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An intrinsic measure for submanifolds
in stratified groups

By Valentino Magnani at Pisa and Davide Vittone at Padova

Abstract. For each submanifold of a stratified group, we find a number and a mea-
sure only depending on its tangent bundle, the grading and the fixed Riemannian metric. In
two step stratified groups, we show that such number and measure coincide with the Haus-
dorff dimension and with the spherical Hausdorff measure of the submanifold with respect
to the Carnot-Carathéodory distance, respectively. Our main technical tool is an intrinsic
blow-up at points of maximum degree. We also show that the intrinsic tangent cone to the
submanifold at these points is always a subgroup. Finally, by direct computations in the
Engel group, we show how our results can be extended to higher step stratified groups, pro-
vided the submanifold is sufficiently regular.

1. Introduction

In this paper we study how a submanifold inherits its sub-Riemannian geometry from
a stratified group equipped with its Carnot-Carathéodory distance. Our aim is finding the
sub-Riemannian measure ‘“‘naturally’’ associated with a submanifold.

This measure for hypersurfaces is exactly the G-perimeter, which is widely acknowl-
edged as the appropriate measure in connection with intrinsic regular hypersurfaces, trace
theorems, isoperimetric inequalities, the Dirichlet problem for sub-Laplacians, minimal
surfaces, and more. Here we address the reader to some relevant papers [1], [2], [4], [5],
18], [9], [10], [11], [12], [13], [14], [15], [16], [17], [21], [25], [26], [28], [29], [22], [23], [30],
[31], [33], [34], [36], [38], [41], [44], [45], [46], [47] and the references therein.

Our question is: what does replace the G-perimeter in arbitrary submanifolds?
Clearly, once the Hausdorff dimension of the submanifold is known, the corresponding
spherical Hausdorff measure should be the natural candidate. However this measure is
not manageable, since it cannot be used in minimization problems, due to the lack of lower
semicontinuity with respect to the Hausdorff convergence of sets. It is then convenient to
find an equivalent measure, that can be represented as the supremum among a suitable
family of linear functionals, in analogy with the classical theory of currents.

In the recent works [24], [35], higher codimensional submanifolds in the Heisenberg
group have been considered along with their associated measure. Here we emphasize exam-
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204 Magnani and Vittone, Submanifolds in stratified groups

ples of Holder submanifolds where the Hausdorff measure with respect to the Carnot-
Carathéodory distance is finite, but the Riemannian measure is not, [29]. Nevertheless, in
[24] the authors consider intrinsic currents in the Heisenberg groups that include the previ-
ously mentioned “‘singular’” submanifolds.

In the present paper, we wish to find the intrinsic measure associated to any submani-
fold, under suitable regularity and negligibility assumptions. To do this, we have to find out
the privileged subset of points where an intrinsic blow-up holds.

Recall that at a horizontal point x of a C! smooth submanifold ¥ contained in a
stratified group G, the horizontal subspace H.G and the tangent space 7,X do not span
all of T,G. We say that a submanifold is horizontal if it is formed by horizontal points
and non-horizontal otherwise. Recall that horizontal points of hypersurfaces coincide with
the well known characteristic points, that play an important role in the study of hypersur-
faces in stratified groups, [4], [9], [14], [15], [18], [20], [22], [23], [34], [40], [42].

Any smooth hypersurface is clearly non-horizontal, due to the non-integrability of the
horizontal distribution. This is clearly not true in higher codimension, where different sit-
uations can occur. For instance, in the Heisenberg group H” it is easy to check that hori-
zontal submanifolds exactly coincide with the special class of Legendrian submanifolds and
it is easy to construct non-horizontal submanifolds of any dimension. On the other hand,
there exist stratified groups where all submanifolds of fixed topological dimension are hor-
izontal, see Example 3.14.

We first notice that horizontal points may induce different behaviours of the subma-
nifold when it is dilated around these points. We will show that this behaviour depends on
the degree ds(x) of the point x in the submanifold X, see (2.4) for precise definition. This
notion allows us to distinguish the different natures of horizontal points. Roughly speaking,
it represents a sort of “pointwise Hausdorff dimension”. Notice that our notion of degree
for hypersurfaces satisfies the formula ds(x) = Q — type(x), where the zype of a point in a
hypersurface has been introduced in [9] and Q denotes the homogeneous dimension of the

group.

The notion of degree permits us to characterize a horizontal point x € ¥, requiring
that ds(x) < Q — k, where k is the codimension of X. At these points the blow-up of the
submanifold, if it exists, is not necessarily a subgroup of G, see Remark 4.5. However,
defining

d(X) = max ds(x)

XeX

as the degree of X, we will show that the blow-up always exists at points with maximum
degree dx(x) = d(Z) and it is a subgroup of G. We have the following

Theorem 1.1. Let X be a C"' smooth submanifold of G and let x € ¥ be a point of
maximum degree. Then for every R > 0 we have

(1.1) S1(x'T)nDgp = Tg(x) nDg asr— 0"

with respect to the Hausdorff distance and Is(x) is a subgroup of G.
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Recall that J, are the intrinsic dilations of the group and that Dg is the closed ball of
center the identity of the group and radius R with respect to the fixed homogeneous dis-
tance, see Section 2 for details. The limit set IIx(x) corresponds to the one introduced in
Definition 2.4. In particular, Theorem 1.1 shows that the intrinsic tangent cone to X at x
exists, according to [24], Definition 3.4, and that it is exactly equal to ITy(x).

The geometrical interpretation of our approach consists in foliating a neighbourhood
of the point x in ¥ with a family of curves which are homogeneous with respect to dilations,
up to infinitesimal terms of higher order. In mathematical terms, we are able to represent X
in a neighbourhood of x as the union of curves r — y(, ) in X satisfying the Cauchy prob-
lem (3.10). These curves have the property

(1.2) (1, 4) =6,(G(2) + O(t)),

where A varies in a fixed compact set of R? and the diffeomorphism G defined in (3.26)
parametrizes I1y(x) by R” with respect to the graded coordinates, see Remark 3.12. Our
key tool is Lemma 3.10 that shows the crucial representation (1.2) of the curves parametriz-
ing the submanifold. The proof of this lemma is in turn due to the technical Lemma 2.5,
which is available since I1z(x) is a subgroup of G. From (1.1) we obtain the following

Theorem 1.2. Let X be a C"! smooth p-dimensional submanifold of degree d = d(X)
and let x € X be of the same degree. Then we have

(Z N B.,) _ 0(r§i(x))
13 = EIE]

where i, is the p-dimensional measure on X with respect to the Riemannian metric g.

Recall that H(Tg (x)) is the metric factor defined in (2.17), which also depends on the
homogeneous distance we are using to construct #“. The p-vector t¢(x) is the part of 5 (x)
having degree d, where 7x(x) is a unit tangent p-vector to X at x with respect to the metric
induced by g, see Section 2. In Corollary 3.6 we show that t¢(x) is a simple p-vector. By
(1.3) and standard theorems on differentiation of measures, [19], we immediately deduce

(1.4) iW(T?(X))d%d(x flfz | di,(x)
whenever
(1.5) SUE\Z) = 0,

where X; is the open subset of points of maximum degree d. In fact, it is not difficult to
check that ¢ vanishes on X\Z,. Formula (1.4) shows that #“ is positive and finite on
open bounded sets of the submanifold and yields the “natural” sub-Riemannian measure
on X:

(1.6) s = 1)1, L E.

