of the Lie algebra bundle over the configuration manifold ). To each such section, the gauge
momentum map associates a C°°—function on the phase space T'(Q. This function is a conserved
quantity for the nonholonomic system if and only if the section belongs to the intersection of the
reaction—annihilator distribution R° and the distribution of the tangent spaces to the group orbits.

D. The article is organized as follows. Section 2 is devoted to a review of known results on
conserved momenta and on the distribution R°, and is the basis for the entire treatment. In
Section 3 we formalize the gauge mechanism and extend it to sections of R°. The examples are
given in Section 4. Section 5 is devoted to the momentum equation and to the gauge momentum
map. A short Section of Conclusions follows.

We will use the Lagrangian description of nonholonomic systems, which is fully adequate to
the treatment of lifted actions. Since the geometry underlying all constructions is elementary,
for simplicity of exposition and greater clarity we will resort to a coordinate description wherever
possible and adequate. For general references on nonholonomic systems see e.g. [23, 8, 11, 6].

2 The reaction—annihilator distribution and its role

A. Nonholonomic systems and the reaction—annihilator distribution. In this Section,
which is based on [15], we review the role of the reaction—annihilator distribution in the conservation
of momenta of vector fields.
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As a starting point, consider a holonomic Lagrangian system (L, Q) with n-dimensional config-
uration manifold ¢ and smooth Lagrangian L = T — V, with kinetic energy T'(q, ) = %q’ - A(q)q
and potential energy V(¢). Here and in the following (g, ¢) are bundle coordinates on T'Q) and the
dot denotes the inner product in R™.

A linear nonholonomic constraint of rank r, 1 < r < n, is a non—integrable smooth distribu-
tion D on @ of constant rank r. This distribution, which is called the constraint distribution, can
be locally defined by annihilation of & = n — r linearly independent differential 1-forms on Q.
Using local coordinates, the fibers D, of the constraint distribution can be described as the kernel
of a k x n matrix S(g), which depends smoothly on ¢ and has everywhere rank k:

D, = kerS(g) = {4 € ,Q : S()i=0}. (1)

The constraint distribution D can also be thought of as a submanifold D of T'Q) of dimension
2n — k, which is called the constraint manifold:

D = {(¢;49) €TQ : §€Dy}.

D’Alembert’s principle states that the reaction force annihilates (an appropriate jet extension
of) the distribution D, and leads to a dynamical system on the constraint submanifold D of T'Q),
that is, a vector field Xy g p on D, that we will call nonholonomic (Lagrangian) system (L, Q, D).
This vector field is given by Lagrange equations with the reaction force, which in bundle coordinates
are

d oL 0L
L& _Z_R. )
dt 9¢  Oq
For a given system, namely for given S, A and V, the reaction force R is a known function of
(¢,4) € D, that is

R(q,q) = S(Q)T[S(Q)A(Q)_ls(Q)T]_l[S(Q)A(Q)_lﬁ(%d)+S(Q)A(Q)_1VI(Q)—7(%@)} (3)

where 3(q,q) € R™, V'(¢) € R™ and 7(q, ¢) € RF have components

. 8AU 1 6Ajh > .. / 8V . 8Saj ..
7 9 = - 5 ] 5 ‘/; = s a R = .
Bi(q, q) ;h < oar (q) > 0u; (q) ) djdn ' (q) o4 (@), alg;9) ;h a0 (@)d;dn

(t,5,h=1,...,n,a=1,...,k) [2].

For each ¢ € Q, the range of S(q)” is the annihilator Dy of Dy and, in agreement with
d’Alembert principle, the reaction force takes values in Dg. Given that, at each point g, the
matrix ST(SA=1ST)~1S A1 is the A~!-orthogonal projector onto Dy, the union over all potentials
V' : Q — R of the vectors R(q,q) equals Dy for any ¢ € D,. However, for a given system (namely,
for given S, A and V), the image

4€D,
of the fiber D, under the map ¢ — R(q,¢) may be only a proper subset of Dy. The annihilators
Ry C T,Q of these sets, being linear spaces, are the fibers of a distribution R° on @, possibly
of non—constant rank and non-smooth. Since R consists of the tangent vectors ¢ € T,Q which
annihilate all possible values of the reaction force on constrained motions through ¢, R° was called
the reaction—annihilator distribution [15]. Clearly RS D D, for all ¢ € Q.

B. Notation and terminology. From now on, thinking of the Lagrangian L =T — V as given,

we denote by
. oL, .
pla,q) = 8—q(q7Q) = A(q)q
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the conjugate momenta. If €9 = > 5?8 . is a vector field on @, then we denote by £79 its tangent
lift, namely the vector field on T'Q) which, in bundle coordinates (g, ¢), is given by

082
gTQ = E 5798(11 + E 4q; 8561 Dy, - (4)
i ij J

If € is a distribution on ), then we denote by I'(€) the space of smooth sections of €. Moreover,
we denote by &1 the distribution whose fibers are the A-orthogonal complements of the fibers of &,
where A is the kinetic matrix.

Given two distributions € and F on @, we denote by € N G the distribution on ¢ with fibers
€4 N G,. Moreover, we say that € is an over—distribution of F, and that F is an under—distribution
of &, if their fibers satisfy £, O F, for all ¢ € ). By a regular distribution we mean a smooth
constant rank distribution.