We stress that the measure defined in (1.6) does not depend on the Riemannian metric g.
In fact, parametrizing a piece of X by a mapping ® : U — G, we have
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206 Magnani and Vittone, Submanifolds in stratified groups
tsr (P(U)) = [|(0x @A, DA Ay, D), | dx
U

where the projection (-), is defined in (2.3) and |- | is the norm induced by the fixed left
invariant metric g. This integral formula can be seen as an area-type formula where the
Jacobian is projected on vectors of fixed degree. From (1.4) and the fact that (-) is uni-
formly bounded from below and from above, one easily deduces that x is the “natural”
replacement of % and that it might be convenient to consider sub-Riemannian filling
problems, [27].

For a non-horizontal submanifold X, namely d(X) = Q — k, the limit (1.3) and for-
mula (1.4) can be extended to C! regularity, then a corresponding sub-Riemannian coarea
formula can be obtained, see [36]. Moreover, in this case the negligibility condition (1.5)
holds, [34].

One can check that in two step stratified groups the formula
2p —dim(7T X N H,G) = ds(x)

holds, then the blow-up estimates of [37] immediately show that d-negligibility holds in two
step groups for submanifolds of arbitrary degree. As a consequence, d(X) is the Hausdorff
dimension of X. However d-negligibility remains an interesting open question in stratified
groups of step higher than two, when d(X) < Q — k. As an interesting point to be inves-
tigated, we emphasize the correspondence between ds(x), d(X) and the numbers D’(x),
Dy (%) introduced by Gromov in [27], 0.6.B, where he also indicates how, for a smooth
manifold, Dy (Z) must correspond to the Hausdorff dimension of X.

In the last part of this work, we study some examples of 2-dimensional submanifolds
of different degrees in the Engel group. Despite d-negligibility is an open question in groups
of step higher than two, our formula (1.4) shows the validity of (1.5) for these examples.
This fact suggests that d-negligibility should hold in any stratified group for submanifolds
of arbitrary degree, possibly requiring higher regularity.

2. Preliminaries

A stratified group G with topological dimension ¢ is a simply connected nilpotent Lie
group with Lie algebra % having the grading

(2.1) G=ND DV,

that satisfies the conditions Vi = [V, V] for every i = 1 and V4 = {0}, where 7 is the
step of G. For every r > 0, a natural group automorphism J, : 4 — % can be defined as
the unique algebra homomorphism such that

0,(X):=rX forevery X € 1.

This one parameter group of mappings forms the family of the so-called dilations of G.
Notice that simply connected nilpotent Lie groups are diffeomorphic to their Lie algebra
through the exponential mapping exp : ¥ — G, hence dilations are automatically defined
as group isomorphisms of G and will be denoted by the same symbol J,.
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Magnani and Vittone, Submanifolds in stratified groups 207

We will say that p is a homogeneous distance on G if it is a continuous distance of G
satisfying the following conditions:

(2.2) p(zx,zy) = p(x,p) and p(6:(x),0,(»)) =rp(x,y) forallx,y,zeG, r>0.

Important examples of homogeneous distances are the well known Carnot-Carathéodory
distance and the homogeneous distance constructed in [23].

In the sequel, we will denote by #¢ and %¢, the d-dimensional Hausdorff and spher-
ical Hausdorff measures induced by a fixed homogeneous distance p, respectively. Open
balls of radius r > 0 and centered at x with respect to p will be denoted by B, , and the
corresponding closed balls will be denoted by D, ,. The number Q denotes the Hausdorff
dimension of G with respect to p.

According to (2.1), we say that an ordered set of vectors

(X1, X2, X)) = (X, ... X XD Xp XL X))

my? my?

is an adapted basis of 9 iff m; = dim V} and

Xk

s Ay

XF, ..
is a basis of the layer Vi forevery k =1,... 1

Definition 2.1. Let (X, X>,...,X,) be an adapted basis of 4. The degree d(j) of X;
is the unique integer k such that X; e V. Let

Xp = X nee A X

be a simple p-vector of A,%, where J = (ji, jo,...,jp) and 1 < ji < jo <--- < j, < ¢q. The
degree of X, is the integer d(J) defined by the sum d(j;) + - - - + d(jp).

Notice that the degree of a p-vector is independent from the adapted basis we have
chosen. In the sequel, we will fix a graded metric g on G, namely, a left invariant Riemann-
ian metric on G such that the subspaces V}’s are orthogonal. It is easy to observe that
all left invariant Riemannian metrics such that (Xj,...,X,) is an orthonormal basis are
graded metrics and the family of X;’s forms an orthonormal basis of A,(%) with respect
to the induced metric. The norm induced by g on A,(%) will be simply denoted by | - |.

Definition 2.2. When an adapted basis (X1, ..., X;) is also orthonormal with respect
to the fixed graded metric g, it is called graded basis.

Definition 2.3 (Degree of p-vectors). Let 7€ A,(¥9) be a simple p-vector and let
1 <r < Q be a natural number. Let 7= 7,X,, 7, € R, be represented with respect to
7

the fixed adapted basis (Xi,. .., X,). The projection of 7 with degree r is defined as

(23) (T)r = Z ‘L'JXJ.
d(J)=r
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208 Magnani and Vittone, Submanifolds in stratified groups
The degree of 7 is defined as the integer
d(7) = max{k € N : such that 7, & 0}.

In the sequel, also an arbitrary auxiliary Riemannian metric g will be understood. We
define 75(x) as the unit tangent p-vector to a C' submanifold X at x € X with respect to the
metric g, i.e. [t3(x)|; = 1. The degree of x is defined as

(24) dz(x) = d(fz(x))

and the degree of X is d(X) = max ds(x). We will say that x € ¥ has maximum degree if

ds(x) =d(Z). It is not difficult to check that these definitions are independent from the
fixed adapted basis Xi,..., X, then they only depend on the tangent subbundle 7% and
of the grading of ¢, namely they depend on the ‘““‘geometric” position of the points with
respect to the grading (2.1). According to (2.3), we define t¢(x) as the part of s(x) with
maximum degree d = d(X), namely,

(2.5) td(x) = (z2(x)),-
If g is a fixed graded metric, then we will simply write
(2.6) |78 ()] = 7 ()],

Definition 2.4. Let x €  be a point of maximum degree. Then we define
Ms(x) = {yeG: y=exp(v) withve % and v A 7d(x) = 0}.
As a consequence of Corollary 3.6, we will see that ITg(x) is a subgroup of G.

2.1. Graded coordinates. In the sequel the adapted basis (X,. .., X,) will be fixed.
The exponential mapping exp : 4 — G induces a group law C(X,Y) on ¥ for every
X,Y e%. We have

(2.7) exp(X) -exp(Y) = exp(C(X, Y)).

Recall that C(X, Y) can be computed explicitly thanks to the Baker-Campbell-Hausdorff
formula: for each multi-index of nonnegative integers a = (ay, ..., a;) we define

lal =a1+ -+ ay,

al:=a! - -al,

and we will say that / is the length of a. If b = (b1, ..., b;) is another multi-index of length /
such that q; +b; > 1, and if X, Y € 4 we set

(ad X)“(ad V)" ... (ad X)“(ad V)" 'Y if b; >0,

Cab<X7 Y) = a b a—1 .
(adX)“(ad V)" ... (ad X)X if b =0.
We used the notation (ad X)(Y) := [X, Y], agreeing that (ad X)" is the identity. According
to [48], the Baker-Campbell-Hausdorff formula is stated as follows:
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EOINE T OPED e R e £
. ’ o I=1 l a=(ay,...,ar) a‘b'|a + b‘ @ .
b=(b1,...,br)
a;i+b;=1Vi
For every adapted basis (X, ..., X,), we can introduce a system of graded coordinates on
G given by
q
(2.9) F:R!— G, F(x)= exp(Z xJ-Xj),
=1

where exp : 4 — G is the exponential mapping. Then the group law

(2.10) F(x)-F(y) = F(P(x, y))

is translated with respect to coordinates of R as

(2.11) x-y=Px,y)=x+y+0(x,),

where the Baker-Campbell-Hausdorff formula (2.8) implies that P = (Py,...,P,) and
0= (0i,...,0Q,) are polynomial vector fields.

It is also easy to check that dilations read in these coordinates as
3.(x) = (rx1, ..., r?Ux;, . r'x,)  for every r > 0.

From definition of dilations and the Baker-Campbell-Hausdorff formula, it follows that
Qi(x, y) are homogeneous polynomials with respect to dilations, i.e.

(2.12)  Pi(6,(x),0,(»)) = "D Pi(x, p) and  0;(3,(x),6,(»)) = r*@ Qi(x, y).

As a result, we get

Ql ::Qm1 :07
2.13
@1 Qi(x, y) = Qi< 2 Xje 3. yjej),
d(j)<i d(j)<i
where (ey, ..., e,) denotes the canonical basis of R? and d(i) > 1.

Given a system of graded coordinates F : RY — G, we say that a function p: G — R
is a polynomial on G if the composition p o F~! is a polynomial on RY; we say that p is an
homogeneous polynomial of degree [ if it is a polynomial and p(d,(x)) = rIp(x) for any
x € G and r > 0. It is not difficult to prove that p is a homogeneous polynomial of degree
[ if and only if p o F~! is a sum of monomials

q
LI 1, : . _
xp'xy e xg with 20’(])[] =1
i=
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210 Magnani and Vittone, Submanifolds in stratified groups

Moreover, the notions of polynomial, homogeneous polynomial (and its degree) do not de-
pend on the choice of graded coordinates F. Observe also that homogeneous polynomials
of degree 0 are constants.

Any left invariant vector field X; of our fixed adapted basis has a canonical represen-
tation as left invariant vector field (F~!), (X;) of RY, where F is defined in (2.9). We will use
the same notation to indicate this vector field in R?. The left invariance of X; in R implies
that

oP
X6 = 0,07 o 1)(0) = dr () (5] (50,
J
where /,(y) = x- ye R? and f € C*(RY). As a consequence, we have

4q 9 aPl an
(2.14)  X(x) =2 X;(x)0i = > =—(x,0)0; =0+ >
= =1 0y d(ij=d(j) 0

(X, 0)6‘1

By differentiating (2.12) we get

215 X;(6.00) = 2 (5,(x), 0) = p-) OFi

0) — pdO-d() .
ay] ay/ (X, ) r U(x)?

i.e. Xj; are homogeneous polynomials of degree d(i) — d(j).
Next we present a key result in the proof of Lemma 3.10.
Lemma 2.5. LetJ < {1,2,...,q} be such that # = span{X; : j € J} is a subalgebra

of 9, where (X1, ..., X,) is an adapted basis of 4. Then for every index i ¢ J, the polynomial
Qi(x, ) lies in the ideal generated by {x;, y; : | ¢ J}, namely, we have

(2.16) Oi(x,y)= X (wRulx,p) + »Su(x,¥)),
1¢7,d(l)<d(i)

where Ry, Sy are homogeneous polynomials of degree d(i) — d(I).

Proof. Let us fix x, y € R? and consider

Ma

q
X = XjX} Y = Zl y]X}
J:

1

J

By (2.7), (2.10) and the Baker-Campbell-Hausdorff formula (2.8), we have

amnzéaww%

Therefore, defining 7; : ¥ — R as the function which associates to every vector its X;’s
coefficient, we clearly have P;(x,y) =m;(C(X,Y)). Thus, formulac (2.8) and (2.11)
yield
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o=V s L) - x
i\X, y) = s 1 bil\banl A —Xi — Ji.
g =1 l a—(al,...,a)a'b”a_'_b' ’ Y
h:(bl-,~-~«,bl)
a;+b; =1Vi

Observe that Cy, (X, Y) is a commutator of X and Y, whose length is equal to |a + b|; as
the sum of commutator with length 1 gives X + Y we get

03 = 3 U L (Cux. ¥))
i\X, = BT T N ) .
Y =1 ) a=(ay,...,ar) a'b"a + b‘ @
b=(by,...,b;)
a;+b; = 1Vi
|a+b| =2

When the commutator C,(X, Y) has length 2 = 2, we can decompose it into the sum of
commutators of the vector fields {x;X;, y;X; : 1 £/ < ¢}. Let us focus our attention on an
individual addend of this sum and consider its projection 7;. Clearly, this addend is a com-
mutator of length /4. If this term is a commutator containing an element of the family
{x1 X1, y1X; : 1 ¢ J}, then its projection 7; will be a multiple of x; or y; for some / ¢ J, i.e.
the projection 7; of this term is a polynomial of the ideal

{xn,yr:1¢J}.

On the other hand, if in the fixed commutator only elements of {x; X}, y;X; : / € J} appear,
then it belongs to #. In view of our hypothesis, we have # nspan{X;} = {0}, hence its
projection through z; vanishes. This fact along with (2.13) proves that Q;(x, y) has the
form (2.16). [

The next definition introduces the metric factor associated with a simple p-vector.
Notice that this definition generalized the notion of metric factor first introduced in [33].

Definition 2.6 (Metric factor). Let ¥ be a stratified Lie algebra equipped with a
graded metric g and a homogeneous distance p. Let 7 be a simple p-vector of A,(%). We
define #(7) as the unique subspace associated with . The metric factor is defined by

(2.17) 0(x) = #! (F~' (exp(ZL (7)) N Br)),
where F' : RY — G is a system of graded coordinates with respect to an adapted orthonor-
mal basis (Xi,...,X,). The p-dimensional Hausdorff measure with respect to the Eucli-
dean norm of RY has been denoted by J/ﬁ and Bj is the open unit ball centered at e, with
radius r with respect to the fixed homogeneous distance p.

3. Blow-up at points of maximum degree

Lemma 3.1. Let X be a p-dimensional submanifold of class C' and let x € X be a point
of maximum degree. Then we can find

® a graded basis X1, ..., X, of 9,
® a neighbourhood U of x,

® a basis vi(y),...,0,(y) of T\X for all ye U
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212 Magnani and Vittone, Submanifolds in stratified groups

q
such that writing v;(y) = ZC,]( ) Xi(y), we have
=1

I, | 0 0
o | ||

0 | 1d, |---| 0

0 [0) *

G €)= (G )
J=L...p

0 0 || 1,

L 0 0 |- ]0(]

where oy are integers satisfying 0 < o < my and oy +---+ o, = p. The (my — ay) X oy~
matrix valued continuous functions Oy vanish at x and * denote continuous bounded matrix
valued functions.

Proof. Observing that the degree of a point in X is invariant under left translations,
it is not restrictive assuming that x coincides with the unit element e of G.

Step 1. Here we wish to find the graded basis (Xi,...,X;) of ¥ and the basis
v, ...,y of T,X required in the statement of the lemma and that satisfy (3.1) when y =e.
Let us fix a basis (¢1,...,,) of T.X and use the same notation to denote the corresponding
basis of left invariant vector fields of 4. We denote by 7 the canonical projection of % onto
Vi. Let 0 £ o, < m, be the dimension of the subspace spanned by

ﬂ,(tl), - ,7[1(1,1).