C. First integrals linear in the velocities. A first integral of a nonholonomic system
(L,Q, D) is a smooth function F' : D — R which is constant along the solutions of (2), that is,
Xr,0,p(F)=0. A first integral which is linear in the velocities can be written as

for some smooth vector field £9 on @, that we call a generator of F; we also say that F' is generated
by £9. Tt is well known that, because of the restriction to the constraint manifold D, the generator
of a first integral F' which is linear in the velocities is never unique. Specifically, there is a unique
generator 58 of F which is a section of D, and a vector field on @ is a generator of F' if and only
if its A—orthogonal projection onto D equals 58 [19]. Thus, a first integral which is linear in the
velocities has infinitely many generators which are sections of any over—distribution of D. The
unique role of R° emerges from the following

Proposition 1 [15] Given a nonholonomic system (L,Q, D) and a smooth vector field €9 on Q,
any two of the following three conditions imply the third:

Cl. €9 € T'(R°)

C2. €"%(L)|p =0

C3. £ -plp is a first integral of (L,Q, D).

The proof of Proposition 1 can be found in [15], but it is essentially the same as that of
Proposition 6 below.

Since R° is an over—distribution of D, Proposition 1 implies the well known result that any
smooth section €9 of D which satisfies the invariance condition C2 is the generator of a linear first
integral of (L, Q, D), see particularly [2, 19, 14]. On this regard, it should be remarked that, if €2 -p
is a first integral, then the A-orthogonal projection of £€% onto D satisfies the three conditions C1,
C2, C3 [15]. Therefore, Proposition 1 does not prove the existence of any new first integral with
respect to the case £€9 € T'(D). However, the consideration of sections of the larger distribution
R° gives significant advantages when a group action is considered, see next Subsection.

Furthermore, the consideration of R° gives insight on various questions. For instance, among
the consequences of Proposition 1 is the following fact, that we will need in the sequel: if £€% - p is
a first integral of the holonomic system (L, Q), then £9 - p|p is a first integral of the nonholonomic
system (L, Q, D) if and only if ¢ € T'(R°) [15].

Remark:  To our knowledge, the result just quoted, that a function which is linear in the
velocity is a first integral if and only if the tangent lift of the A—orthogonal projection onto D of
its generator preserves the Lagrangian on the points of D is due to Iliev [19]. A characterization
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of all first integrals, not only those which are linear in the velocities, has been given more recently
in [12] for linear constraints and then in [13, 26] for nonlinear constraints.

D. Conserved momenta of lifted actions. Assume now that a Lie group G acts smoothly
on ). We denote by 57? the infinitesimal generator corresponding to a Lie algebra vector n € g,
and by f};Q the tangent lift of f,?. In bundle coordinates (g, ¢), the momentum map J : TQ — g*
of the lifted action on T'Q is defined by (J(q,q),n) = J,(q, ), where

Iy = &?P

is the momentum associated to n € g. See e.g. [4, 1] for details. If the Lagrangian L is G-
invariant, namely fg Q(L) =0 for all n € g, then the momentum map .J is a conserved quantity of
the holonomic system (L, Q). With regard to the nonholonomic system, Proposition 1 implies the
following

Proposition 2 [15] Assume that a Lie group G acts smoothly on Q and that the Lagrangian L is
G-invariant. Given n € g, Jy|p is a first integral of (L, Q, D) if and only if fff € I'(R°).

We shall denote by G the (possibly non-regular) distribution on @ whose fibers G, are the
tangent spaces to the orbits of G in @, that is §; = T4(G.q). Then, it follows from Proposition 2
that the restriction to D of the momentum map J is a conserved quantity of (L,Q, D) if and only
if § C R°.

Let € be a distribution on ). Under the hypotheses of Proposition 2, assume that a Lie algebra
element 1 € g is such that the infinitesimal generator f,? is a section of €. Then, following [15], we
will say that

e 1 and f,? are E—symmetries

e J,|p is a E-momentum.
Of course, the interesting cases are £ = D and € = R°. In fact, Proposition 2 states that the set
of conserved components of the momentum map coincides with that of R°—momenta.

In the literature, D—symmetries are known as horizontal symmetries. Since D C R°, Proposi-
tion 2 implies the very well known fact that horizontal symmetries generate conserved momenta
[21, 3, 7, 10, 22]. The advantage of considering the distribution R° is that it can host more in-
finitesimal generators of the group actions than D, and the set of conserved components of the
momentum map may thus be larger than that of D—symmetries. A number of examples of first
integrals of nonholonomic systems which are R°~momenta but not D-momenta have been given
in [15], see also Section 4.

Remark: FEven though the terminology that we adopt does not stress this fact, ‘symmetries’
and ‘momenta’ (and later on ‘gauge symmetries’ and ‘gauge momenta’) are relative to a given
group action.

3 Gauge symmetries and gauge momenta

A. The gauge mechanism. In this Section we consider a nonholonomic Lagrangian system
(L, @, D) with Lagrangian invariant under the (lift of) a smooth action of a Lie group G on Q.
Motivated by the fact that horizontal symmetries are rather rare and account only for some of
the known first integrals linear in the velocities of sample nonholonomic systems with symmetry,
Bates, Graumann and MacDonnell pointed out in [5] that there is another, more general mechanism
to produce integrals of motion of nonholonomic systems out of a group action. (See also [22, 28]
for related considerations). Specifically, given that any section of D which infinitesimally preserves
the Lagrangian on the constraint manifold generates a linear first integral [2, 21, 3, 12, 14], they
constructed such sections in a number of examples by taking linear combinations of generators
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of the group actions, but with nonconstant coefficients. By Proposition 1, the same remains true
when the sections are R°—valued. Thus, we formalize here the gauge method in this more general
case. We freely use the notation introduced in the previous Section. First, we introduce some
terminology to be used throughout:

Definition 1 Consider a nonholonomic system (L,Q, D) and a smooth action of a Lie group G
on @ such that L is G—invariant.