Taking linear combinations of #; we can suppose that the first o, vectors {7, (#) }, < ;<,, form
an orthonormal set of V,, with respect to the fixed graded metric g. Then we set

Xj’ =mn(t) eV, and v; =t eTX,

whenever 1 < j < «,. Adding proper linear combinations of these #; to the remaining vec-
tors of the basis, we can assume that {t;‘1 '= 9, }1<< 0, ar€ linearly independent and
that

n,(tjffl) =0 whenever j=1,...,p—a
Now consider the p — o, vectors

(e, ,n,_l(tl’,__lal)

and let 0 < o,_; < m,_| be the rank of the subspace of V,_; generated by these vectors. Tak-

ing linear combinations of 7;~, ! we can suppose that 7,_ 1(t’ Y with j=1,...,0,_; form an
-2, 1
orthonormal set of V,_; and that defining {7} :== 1,7, 1}1g i<po—z, WE have
n,_l(tfz) =0 wheneverj=1,...,p—o, —o,_1.
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Magnani and Vittone, Submanifolds in stratified groups 213

Then we set

Xj“1 = nl,l(tfl) eV,_; and vjffl = t;*1 eT.X
for every j =1,...,a_1. Repeating this argument in analogous way, we obtain integers oy
with 0 < o < my, for every k = 1,...,1 and vectors

Xjke Vi, v}‘eTeZ, where k=1,...,1and j=1,..., 0.
Notice that o) 4+ - -+ + o, = p and that

(3.2) (v, 0 ol

» Yoy » Vo

is a basis of 7T,XZ. We complete the Xjk’s to a graded basis

(X)X XX XX

myp? my*

of ¢, that will be also denoted by (X, ..., X,). It is convenient to relabel the basis (3.2) as

q
(v1,...,0,), hence we write v; = El C;; X; obtaining
=
[Id,, | = |- ] * ]
0| % || «
0 |Id, || =
0 0 *
C:=(Gy)
0| 0 |- |Id,
Lol ol 0 |

Performing suitable linear combinations of v;’s, we can assume that

[1d,, | O 0
0 x || %
0 | Id,, 0
(3.3) c-| [0 i
0 0 |---]|1d,
L0 0 -1 0 |
Step 2. The basis (vy,...,v,) of T,X can be extended to a frame of continuous vec-

tor fields (v1(»), ..., v,(»)) on X defined in neighbourhood U of e. Thanks to the previous
q

step, defining v;(y) = > Cy(»)Xi(y) we have
i=1
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214 Magnani and Vittone, Submanifolds in stratified groups

[1d,, + o(1) o(1) o(l) ]

o(1) * *

o(1) Id,, +o(1) | --- o(1)

= (G») = | W o) -
o(1) o(1 -+ | Id,, 4+ o(1)
L o(D) o)y -1 o) |

where o(1) denotes a matrix-valued continuous function vanishing at e. Observing that
Id,, + o(1) are still invertible for every y in a smaller neighbourhood U’ = U of e, we can
replace the v;’s with linear combinations to get

[ 1d,, + o(1) 0 0
o(1)
0 Id,, + o(1) 0
Cy) = o(1) o(1) *
0 0 <o | Idy, + o(1)
L o(l) o)y -1 o) |

The same argument leads us to define a new frame with matrix

[ Id, | O || O
oy | = ||
0 | Id, |---| o0
(3.4) c(y) = | 20 | %) |,
0 0 || 1d,
o) | o) |- |0 ]

where O; are defined in the statement of the present lemma. To finish the proof, it remains
to show that all o(1)’s of (3.4) are actually null matrix functions. Here we utilize the fact
that the submanifold has maximum degree at e. Notice that the simple p-vector

mwm~mmw:;mmnm

is proportional to the tangent vector 7z(y). In addition, if J/ = (ji, ..., j,), then a;() is the

determinant of the p x p submatrix obtained taking the jj-th, j>-th,..., j,_i-th and j,-th

rows of C(y). From (3.3) we immediately conclude that ds(e) = o + 20 + - - - + 101,. Fi-

nally, where one entry of some o(1) does not vanish, it is possible to find some Jy such
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Magnani and Vittone, Submanifolds in stratified groups 215

that d(Jo) > oy + 200 + - - - + 10, and ay,(y) & 0. This would imply dx(y) > ds(e), contra-
dicting the assumption that ds(e) = max ds(y). O
yeU’

Remark 3.2. It is easy to interpret the statement and the proof of Lemma 3.1 in the
case some oy vanishes. Clearly, the o columns in (3.1) intersecting 7,, and then the corre-
sponding vectors v}‘ disappear.

Remark 3.3. Clearly, when X is of class C” the v;’s of the previous lemma are of
class C™!. In fact, the linear transformations performed in the proof of Lemma 3.1 are of
class C™ 1.

The previous lemma allows us to state the following definitions.
Definition 3.4. Let X be a C' smooth submanifold and let x € X be a point of maxi-

mum degree. Then we can define the degree o:{1,...,p} — N induced by ¥ at x as
follows:

i—1 i
a(j)=i if Y o, <j=<> o
s=1 s=1

where o; are defined in Lemma 3.1.

Definition 3.5. Let X be a C! smooth submanifold and let x € ¥ be a point of maxi-
mum degree. Then we will denote by

(Xll,...,)(1 Xl X,) and (vll,...,v1 ce Uy, 0)

mp oy

the frames on G and on a neighbourhood U of z in X, respectively, which satisfy the con-
ditions of Lemma 3.1. We will also indicate these frames by

(X],...,Xq) and (vl,...,vp).

Corollary 3.6. Let X be a C' smooth submanifold with x €  satisfying ds(x) = d(Z).
Then rg (x) is a simple p-vector which is proportional to

X A AX A AXI A A X
1 o 1 o
then we also have

Iy(x) = exp(span{Xll,...,X1 X LX),

oy

Proof. By expression (3.1), tx(x) is clearly proportional to
(35) Xll/\.“/\szllA"'AXIIA"’AX;‘+R7

where R is a linear combination of simple p-vectors with degree less than d(X| A--- A X]).
Then d = d(X] A--- A X}) and 1¢(x) is proportional to X' A--- A X! [
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216 Magnani and Vittone, Submanifolds in stratified groups
Definition 3.7. We will denote by
(3.6) (X' XX LX)

the frame of Corollary 3.6, arising from Lemma 3.1, and by
(3.7) ny(x) : G — Iz (x)

the corresponding canonical projection.

Corollary 3.8. Let e € X be such that dz( ) = d(Z) Let us embed X into RY by the

system of graded coordinates F induced by {X Yhetorjt.m, Then there exists a func-
tion
p:AcR — RTP,
_ 1 1 1 1 1 1 1
X = (x17" '7xa(17" : 7xa(,) = ((p(xﬁ»lv' : '7(pmlv' c 7¢m,+17' c 7(pm,)(x)7

defined on an open neighbourhood A = R” of zero, such that p(0) = 0 and £ > ®(A4), where
@ is the mapping defined by

D:A4— RY,
(38) 1 1 1 1 ! T 1
X — (xl,...,xal,(pal+1(x),...,goml(x),...,xl,...,x%,(oalﬂ(x),...,goml(x))

and satisfying V®(0) = C(0), with C given by Lemma 3.1.
Proof. Representing 7s(x) with respect to our graded coordinates, we obtain

ﬁ'z(x) : R?7 — Rp,

xr—>(x11,... x! ey XDy, X))

Taking its restriction

n:X— R?,

X — (xll,...,xil,...,xi,...,x;’ ,

we wish to prove that 7 is invertible near 0, i.e. that dz(0) : ToX — R’ is onto. According to
(3.1) and the fact that 7 is the restriction of a linear mapping, it follows that dn( "(0)) =0, «
foreveryk =1,...,7and j = 1,..., 0. This implies the existence of ® = 7! havmg the re-
presentation (3.8), hence one can easﬂy check that dr (o I_ACD (0)) =0, ik also holds for every
k=1,...;0and j=1,...,0. As a consequence, invertibility of dz(0) : TopX — R’ gives
v}‘(O) = 6xjgc<I> (0). It follows that each column of V®(0) equals the corresponding one of
c0). O™

From now on, we will assume that X is a C'"! submanifold of G.

Lemma 3.9. Let x € X be such that ds(x) = d(X). Then Ilx(x) is a subgroup.
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Proof. Posing d = d(Z), due to Corollary 3.6, td(x) is proportional to the simple
p-vector

Xll/\---/\X;l/\-~-/\X1’/\---/\Xofl.

-----

ing into account Remark 3.3, we can find Lipschitz functions ¢,, ,, which vanish at x
whenever d(r) = k or d(s) = [, such that

of =X+ Y 4,X and v/ =X+ ¥ yX.
d(r)sk d(s)<l
For a.e. y belonging to a neighbourhood U of x, we have

(3.9) i o] =X+ S 4X. X+ 3 yX

d(r) =k d(s)=!

=X X+ 2 XX+ X wxE X
d(r)sk d(s) <l

+ kZ %%[Xr,Xs]

d(r)

H/\

+ 3 (X,-"%)XS— > (X/4,)X,

d(s) d(r)<k

i

+ Z (¢r (Xrlpa)A/S - lps (Xswr)Xr)

d(n<k.d

H/\

By Frobenius theorem we know that this vector is tangent to X, i.e. it is a linear combina-

tion of vll, ces Uy and liesin V1 @ --- @ Vj.;, hence Lemma 3.1 implies that it must be of
the form
[v/k, = 3 au,.
a(r) <k+l

Projecting both sides of the previous identity onto Vj.;, we get

WX+ 24X X+ 3R XT gl X

d(r)=k d(r)y=k,d(s)=I

= Z arnk+l(vr)~

o(r)=k+1

From (3.1) the projections nkir;(v,,( y)) converge to a linear combination of vectors X/*/ as
y goes to x, where 1 <i < o4,;. We can find a sequence of points (y,) contained in U,
where [v]k , vl] is defined and y, — x as v — oo. Then the coefficients a, are defined on y,
and up to extracting subsequences it is not restrictive assuming that a,(y,), which is
bounded since  is C!'!, converges for every r such that o(r) < k + . Thus, restricting the
previous equality on the set {y,} and taking the limit as v — oo, it follows that [X", K Xxisa
linear combination of {X**'}, <i<s., This ends the proof. [J
Let us consider the parameters 4 = (..., "Ol( seeesAyeees Ay ) € RV and a pointe € X
with ds(e) = d(X). We aim to study properties of solution (1, ) of the Cauchy problem
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218 Magnani and Vittone, Submanifolds in stratified groups

(. 4) = > Afuk(p(r,2)) i,
(310) j=l,...,ock

where the vector fields v;‘ are defined in Lemma 3.1 with x = e.

For every compact set L < R?, there exists a positive number #, = #y(L) such that
(-, 4) is defined on [0, 7o) for every 4 € L.

The next lemma gives crucial estimates on the coordinates of y(-,1). Notice that
graded coordinates arising from the corresponding graded basis (X1, ..., X,) will be under-
stood.

Lemma 3.10. Let y(-,A) be the solution of (3.10). Then for every k=1,...,1 and
every j=1,...,my there exist homogeneous polynomials g of degree k, that vanish when
k=1, have theform g; (/111, . ,/101“ /lk b /lk 1) when k > 1, satisfy gk(O) =0 and,
ﬁnally, the estimates
(A fk+ gk (A, . 25 )+ oY) if 1< <,

7 ot

o(t*1) if o +1=j<my

(3.11) ﬁ@@={

hold for every A € L and every t € |0, ty].

q
Proof. From (2.14) and (2.15), we have X; = > Xj;e; where
i1

S i d(i) < d(s),
(3:12)  Xilx) = wis(x!, o xh o xTOT L XOTY i d () > d(s),

Ym0 I mz[(i)_

pd(D)—d(s

and u;, is a homogeneous polynomial satisfying u;s(6,(x)) = Juis(x). Setting

A=20) = (Mo dg Aty ooty At AT ) e RY

o 0 ) 3(-,

and taking into account the expression of v; given in Lemma 3.1, we can write the Cauchy
problem (3.10) as

(13 8 = Lo (620 =

I M‘

23 Gl )X (6 2) 40

where C(+) is given by Lemma 3.1. Now we fix A € L and write for simplicity y in place of
(-, 4). The coordinates of y will be also denoted as

(V117~--;V,lnla-‘-ayi,~-a%lnl)~

Step 1. We start proving (3.11) for the coordinates of y belonging to the first layer,
ie.

"=ir f1<j<a,
(3.14) yfl() it RS
y () =0@{") ifoy+1=j=<m.
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In view of (3.13), we get

=33 Coln) Xa (1)

r=1s=1

For 1 < j <oy we have 1 = d(j) < d(s), then (3.12) imply that Xj, = J;,, whence

where the second equality follows from (3.1), which implies Cj.(x) = ;.. This shows the
first equality of (3.14).

Now we consider the case a; + 1 < j < m;. Due to (3.12) and 1 =d(j) < d(s), we
have

(3.15) ﬁzzqmm:Zkamzqmb

From (3.1), we have Cj(y) = o(1) whenever a(r) = 1, hence C;(y(r)) = o(¢). From the
same formula, we deduce that Cj.(x) is bounded whenever ¢(r) = 2, and for the same indi-
ces r we also have A, = O(t), hence the second sum of (3.15) is equal to O(z). We have
shown that j/jl = O(1) for every o; + 1 < j < m, therefore the second equality of (3.14) is
proved.

Step 2. We will prove (3.11) by induction on k = 1,...,1. The previous step yields
these estimates for k£ = 1. Let us fix £ = 2 and suppose that (3.11) holds for all integers less
than or equal to k — 1. Next, we wish to prove (3.11) for components of y with degree k
and for any fixed 1 < j < my. We denote by i the unique integer between 1 and ¢ such
that X; = Xjk and accordingly we have y; = y}‘, where d(i) = k. Taking into account
(3.12) and that Cy, vanishes when d(s) > a(r), it follows that

(3.16) 7= 2220 Xis(0) Cor(P) A = <Z< Xis(y) Csr(V)'ir-

We split this sum into three sums

(3.17) V/k =p= X Cir(V)ir + 2 Xis(?) Csr(V)/{r + 2 Xs) Csr(V)/{r-
1=r=<p 1=r=p 1=r=p

d(i) <a(r) d(s)<d(i) d(s)<d(i)

d(s)=a(r) d(s)<a(r)

We first consider the case 1 < j < o Then (3.1) implies that Cj(x) = 6, therefore the first

term of (3.17) coincides with 4;(z) = /llk t*=1. Now we deal with the remaining terms. Our

inductive hypothesis yields

(L4 gl0f, . 20 Y+ o) if1<s<a,

? oy

(3.18)  yl(t,1) =
o o)t if oy +1<s<my,
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220 Magnani and Vittone, Submanifolds in stratified groups

whenever / < k — 1, where g/ is a homogeneous polynomial of degree /. Due to (3.12), X;
are homogeneous polynomials of degree d(i) — d(s) = k — d(s) > 0, then applying (3.18),
we achieve

(3.19) XuOto o) = (N, 287 + o)) 49

’%A1

whenever d(s) < d(i) = k and v;; = ;5 if d(s) = k. Notice that N;; are homogeneous poly-
nomials of degree k — d(s) since it is a composition of the homogeneous polynomial Xj;
and of the homogeneous polynomials /lsl Jl+ gsl (/111, LA 1) with degree /.