(i) A gauge symmetry is a smooth section of G which satisfies the invariance condition C2.
The gauge momentum ng : D — R of a gauge symmetry £9 is the function

JgQ = p'fQ|D~

(1) If € is a distribution on Q, then a gauge symmetry which is also a section of € is called
E—gauge symmetry. The gauge momentum of an E-gauge symmetry is called E-gauge momentum.

(iii) A gauge momentum is a function on D which is the gauge momentum of some gauge
symmetry.

The reason why in the definition of gauge symmetry we require the invariance condition C2 is
that the lift of a section of G need not be tangent to the orbits of the lifted action. In the sequel, the
important cases are those with either € =D or &€ = R°. The connection between gauge momenta
and first integrals descends immediately from Proposition 1:

Proposition 3 Consider a smooth action of a Lie group G on Q such that L is G—invariant.
i. A gauge momentum is a first integral of (L,Q, D) if and only if it is a R°—gauge momentum.

it. A first integral linear in the velocities of (L, Q, D) is a gauge momentum if and only if it has
a generator which is a section of G N R°.

Proof. (i) A gauge symmetry ¢9 satisfies the invariance condition C2. Hence, by Proposition 1,
€9 . p|p is a first integral if and only if £€¥ is a section of R°. (ii) Let £¥ - p|p be a first integral.
Then, by Proposition 1, £9 satisfies C2 and is a section of G if and only if it is a section of R° and
of . |

Thus, R°—gauge symmetries form the class of generators of first integrals which satisfy the
invariance condition C2 and are sections of §. And among all gauge momenta, the R°—gauge
momenta are the conserved ones.

The term ‘gauge’ was first used in [5], which considered only the horizontal case with € = D.
This term refers to the fact that at each point ¢ € Q, £9(q) coincides with the value at that point of
the infinitesimal generator of an element of g, but this element changes from point to point. Since
the infinitesimal generators of the vectors of g span the fibers of G, a practical (though possibly
not exhaustive, see subsection 3.C) way of looking for E—gauge symmetries, & = D or R°, is that
of choosing a basis 71, ..., 7, of g and then looking for smooth functions f1,..., fi, : @ — R such

that the vector field .
€9:=>" fumy? (5)
b=1

is a section of € and satisfies the invariance condition C2. In such a case, the £-gauge momentum
Jea is the restriction of Y- | fiJy, to D. Note that E-symmetries are given by constant f,’s.
Several instances of first integrals of sample nonholonomic systems which are not D—momenta
but are D—gauge momenta have been obtained in [5, 22] using a variant of this procedure. (Instead
of verifying that a section (5) of D satisfies condition C1, it was verified that it satisfies the
equivalent condition C3). As shown in [15], some of these D—gauge momenta are R°—momenta,
and are thus linked to the group action without the need of a gauge-like construction. Nevertheless,



Fasso, Giacobbe, Sansonetto: Gauge integrals and the nonholonomic momentum equation 8

some others among the D—-gauge momenta found in [5, 22] are not momenta. We shall provide
elementary examples of all possible cases in the next Section.

The fact that the class of R°—gauge momenta may be larger than that of D—-gauge momenta is
important when R°N G is an over—distribution of DN G. In particular, if the constraint distribution
D and the distribution G of the tangent spaces to the group orbits have trivial intersection, then
there cannot be D—gauge momenta while there may be R°—gauge momenta and even R°~momenta.
Systems with this property form the so—called ‘purely kinematic case’ and include the (generalized)
Chaplygin systems [20, 7, 10, 16]. An example of this situation will be given in Section 4.E.

In certain cases it is possible to make some statements about the (non) existence of D— and
R°—gauge momenta:

Proposition 4 Consider a smooth action of a Lie group G on @ such that L is G-invariant.
i. If D C G, then every first integral which is linear in the velocities is a D-gauge momentum.
ii. If G C D+, then there are no nonzero conserved gauge momenta for the considered action.

Proof. (i) Let F = £ -p|p be a first integral. As already remarked in Section 2, the A-orthogonal
projection 5% of £€% onto D is a generator of F' and, by Proposition 1, it satisfies the invariance
condition C2. Since D = D NG, it follows that 53 is a D—gauge symmetry and hence F is a
D—-gauge momentum.

(ii) Recall that a gauge momentum is conserved if and only if it is a R°~gauge momentum. If
F =¢9 . p|p is a R°~gauge momentum, then (¢ € I'(R° N G). Since R° NG C D, (¥ € T(DH)
and €9 -plp =0.

Case i. of Proposition 4 is verified, for instance, whenever the action is transitive on (). For an
example, see Section 4.A.

B. Noetherianity and weak Noetherianity. In the Hamiltonian formulation of holonomic
systems, the momentum map of a group action on @) has the property that it is a conserved quantity
for any system on T*@ whose Hamiltonian is invariant under that action. This fundamental
property of the momentum map is sometimes called “Noetherian condition” [24]. In the Lagrangian
formulation, where the conjugate momenta change with the kinetic energy, this property is of course
owned by the infinitesimal generators, not by the components of the momentum map. We now
discuss whether momenta and gauge momenta share this property—or some weaker version of it.

Definition 2 Consider a manifold Q, a distribution D on Q, and a Lie group G which acts
smoothly on Q.
i. A section €9 of G is Noetherian if €9 - p|p is a first integral of (L,Q, D) for any G—invariant
Lagrangian L=T —V on TQ.
it. Fiz a G—invariant kinetic energy T'(q,q) = %q'-A(q)(j. A section €2 of G is weakly Noetherian
if €2 - p|p is a first integral of (T —V,Q, D) for any G—invariant potential V on Q.

Proposition 5 Under the hypotheses of Definition 2:
i. D—symmetries are Noetherian.
1. D—gauge symmetries are weakly Noetherian.

Proof. Statement i. is obvious, given that the momentum map fullfills the Noetherian condition
and the distribution D is kept fixed. In order to prove statement ii., consider a D—gauge symmetry
€@ €T(SND) of (T,Q, D). If V is a G-invariant function of @, then (79 (T —V)|p = T9(T)|p —
€9(V) = 0. Hence ¢ is a first integral of (T —V,Q, D). &

A particular instance of statement ii. was noticed in [5], where it was remarked that a certain
D-gauge momentum of the so called ‘nonholonomic particle’ is a first integral for any invariant
choice of the potential.
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Thus, from the point of view of the Noetherian conditions there is an important difference
between D—(gauge) momenta and R°—(gauge) momenta. R°—symmetries need not be Noetherian
because the reaction—annihilator distribution depends on A and V. For the same reason, R°—gauge
symmetries need not be weakly Noetherian. The reason why D—gauge symmetries need not be
Noetherian is that, if €2 € T'(D) is a section of G but not an infinitesimal generator of the G—
action, then ¢79(T') need not vanish for all G-invariant kinetic energies 7. (Consider for instance
£9 =%, 6%, asin (5). It follows from (4) that 79 =37, filI @+, (¢-04.f)(£% -9;) and hence,
if T is G-invariant, £79(T) = 3", (¢ 94 f»)Jy,, which need not be zero even when restricted to D).
Nevertheless, there may be D—gauge symmetries which are not D—symmetries and are Noetherian.
An elementary example is given by the angular momentum considered in the Conclusions.

C. Some remarks. We add now some remarks on the gauge method. First, we note that,
without some hypotheses on the group action, it is in general not true that every section of § can
be written as a linear combination (5) with smooth coefficients f,. This is true if, for instance, the
action is locally free. (Under this hypothesis G is a regular distribution and can hence be thought
of as a submanifold § of TQ. The map ® : Q x g — G, (¢,7) — £9(q) is a bijection. Since its
Jacobian matrix is invertible, ® is a diffeomorphism. It follows that to each G-valued vector field
€9 there corresponds a unique smooth g-valued vector field defined by q — 74 (®~1(£9(q))), where
7y is the projector onto the second factor).

Second, we note that, even though the constraint distribution D is not integrable, it may
happen that the reaction—annihilator distribution R° is integrable. In this case, if §? and f?
are two sections of R°, then their Lie bracket [5? , §2Q ] is a section of R°. Moreover, since
[g?,gg?]TQ = [£1TQ, g“Q]’ if 5? and §2Q satisfy the invariance condition C2, then also [5?,5269]
satisfies C2. Therefore, the set of all generators of first integrals linear in the velocities which
satisfy C2 form a Lie algebra. Since [¢%,€9]-p = {¢¥ - p,£§ - p}, this in turn implies that these
first integrals form a Lie algebra with respect to the Poisson brackets { , } on T*Q.

Third, as observed in [5], the notion of gauge momenta has an obvious extension to non-lifted
actions. Since the study of this extension is probably more appropriately done in the Hamiltonian
setting, we do not consider it here. We note however that the consideration of momenta of vector
fields on T'Q which are not lifts of sections of § might open up new possibilities even in the case of
lifted actions. In fact, a (non—equivalent) alternative to the gauge method we have described here
would use, instead of (5), linear combinations of the lifts ngQ of the infinitesimal generators, with
coefficients which are functions on T'Q). A comparison of the two methods requires a more general
setting than the one we adopted here, and therefore lies outside the scope of the present work.

4 Examples

The relations among the four classes of D— and R°—momenta and D— and R°—gauge momenta are
depicted in Figure 1. We provide here a few simple examples, chosen to illustrate the various situ-
ations: R°—momenta which are or which are not D—gauge momenta, D—gauge momenta which are
not R°—momenta, and R°—gauge momenta which are neither R°—momenta nor D—gauge momenta,
see Figure 1. Even though our emphasis is not on D-momenta, several examples of which are
well known, see e.g. [7, 10, 6, 11], we will incidentally find here one instance of them. For other
examples of D—gauge momenta see [5, 22] and for other examples of R°~momenta see [15].

A. The vertical coin. Consider a disk which is constrained to roll without slipping on a horizontal
plane while standing vertically, under the action of no active forces (except for gravity, which
however plays no role), see e.g. [12, 7, 10, 15]. For a natural choice of the symmetry group, this
system has two R°-momenta which are not D—momenta [15]. We shall show here that they are
D—gauge momenta as well. (For another natural choice of the symmetry group, however, one of the
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R°—gauge momenta

D-momenta
D-gauge R°—momenta
momenta

oD e ABD e C

Figure 1: Classification of conserved gauge-momenta. The points locate the first integrals exhibited by
Examples A, B, C, D and E of Section 4.

two is a D—momentum, see Subsection 4.B). This is an elementary computation, which is however
useful as the basis for the next example.

The holonomic system consists of a disk of unit radius which stands vertically and touches the
plane. Its configuration manifold is Q = R? x S x St > (z,y, ¢, 0), where (z,y) € R? are cartesian
coordinates of the point of contact, ¢ is the angle between the z—axis and the projection of the
disk on the plane, and 0 is the angle between a fixed radius of the disk and the vertical. Assuming
that the disk has unit mass, the kinetic energy is T' = %(xz + y2) + %ngQ + %192, where J and I
are the pertinent moments of inertia. All four conjugate momenta p, = &, py = ¢, p, = J¢, and
po = 16 are first integrals of the holonomic system.