70([

Let us focus our attention on the second sum of (3.17). By definition of 4, we have

Je = /1 1, for some 1 < I(r) < a,(y), hence this second term equals
> [Col0) + O][Nis(A, .., A )tk Ok i) or) 1
1=r=
d(s)<dl)

d(s)=a(r)

= 3 CulO)Nu(Af,.... 25 A ()) =1+ o)

I<r=p
d(s)<d(i)
d(s)=a(r)

where N; is a homogeneous polynomial of degree k = d(i). From (3.19) and taking into
account the definition of 4,, the last term of (3.17) can be written as

Z Cy (V(t)) [Nl's(}vll, ceey lfk 3) k d(s _|_ 0( d(s)+ )]O(Zo(r)—l)
d(s)<a(r)
= Z O(kad(s)Jrrr(r)fl) _ O(Zk).

1<
d(s) (
d(s)<a(r)

B3I
Q &H/\

r

<

<

Summing up the results obtained for the three sums of (3.17), we have shown that
W) = (A + Ni(Af, ..., 25 N+ o(h)

whence the first part of (3.11) follows.

Next, we consider the case o + 1 < j < m. In this case we decompose (3.16) into the
following two sums

(3.20) hi= Y GO+ X Xa()Col()
1<r<p 1<r=p
k<a(r) d(s)<k

d(s)=a(r)
The first term of (3.20) can be written as

Z Cir(y)/:{r = Z Cir(y)jvr + Z Cir(y)ir
1<r<p l=r=<p Isr<p
k=<a(r) k=a(r) k<a(r)
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From (3.1), the Lipschitz function Cj;(x) vanishes at zero when o + 1 < j < my and
d(i) = a(r), then C;(y(1)) = O(¢) and

(321) ¥ G = ¥ o0+ ¥ o) = o).
1<r<p I<r<p I<r<p
k<a(r) k=a(r) k<a(r)

Let us now consider the second term of (3.20). According to (3.19), we know that
X; (y(z)) = O(tF4)), Unfortunately, this estimate is not enough for our purposes, as one
can check observing that 4, = O(¢?")~1) and C;, = O(1) for some of s, r. To improve the
estimate on X;; we will use Lemma 3.9, according to which the subspace spanned by

(X!, .. XXX

%
is a subalgebra. Then we define
%:span{XSkzlgkgz,l <s=< oy}
along with the set J, that is given by the condition
F =span{X;: jeJ}.

We first notice that i ¢ J, due to our assumption o + 1 < j < my.. This will allow us to ap-
ply Lemma 2.5, according to which we have

Pi(x,p) =xi+yi+ Qi(x, ) =xi+ yi+ > (wRa(x,y) + »iSu(x, y)).
1¢7 a0 <k

As a result, assuming that s € J, we obtain the key formula

' OR;
Xis(x) =—(x,00= >  x—(x,0),
0y 1¢J.d<k  OVs

where 0, R;(x,0) is a homogeneous polynomial of degree k — d(s) — d(/). By both induc-
tive hypothesis and definition of J, we get

n(1) = 00,

for every / ¢ J such that d(/) < k. By these estimates, we achieve

ORy o )
S (2(0,0) = > 0! ITHo(0D) = o),
Vs 1¢7.d(l)<k

Xs(00) = X kyz(t)

1¢J,d(l)<

Then it is convenient to split the second term of (3.20) as follows:

(3.22) 12 Xis(7) Cr(p) Ar = 12 Xis(7)Cor(7) 2 + 12 Xis(7) Cr (7)o,
sk sk sk
d(s)<a(r) d(s)<a(r) d(s)<a(r)
seJ s¢J

where the first sum of the previous decomposition can be estimated as
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222 Magnani and Vittone, Submanifolds in stratified groups

(3.23) > X()Ch = X o )omo ) = o).
1sr<p 1<r<p
d(s)<k d(s)<k
d(s)Za(r) d(s)<a(r)
seJ seJ

Finally, we consider the second sum of (3.22), writing it as

(3.24) Y. Xs()CoMA = > Xi(y) Csr(V)/{r + > Xi(y) Csr(V)/{r-
I1=sr=p 1=r=p 1=r=p
d(s)<k d(s)<k d(s)<k
d(s)<a(r) d(s)=a(r) d(s)<a(r)
s¢J s¢J s¢J

The first term of (3.24) can be written as

> o= omo ) = o),
Isr=<p
d(s)<k
d(s)=a(r)
s¢J
where we have used the fact that Cy,.(x) = O(|x|) when d(s) = o(r) and s ¢ J, according to
(3.1). The second term of (3.24) corresponds to the sum

S0 1Y 0(1)0(r° M1 = o(rF).
lsr<p
d(s)<k
d(s)<a(r)
s¢J
As a result, the second term of (3.22) is also equal to some O(¢¥), hence taking into account
(3.23) we get that the second term of (3.20) is O(¢¥). Thus, taking into account (3.20)
and (3.21) we achieve j(f) = O(t*), which proves the second part of (3.11) and ends the

proof. []

Remark 3.11. Analyzing the previous proof, it is easy to realize that the functions
O(t*) appearing in the statement of Lemma 3.10 can be estimated by ¢, uniformly with
respect to A varying in a compact set: there exists a constant M > 0 such that

k k 1 k—1 . .
‘y]/ (ta i) - M} /k + g]k(/lb s 7;“01,(,1)][](‘ = M[k+1 if 1 = J = Ok
pF(1, )] < Mi*H! ifop+1<j<my

(3.25)

for all / belonging to a compact set L and every ¢ < fy: here and in the following, we have
set 7 = 7(-, ).

Our next step will be to prove that our curves y(-, ) cover a neighbourhood of a point
with maximum degree. To do this, we fix graded coordinates with respect to the basis (Xjk )
and consider the diffeomorphism G : R? — R? arising from Lemma 3.10 and that can be
associated with any point of maximum degree in a C'! smooth submanifold. We set

(3.26) Gi(A) = Aifa(i) + gi(A1, - . -, )L(,%,l ),

s=1 ’
where (g1,...,9p) = (91,---,9y>---+9},---,g,) and g are given by Lemma 3.10. Then
G(0) = 0 and by explicit computation of the inverse function, the definition (3.26) implies
global invertibility of G.
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Remark 3.12. The diffeomorphism G also permits us to state Lemma 3.10 as
(3.27) y(1,2) = 6,(G(2) + O(1)) € RY,

where G(4) belongs to R” x {0}, precisely, it lies in the p-dimensional subspace Iy (x) with
respect to the associated graded coordinates.

We will denote by ¢(¢, 4) the projection of y(z, 1) on Iy (x), namely

(3.28) (1, 2) = 7is(x) (2, 4)),

where 7z (x) represents 7s(x) of (3.7) with respect to graded coordinates arising from (3.6).
In the sequel, the estimates

(3.29) ci(t,A) = Gi(i)t"(") + O(ta(i)+l>
will be used. They follow from Lemma 3.10 and the definitions of ¢ and G.

Lemma 3.13.  There exists ty > 0 such that for every t| €0, 1], there exists a neigh-
bourhood V of 0 such that

VAXc{ypt,2):2eGHS" Nand 0 <t < 1}

Proof. We fix #, > 0 as in Lemma 3.10, where we have chosen L = G~1(S”~!). Let
t1 €10, to[ be arbitrarily fixed. Taking into account Corollary 3.8, it suffices to prove that
the set {c(#,4): Ae L,0 <t < t;} covers a neighbourhood of 0 in R”. For each 7 €0, ],
we define the “projected dilations” A, = 7z(x) o J, corresponding to the following diffeo-
morphisms of R

[“(l’)

Al(yla : "7y17) = (ta—(l)ylr . '7t0(i)yi7-~ 9 y[’)

Now we can rewrite (3.29) as
(3.30) o(t,2) = A(G(2) + O(1)),

where O() is uniform with respect to A varying in G~!(S?~!), according to Remark 3.11.
Then we define the mapping

L: S =R,
U — Al/,(c(z‘, G_l(u))),
and (3.30) implies
L(u) =u+ O(2).