The nonholonomic constraint of rolling without slipping leads to a constraint distribution D
with fibers

D(z,y,0.0) = sSPang {0, , cos @ Dy + sinpdy + g}

and, by (3), to a reaction—annihilator distribution R° with fibers

Rz y.p.0) = SPang{0y , cosp Iy +sinpdy, O }.

Note that D has rank two while R° has rank three. The constraint mgmifold D is six—dimensional

and can be globally parameterized with the coordinates (z,y, ¢, 0, ¢, 6). In these coordinates, the
equations of motion are

i=60cosp, y=0sinp, $=0, 6=0.

Thus, p,|p and pe|p are first integrals. Note that their generators 0, and Jy are sections of R°
(consistently with the fact that they are restrictions to D of first integrals of the holonomic system).

Following [7], we now introduce a symmetry group. The Lagrangian is invariant under the
action of SE(2) x S given by

((a,b,a),ﬂ).(x,y,gp,@) = (a+xcosa—ysina, b+zsina+ycosa, p+a, 0+ )

for (a,b, ) € SE(2) and 3 € S', namely roto—translations of the disk on the plane and rotations of
the disk around its axis. Since this action is transitive on the configuration manifold, Proposition 4
ensures that both p,|p and pg|p are D—gauge momenta.

Since 0y is a section of R°, ps|p is a R°—momentum. That p,|p is a R°—momentum is seen by
observing that, since p, sin ¢ + p, cos ¢ = —pg on D, another generator of p,|p is 0, + cosp 05 +
sin ¢ 0y + 0y, which is a section of R° and an infinitesimal generator of the action.
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It remains to show that neither p,|p nor ps|p are D—momenta. The generator d, of py|p is
a section of D but is not an infinitesimal generator of the action. The generator of py|p which is
a section of D is seen to be cos pd, + sin pdy + Jp, which is not an infinitesimal generator of the
action.

B. The vertical coin with a different group. Even though, in the previous example, 0,
is not a D-symmetry for the action of SE(2) x S, it is a D-symmetry for the abelian action of
R? x S1 x St 5 (\, p,, B) given by (z,y,0,0) — (x + X,y + i, + a,0 + 3). Note that the
two actions have the same orbits. This example indicates that the distinction between the various
categories of first integrals may be rather subtle.

C. A torqued vertical coin. As we have already remarked, a case in which there cannot be
D—gauge momenta, while there may be R°—momenta and R°—gauge momenta, is that for which
the intersection between the constraint distribution D and the distribution G of the tangent spaces
to the group orbits is trivial in an open subset of Q. In order to construct a system with one
R°—momentum which is not a D-gauge momentum, we thus add to the disk of Example A an
external potential which is invariant under the action of a subgroup G = T? of SE(2) x S*, such
that D, NG, = {0} (in an open subset of Q).

Specifically, we assume that the disk is acted upon by external forces with potential energy
V(z,y,o) = zsinp — y cosp. The equations of motion of the nonholonomically constrained
system (L =T —V,Q, D) are

;tzécosga, yzésinga, Jp = xcosp+ysing, 6 =0.

Thus, pg|p is still a first integral.
The Lagrangian L is invariant under the action of T? given by

(o, B).(z,y,¢,0) = (x cos f —y sin B,z sin 3 +y cos B, + 3,0 + ) .
The distribution G tangent to the orbits of this action has fibers
S(a,y,0,0) = SPaNR {0y, Op — Y0y + 20y} .

The intersection Dy N G, is trivial in all of @, except where x = cos ¢ and y = —sin¢. Therefore,
there are no (nonconstant) D—gauge momenta.

The reaction annihilator distribution R° turns out to be the same as in Example A. Thus, 0y
is a R°-symmetry and pg|p is a R°~momentum. Note that, since G, N Ry = spang{Jy}, there are
no other R°-gauge momenta.

D. The heavy ball in a cylinder. We consider now a system which is known to possess a
D-—momentum and a D—gauge momentum and we show that the latter is not a R°—momentum.

The system is the classical system of a heavy homogeneous ball constrained to roll without
slipping inside a vertical cylinder, see particularly [5, 22]. Let m be the mass of the ball, r its
radius, [ its moment of inertia, and R + r the radius of the cylinder. The configuration space is
Q = R x S' x SO(3). Let (z,a) € R x S be the coordinates of the center of mass of the ball
and (p,1,0) € ST x S1 x (0,7) the Euler angles relative to a body frame with the origin in the
center of the ball and to a spatial frame with the same origin and axes x, y, z with z aligned to the
axis of the cylinder (as for the definition of the angles, we adopt the convention of [4]). Then, the
Lagrangian is L = 2 (R262 + 22) + £(60% 4+ ¢? + ¢ + 291 cos 0) — mgz.

The no-slipping constraint R + r[¢ + 1 cos ] = 0, 2 + [t sin 8 cos(a — @) 4 O sin(a — )] = 0
produces the constraint distribution with fibers

Dz.0,p.0,0) = spang {70o — RO, , Oy — rsin(a — ¢) 0., Oy — 7 cos(a — ¢)sinf 9, — cosh 0y} .
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The reaction force is R(«, z, ¢, 1,0, &, 2, ¢, ¥, 0) = (0, K,0, Krcos(a— ) sin§, Krsin(a— <p)) with
K =mJ(J +mr?)~ g —rcos(a — p)ad + rsin(a — @) sin fa)], so that

Riaz,0.0,0) = SPang {0a , Op, Op — rsin(a — ) 0., Oy — rcos(a — ¢)sinf 9.} .

(Note that R° has rank four while D has rank three).

The holonomic system of Lagrangian L has the linear first integrals p, = mR2¢, p, = I(¢ +
¥ cos ) and py = I(lﬁ—i—gb cos@). Since the generators 9, of p, and 9, of p, are sections of R°, pa|p
and p,|p are first integrals of the nonholonomic system, even though they are not independent
given that Ip.|p = —mrRpy|p.

The Lagrangian L is invariant under the right action of S* x SO(3) on the S xSO(3) factor of Q.
The tangent spaces to the group orbits are spanned by d, and by three infinitesimal generators of
the SO(3)-action, which are easily computed from the three components of the momentum map
(namely, the angular momentum vector in space) as

sin ¢(0y, — cos 8 0,) + cospsinb dy , cos p(0y — cos80,) —sind sinp dy , Oy -

Thus, J, and 9, are R°—symmetries and p,|p is therefore a R°—momentum. However, as remarked
in [5, 22], pa|p is also a D-momentum because it is also generated by the D-symmetry (9o —2£0,,).

The nonholonomic system possesses yet another first integral linear in the velocities and in-
dependent of p,|p, which has been shown to be a D—gauge momentum for the considered group
action [5, 22]. Such integral is not a R°—momentum because the only linear combinations with
constant coefficients of infinitesimal generators which are sections of R°® are of the form ad, + b0,
with a,b € R, and generate first integrals that have already been considered.

E. A five—dimensional nonholonomic particle. The ‘nonholonomic particle’ of ref. [25] has
been used as an example of a system having D—gauge momenta which are not D—momenta [5]. Here
we use a higher—-dimensional analogue of this system to show that the class of R°—gauge momenta
is actually larger than the union of D-gauge momenta and R°~momenta. This example can be
viewed either as a nonholonomically constrained particle in 5-dimensional space, or as a system
of two nonholonomically constrained particles with equal masses, one of which is holonomically
constrained to a plane.

Consider the Lagrangian L(q,¢) = 3 |¢|* on TR™ 3 (q,¢), n > 3, and the linear nonholonomic
constraint given by the non—-integrable rank—two distribution with fibers

Dy = SPanR{afn ; @0, + -+ Gn—20q,_, + 8(In} .
The matrix S(g) such that D, = ker S(g) is the (n — 2) x n matrix with block structure
S(q) = (On—z Lz —4),

where 0,,_5 € R"~2 is the zero vector, I,,_5 is the (n — 2) x (n — 2) identity matrix, and § € R"~2
is the vector whose components are the first n — 2 coordinates of ¢q. In the sequel we write vectors
indifferently as rows or columns, depending on typographical convenience.

Since the kinetic matrix A equals the identity and there is no potential energy, equation (3)
gives the reaction force

. -1 .
R(q,4) = =S@)"[S(@)S(9)"] ~(a.9)-
In order to determine R, = quDq R(q,q) we first compute the span of the vectors (g, ¢) for

g € D, and then we apply to such a vector space the linear transformation ST[SST]~1. Note that
(¢, 4) = —¢ng and that the vectors of D, are the vectors (a, bq1, . .., bgn—2,b) for a,b € R. Thus

v(q,(a,bq1, ..., bgn—2,b)) = (— ba, —b%q,. .., —b2qn_3) .
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Varying a, b and taking the linear closure generates the vector space

1 0
0 q1
E = spany <:>, :
(.) Qn;B
Since SST = 1T,_5 + §¢7 has inverse I,_o2 — (1 + [§]*)~'4¢q", we have ST[SST]™! =

ST — (1 +1G/*)~1ST¢GT. Hence, the image of E under the matrix ST(SST)~! is the vector
space

0 0
—q1492—...—qn—-39n—2 12
2 el
(I(II}I2 q1q2
Ry = spang . , :
Q1 dn—s w2
0
Since R, has dimension 2 everywhere except on the hyperplane ¢; = 0, where it is one—

dimensional, the distribution R° has rank n — 2 in the complement of such hyperplane, and has
rank n — 1 on it. Thus, for n > 5 the fibers of R° strictly contain everywhere those of D. We
restrict ourselves to n = 5. In this case

1 0 0
R® = span 0 kA —?12
¢ = SPalR 0] \a )’ a
0 1 43 —q1q3

except on the points of the hyperplane ¢; = 0, where the fibers of R° are {¢ € R® : ¢ = 0}.
Consider now the action of R3 on the configuration space R® by translation on the coordinates
G2, q4,qs. All smooth sections of the distribution § N R°® must be multiples of the vector field

0
q1

— 0
v (q) B q1+43

14+¢5—q1qs

while the only smooth section of the distribution G N D is the zero section. This last fact implies
that there cannot be D-momenta nor D-gauge momenta. Moreover, since no function f : R> — R
can make f(¢q)v(g) an infinitesimal generator of the group action, there cannot be R°—momenta
either.

On the other hand, a computation shows that the tangent lift of the vector field

€9q) = (1 +1¢1*)™?v(q)

preserves the Lagrangian % |§|? on the constraint manifold D. In fact, on the points of D,

0
q1 (qf+q§+q§+1)

0
(q1+43) (a5 +a3+a5+1)

3/2 2—qigs+1) (a3 +ad+ad+1
9 = (g +6 +q3+1) / (63—nas )E)ql a3+a3+1)

—d50247 —d5q2q3q1+d1 (g5 +a3+1)

4105 —q1(d1+2d592)93+(d1+4592) (a5 +1)
(1'5(12q§+115(12(1311f—(filqg—2(15(1§qz+f11)(11—f11f1§—((1'1+(1'5(12)((I§+1)f13

and a(aqTq.) (¢,4) = (0,0,0,0,0, 41,4591, G592, G593, 5 ), SO that the scalar product of the two vectors

is zero in D. Therefore, (9 is a R°-gauge symmetry for the considered action of R3. Tts gauge
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momentum, which is obtained by restricting £€% - p = €9 - (41, d5q1, 45q2, 4593, Gs) to the fibers of D,

equals
gs\/1+a¢i+a3+a3, (¢,9)€D.