As a consequence, L, — Idg,1 as t — 0, uniformly with respect to u € SP~!. Then, for any
sufficiently small 0 < 7 < 1, we have L.(SP~!) n B‘l'|2 = 0 and L, is homotopic to Idg, 1 in

RP\{A} forall 4 € B‘l‘)z. Here we have used the notation B! to denote the Euclidean ball of
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224 Magnani and Vittone, Submanifolds in stratified groups

radius r > 0 centered at the origin. In particular, since Idg, 1 is not homotopic to a con-
stant, L. is not homotopic to a constant in R”\{A4} for all 4 € Bll'}z. Now, we are in the
position to prove that

{e(t,2) : 2e GTH(SP" Hand 0 <t < 7}

covers the open neighbourhood of 0 in R” given by A, (F~!(By ;) nIlz(e)) that leads us to
the conclusion. By contradiction, if this were not true, then we could find a point 4 € By,
such that 4 + Ay/;(¢;()) forall Ae G™'(SP~1) and 0 < 7 < 7, but then

H: [0,7] x 87" — R\ {4},
(5,u) = Arje(e(s, G (W)

would provide a homotopy in R?\{A4} between the constant 0 and L,, which cannot
exist. [

As important consequence of Lemma 3.10, we are in the position to give the

Proof of Theorem 1.1.  We first notice that ITy(x) is a subgroup of G, due to Lemma
3.9. Setting %, , := ), (x"'Z), it is sufficient to prove (see [3], Proposition 4.5.5) that
2, » N Dg converges to IT n Dg in the Kuratowski sense, i.e. that

(i) if y = lim y, for some sequence {y,} such that y, € ¥, n Dg and r, — 0, then
n—oo '
y € g(x) N Dg;

(i) if y € [Ix(x) N Dg, then there are y, € X, , N Dg such that y, — y.

It is not restrictive assuming that x = e. To prove (i), we set z, = J,, () € £ N D, g. From
(3.27), we can find #; > 0 arbitrarily small such that

(3.31) ir;f |u+ O(11)] > 0,
ueSr-1
where | - | is the Euclidean norm and O(¢) is defined in (3.27). Then for n sufficiently large
and taking #; < to Lemma 3.13 yields a sequence {7,} =]0,#[ and A4, € G~'(S?7!) such
that y(t,, 4n) = J,,y». Due to (3.27), we achieve

5rn/rn (G(ln) + O(Tn)) = Vn,

hence (3.31) implies that z,/r, is bounded. Up to subsequences, we can assume that
G(2y) — ¢ and 7,/r, — s, then y, —d,{ =y. From Remark 3.12, we know that
G(2) € TIg(x) with respect to our graded coordinates, hence y € ITz(x). To prove (ii), we
choose y € Is(x) N Dg and set 2 = G~!(y). By Lemma 3.10 there exists ry > 0 depending
on the compact set G~' (Dg N Ig(x)) such that the solution r — y(r, 2’) of (3.10) is defined
on [0, o] for every A’ € G~ (Dg nTIx(x)). Clearly, y(r, 1) € Z, then (3.27) implies that

51/r(2) 3 )r :(Sl/r(y(n;{)) - G(/l) =)

This ends the proof. []
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Proof of Theorem 1.2. Without loss of generality we assume that x is the identity
element ¢ and consider graded coordinates F : R?Y — G centered at 0 with respect to
X].k. Notice that balls F~!(B,,) in RY through graded coordinates will be simply
denoted by B, ,. According to Corollary 3.8, we parametrize ¥ by the C'! function
¢:AcIls(e) — R?7, such that X is the image of

D: A4 cIlg(e) — RY,
1 1 1 1 1 ] 1 1
Y (Ve Va0 1000 () Ve e 0 ()5 00, ()

For any sufficiently small » > 0, we have

i(ZnB) 1
i @E0B) L ay

(3:32) rl0 rd rd

= Lo(AG)
Ay (@7 (By))

where A, = 0,/m1,(¢) and its Jacobian is exactly equal to r? and &, 1s the p-dimensional Rie-
mannian measure on X with respect to the metric g. Notice that

Ayp(©71(B) = @1/ 0 @0 A) T (B)
is the set of elements y € I1x(e) such that

(yl Lol (M) el (A) , 0L (A) %,(Arw)
1y bl

1
s Vo . ey . S A TR " Yoo -

belongs to B; and that
Ay (D7Y(B,)) = 7z (e) (2o, N By),
where 73 (e) is the projection 7z (e) with respect to graded coordinates, i.e. the mapping

R?3 (z,... z] ey 2y Z )»—>(z%,... z! ey 2y 2y ) € s (e).

YT my? ’<m, » %oy

We will denote the projection 7z (e) by 7. By continuity of 7z, for every ¢ > 0 we can find
a neighbourhood 4" < RY of Ilz(e) N D; such that n(.A4") < Iz(e) N By by Theorem 1.1
and the definition of Hausdorff convergence, for sufficiently small r we have y , n Dy < A~
and so

(333) Al/r(Br) = H(ZOJ M Dl) e Hz(e) M Bl+£.
If we also prove that
(3.34) Mx(e) N Bi—, = Ay, (@7'(B)))

for small r, we will have x5 (¢-1(5,)) = Znig(e)ns, 1D L'(TIx(e)). This fact and (3.32) imply
that
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226 Magnani and Vittone, Submanifolds in stratified groups

1;RJ1W = J;0(0).27 (TIz(e) N By) = J;®(0)0(z£(0)).

By Corollary 3.8 we know that V®(0) = C(0), where C is given by Lemma 3.1; therefore
J3®(0) must coincide with the Jacobian of the matrix C(0), i.e. with [v1(0) A+ A 1,(0)];.
By virtue of Corollary 3.6, we have

XA o AX A AXIA- A X! 1
td(e)| = [ ! - a = :
[v1(0) A~ -+ ADp(0)]5 [01(0) A~ -+ A 1p(0)];

g g

Finally, it remains to prove (3.34). We fix

y=01- ) = (yll,...,y;I,...,y;l) e lx(e) " By,
and set z := d,(y) € B(1_),. Let #p > 0 be as in Lemma 3.13 and consider #; € ]0, #[ to be
chosen later. By the same lemma, for every r > 0 sufficiently small there exist 2 € G~'(S?~1)
and 7€ [0, #;[ such that ®(z) = y(¢,4). Since |G(4)| =1, we can find 1 </ < p such that
|Gi(4)] = 1/,/p. Notice that
(3.35) ns(e)(®(z)) =z = mz(e) (p(1, 1)) = (1, 72),

then (3.29) implies

MO 2 |G — [z 2 10 /5 — |y,
where M > 0 is given in Remark 3.11 with L = G='(SP~"). It follows that

(1/v/p = M1)1”? < (1//p = Mt)t™ < | yifr?).

Now, we can choose #; > 0 such that 1/,/p — Mt; = ¢ > 0, getting a constant N > 0 de-
pending only on p, |y| and M such that

(3.36) t < Nr.