This is an example of a R°~gauge momentum which is neither a R°~momentum nor a D-gauge
momentum.

Note that the existence of R°—gauge momenta which are not D—-gauge momenta does not
contradict the fact that, as we have remarked in Section 2, any first integral which is linear in
the velocities has a generator which is a section of D and satisfies condition C2, because the
A-orthogonal projection onto D of a section of G N R° need not be in N D.

5 The momentum equation

A. The nonholonomic momentum map and the momentum equation. We investigate
now the ‘nonholonomic momentum map’ and ‘momentum equation’ studied in [7, 9, 10, 27]. Our
aim is to extend this construction from the constraint distribution to the reaction—annihilator
distribution, and to clarify its link with the gauge method of Section 3. As above, for clarity, we
privilege coordinate expressions.

Consider a nonholonomic Lagrangian system (L, @, D) and a Lie group G which acts smoothly
on @, with Lie algebra g. Consider the vector bundle over ) defined as the disjoint union

go == [,
9€Q

that is, @ x g with projection map given by the projection onto the first factor. Fix now a (not
necessarily regular) distribution € on @. Then, for each ¢ € @ the set

05 = {negl&dlq) €&y}

is a vector subspace of g and the disjoint union

0 = [lo

q€Q

is a subset of gg. In general, gg is not a subbundle of gg, but this is not relevant for the
argument. (It can be regarded as a generalized subbundle of gg; see e.g. [8] for this notion). Note
that g§ = g%ﬁg and that gg =g0-

Any smooth section 77 of gg induces a smooth section 5%9 of §N &, which is defined as

that is, the value at g of gﬁQ equals the value at ¢ of the infinitesimal generator corresponding to
7(¢) € g. The converse is not true in general. However, if the action of G on @ is (for instance)
locally free, then the above correspondence gives a bijection between smooth sections of € NG and
smooth sections of gg. (In fact, as shown in Section 3.C, there are smooth functions f, such that

£Q = > fbf,?b for a basis 1, ...,nm of g; hence, 7=, fom).
Based on [7, 9], we introduce now the following

Definition 3 Consider a nonholonomic system (L, Q, D) and a Lie group G which acts smoothly
on Q. Then, the nonholonomic momentum map s the map

Ji=To)xD — R,  (7(0d) &) pla,q)- (6)
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The nonholonomic momentum of a section 77 of g is the function

Ji o D=R,  Jya.d) = J(ia).(q,9)

The nonholonomic momentum map was defined in [7] as the bundle map J*' : TQ — (gg)*
such that (J™(q,¢),7) = J; 5(q,¢) for all (¢,4) € TQ and 7 € P(gg), where (gg)* is the bundle over
Q@ whose fibers are the duals of those of gg. This definition formally reproduces the structure of
the ordinary momentum map J : TQ — g*, while the restriction to F(gg) reflects the idea that the
nonholonomic momentum map gives “just some of the components of the standard momentum map,
namely, along those symmetry directions that are consistent with the constraints” [7]. Definition
3 extends this definition to all sections of gg and, in doing so, we have also preferred to define
the nonholonomic momentum map in a way which emphasizes its role as a means to construct
conserved quantities out of sections of gg. (In this respect, observe that the ordinary momentum
map as well can be regarded as a map J : I'(g) x TQ — R).

In the quoted references, no name is assigned to the functions jﬁ, which however explicitely
appear in [9]. The name ‘nonholonomic momentum’ we chose here is only meant to avoid confusion
in the forthcoming comparison of this method to the gauge method. A minor difference between
our definition of the nonholonomic momenta and those of [7, 9] is that, in order to simplify some
of the forthcoming statements, we restrict the domain from 7'Q) to the constraint manifold D.

The relevance of the extension of the nonholonomic momentum map to over—distributions of
D emerges from the following

Proposition 6 Consider a nonholonomic system (L,Q, D), a Lie group G which acts smoothly
on Q, and a distribution & on Q. Then, the nonholonomic momentum map J satisfies

Xpoo(Js) = &°%(L)p  VieTl(gh) (7)

if and only if € C R°.

Proof. Denote by % the derivative along the flow of the vector field X g p, namely, the flow
of Lagrange equations (2). Let ETQ be the tangent lift of 5%2. Thus, on the points of D we have
Xr0p(J5) = %(?9_5; 5157?) = ((Zg ?95) fg + %—5 : (%fg) = (%L ) fQ + 35 8L -ETQ that is,
iJ~£ =¢TQ(L) + R-£9. The last term vanishes in all of D if and only if §1~7 is a sectlon of R°. m

Equation (7) is called ‘momentum equation’ and was derived in [7, 9] for the case € = D. Propo-
sition 6 states that this equation is valid for any distribution € C R°, and only for them. Hence,
the reaction—annihilator distribution emerges as the largest distribution for which the momentum
equation is valid.

Remarks: (i) In view of Proposition 6, one might as well restrict the definition of the nonholo-
nomic momentum map J to F(g%o) x TQ.

(ii) The coordinate free expression of the definition (6) of the gauge momentum map is mani-
festly J = I'(gg) xTQ — R, (77, vq) — (FL(UQ),gﬁQ(q» where FL is the fiber derivative.

(iii) The core of the proof of Proposition 6, and in fact of Proposition 1 too, is the fact that, if
€9 is a section of a distribution € on @, then its momentum Peq = €9 . Aq satisfies the equation
X1,0,0(Pee)|p = €T9(L)|p if and only if & C R°. The validity of this equation in the horizontal
case & = D has been noticed in [27], where it is called ‘momentum equation’. We prefer using this
name to denote the case in which a preassigned group action is given.

B. Relationship between the momentum equation and the gauge method. The re-
lationship between the gauge method and the momentum equation rests on the fact that the
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nonholonomic momentum jﬁ of a section 7 of gg is nothing but the gauge momentum of the
vector field 5%2 . Thus:

e The nonholonomic momentum jﬁ of a smooth section 1 of g%o is a first integral of (L,Q, D)
if and only if §§ 18 a gauge symmetry.
As for the converse, in presence of isotropy it might happen that not every smooth section of
a distribution € on @ corresponds to a smooth section of gé. As noticed above, however, this
happens if (for instance) the action has no isotropy:
o [f the action of G on Q is locally free, then any gauge momentum is the nonholonomic mo-
mentum of a smooth section of gq.

Thus, for locally free actions the difference between the two approaches is only in the parameter-
ization of the conserved quantities: the gauge method uses sections of GNE while the nonholonomic
momentum map uses sections of g%, where € is typically either D or R°. This relationship between
the two methods seems to have been passed unnoticed so far, even in the case & = D.

In presence of isotropy, however, the situation is not as a clear. In principle, there might be
gauge momenta which are not parameterizable with sections of g¢.

C. The gauge momentum map. We conclude this section by remarking that there is an
analogue of the nonholonomic momentum map on the gauge side, that we call gauge momentum
map:

Definition 4 Given a nonholonomic system (L,Q, D) and a smooth action of a Lie group G on
@, the gauge momentum map is the map

T:T©)xD — R, (£%(a.9) = Jeola,d)
where j\gQ = &9 . p|p, see Definition 1.

The relation to the nonholonomic momentum map is obvious: if €9 = 5;? for some smooth section
of gg, then fEQ = J(7,-). Equivalently, if = : I'(gg) — I'(§NE) is the injection 77 +— 5;?, then

J = Jo (= xidp).

Since = need not be surjective, the gauge momentum map is a generalization of the nonholonomic
momentum map. Nevertheless, there is a ‘momentum equation’ for the gauge momentum map as
well: as follows from the proof of Proposition 6, given a distribution € on @, the gauge momentum
map J satisfies N

Xrqn(Jea) =€"9(L)[p  VEPeT(ENY)

if and only if € C R°.

6 Conclusions

The goal of this article was to produce a comprehensive picture of the relationship between the in-
variance under a lifted action of the Lagrangian of a linear nonholonomic system, and the existence
of first integrals linear in the velocities. The two starting points of our analysis were (a) the charac-
terization of the conserved components of the momentum map as those generated by infinitesimal
generators of the group action which are sections of the reaction—annihilator distribution R° [15]
and (b) the gauge mechanism [5]. We have shown that the gauge mechanism is equivalent to
the momentum equation of [7, 9, 10, 27] if the action is locally free, and that they both extend
to sections of R°, providing in this way the most general framework to link conservation laws to
symmetry groups. All these objects and points of view can be formulated in terms of a single
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object, the gauge momentum map, which is a reformulation of the nonholonomic momentum map
of [7,9, 10].

The analysis of simple examples has demonstrated that both extensions, from the constraint dis-
tribution D to the reaction—annihilator distribution R°, and from the momentum map to the gauge
mechanism, are necessary in order to obtain a complete picture of the relationship symmetries—
conservation laws for nonholonomic systems.

The extension from D to R° encodes the extent to which the conserved momenta of a nonholo-
nomic system depend on the system, rather than just on the group. As remarked, there is a deep
difference between D—gauge momenta and R°—gauge momenta, in that the formers have a ‘weakly
Noetherian’ character, that is, they are shared by all nonholonomic systems with fixed constraints
and G-invariant kinetic energy, and any G-invariant potential. On the other hand, the class of
R°—gauge momenta is the class of all conserved gauge momenta.

Overall, our impression is that the gauge mechanism—that is, the idea that the link symmetry
group—conserved quantities should be relaxed so as to include also momenta of vector fields which
are tangent to the group orbits but are not infinitesimal generators of the action—should be taken
into account for a full comprehension of the relationship between symmetries and conservation
laws in nonholonomic mechanics.

Whether the gauge method should be considered a ‘fundamental’ mechanism to link symme-
tries and conservation laws, is a difficult question to answer. Consider, for instance, the holonomic
system constituted by a free particle in R? > (z,y), and the group G = R? of translations in R2.
The momentum map leads to the conservation of the linear momentum (Z, y), and the angular mo-
mentum xy — y is a gauge momentum relative to this action. However, g — y& is the momentum
of the rotation group. So, one might suspect that the class of gauge momenta for a given group
might be ‘too’ large. However, one may also note that the invariance under translations along the
x and y axes implies in this case the invariance under rotations, so one might even claim that it is
unnecessary to consider the rotation group in this context. In fact, whenever the orbits of a group
action are subsets of the orbits of another group action, the components of the momentum map of
the latter action can be regarded as gauge momenta of the former action. Perhaps, the compre-
hension of more cases, and a better appreciation of the role of the gauge method in nonholonomic
mechanics, will bring some light on the question.

Acknowledgments: We would like to thank Larry Bates, Richard Cushman and Arturo Ramos
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improved the clarity of the article.
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