Taking into account (3.35) and the explicit estimates of (3.25), we get some 1 < k <1 and
aj +1 =< j < mj such that

lei(2,4)| = ’y]k([, z)| = |¢;€(z)’ = MZkJrl)
where we notice that k = a(i). By (3.36), the previous estimate yields
(3.37) o} O)| = lof (2)] < Mr**,

where M = MN**!, Estimate (3.37) has been obtained with M independent from r > 0
sufficiently small. Therefore

<y1 L oba@6) el () , . 9h1(0) ¢£n,<5ry)>

W) , , s Ve Vo p p”
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belongs to B; definitely as r goes to zero, namely, y € A; /,d)‘l (B,) for r > 0 small enough.
We observe that N linearly depends on |y| and is independent from r > 0, then the constant
M in (3.37) can be fixed independently from y varying in the bounded set Ils(e) N B;_,,
whence (3.34) follows. []

As it has been mentioned in the introduction, it is easy to find groups where non-
horizontal submanifolds of a given topological dimension cannot exist.

Example 3.14. Let us consider the 5-dimensional stratified group E°> with a basis
X1,...,Xs subject to the only nontrivial relations

X1, X)) =X3, [X1,X3] =Xy, [X1,Xs] =X
and the grading
Vi =span{Xi, X2}, V2 =span{X3}, V3 =span{Xy}, V4= span{Xs}.

Then m =2 and a 2-dimensional submanifold has codimension k = 3. As a result,
m — k < 0 hence any 2-dimensional submanifold X satisfies d(X£) < Q —k =11 -3 =38.
In other words, all 2-dimensional submanifolds of E> are horizontal.

4. Some applications in the Engel group

In this section we wish to present examples of 2-dimensional submanifolds of all pos-
sible degrees in the Engel group E*.

4
We represent F* as R* equipped with the vector fields X; = 3 4/(x)e;, where
J=1

1 0 0 0
0 1 0 0
AX=1o o 1 ol
0 x12/2 X1 1

(e1,e2,e3,e4) is the canonical basis of R* and x = (X1, X2, X3, X4).

Let @ : U — R* be the parametrization of a 2-dimensional submanifold X, where U

4.
is an open subset of R%. We set u = (uj,u») = (x,y) € U and consider @, = > D@ e
=1

Taking into account that J
1 0 0 0
0 1 0 0
-1 _
A7 =10 _x 1 o
0 x3/2 —x; 1
and that
4 N
(4.1) e =y (A(x)7)]X;,

j=1
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228 Magnani and Vittone, Submanifolds in stratified groups

we obtain

q)l 2
D, =D, X+ O Xs + (®, — D' D)X; + (cpji -o'D) + (T) d)ﬁi))a.
It follows that

(4.2) D AD, = DX A X, + (OF — 'O X, A X3

14 1 513 ((I)l)z 12
o -0l o) + T XA X,

+ (Di}Xz AX3+ (@54 — ! (1353)X2 A Xy

ch 2
+<c1>34+—( 2) @53—¢1®54>X3AX4,

) O OY
o7 = det( ; y.).
O] D

In the sequel, we will use (4.2) to obtain nontrivial examples of 2-dimensional submanifolds
with different degrees in E*.

where we have set

Remark 4.1. Recall that 2-dimensional submanifolds of degree 2 in E* cannot exist,
due to non-integrability of the horizontal distribution span{ X, X>}.

The next example wants to give a rather general method to obtain nontrivial exam-
ples of 2-dimensional submanifolds of degree 3. Clearly, the submanifold {(0, x,, x3,0)} is
the simplest example, as one can check using (4.2).

Example 4.2. Having degree three means that the first order fully non-linear condi-
tions

(@')?
4 +Tc1>33 —oloX* =0,
(4.3) P — o' 0> =0,

(@)’
2

o -+ ®l2 =0

must hold. By elementary properties of determinants, one can realize that the previous sys-
tem is equivalent to requiring that

142
(44) VO’ - ®'VO? isparallel to VO* - ((DT) Vo2,
(4.5) V®? s parallel to V! — &' VO3
d)l 2
(4.6) V! s parallel to V! — &' VO3 + %Vd)z.
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Magnani and Vittone, Submanifolds in stratified groups 229

We restrict our search to submanifolds with ®'(x, y) = x and ®> #+ 0 on U. This implies
that V®? = 0 and so (4.5) is equivalent to the existence of a function 4 : U — R such that

VO* — xVO3 = JVO2.

Imposing the further assumptions A(u) = —x2/2 it follows that
%2
(4.7) Vot = — 7V<1>2 + X VO,

whence also (4.6) is satisfied; since

2

X(VO? — xVD?) = VO* — %Vdﬂ,

it follows that also (4.4) is satisfied, namely, the system (4.3) holds whenever we are able to
find @ satisfying (4.7). Clearly, we have an ample choice of families of functions ®*, ®3, ®*
satisfying (4.7). We choose the injective embedding of R? into R* defined by

X

x+er
2
O(x, y) = xey—}—x7

3 x2

X
I s
6 2¢
One can check that ds (®(x, y)) = 3 for every (x, y) € R?, where £ = ®(R?). Here the part
of 7y with maximum degree is

y
T%(q)(x) y)) = - ¢ Xo A X;

\/<1 + %2>2(1 +e¥)

and due to (1.4), the spherical Hausdorff measure of bounded portions of X is positive and
finite.

It is clear that submanifolds of higher degree are easier to be contructed.

Example 4.3. Let us consider

2 2
Yoy
() = — —|.
(x7 y) <x7 y7 2 ) 2 >
Then we have
(I)lzzl q)l3zy (D14:y
23 24 34
OB =0, ®*=0, ®*=0.
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230 Magnani and Vittone, Submanifolds in stratified groups

By (4.2) we have

X2
(48) (Dx/\q)y=X1/\X2—|-(y—X)Xl/\X3—|—<y—xy—|—?)X1/\X4.

Recall that X, is the subset of points in X with degree equal to r. With this notation we have

2y = {®(x,y) : y€]0,2} U{D(x,y) : y e R\[0,2] and |y — x|* + »* — 2y},
T ={®(y+0ovy?>—2y,y):0e{l,~1}and y € R\[0,2]},
5, = {@(0,0), ®(2,2)}.

We will check that the curves

R\[0,2] 3y — y(y) = ®(y + 0V y* —2y,))

with o € {1, —1} have degree constantly equal to 2. Due to (4.1), we achieve

N2
=X+ X+ (') + (V‘ 'y +@2)?2>X4,
where one can check that

1,2
(4.9) (?4 — 'y’ +%?2> =0 and (7 —79'9?) = —ay/»2 -2y *0.

It follows that X3 is the union of two curves with degree constantly equal to 2. Applying
(1.4) we get that % |_ X5 is positive and finite on bounded open pieces of X3, hence
#4(23) = 0. In particular, we have proved that

FHEZ\Z,) =0,

then the Hausdorff dimension of X is 4 and furthermore #* L_ ¥ is positive and finite on
open bounded pieces of X. Clearly, (1.4) holds.

Example 4.4. Using (4.2) one can check that 2-dimensional submanifolds given by

0
D(x, y)
D (x, y)
D4 (x, y)

(D(xv y) =

where @34 + 0 have degree 5= Q — k. Notice that these submanifolds are then non-
horizontal.

Remark 4.5. Let us consider X as in Example 4.3. It is easy to check that

51/VEGDR—>SODR
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Magnani and Vittone, Submanifolds in stratified groups 231
where
S = {(xl,0,0,X4) TXg = O}

Clearly, S cannot be a subgroup of E*, since all p-dimensional subgroups of stratified
groups are homeomorphic to R”; see [48]. This fact, may occur since the origin in X has
not maximum degree, as one can check in Example 4.3.

Acknowledgements. We are grateful to Giuseppe Della Sala for fruitful discussions.
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