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Subgroups of solvable groups with non-zero Möbius function
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Abstract. We obtain some results on the subgroups of finite solvable groups with non-zero
Möbius function. These are used to prove a conjecture of Mann in the particular case of
prosolvable groups: if G is a finitely generated prosolvable group, then the infinite sumP

H mGðHÞjG : Hj�s, where H ranges over all open subgroups of G, is absolutely convergent in
some right half-plane of the complex plane.

1 Introduction

Let G be a finitely generated profinite group. We can consider G as a probability
space, relative to the normalized Haar measure, and denote by PðG; kÞ the proba-
bility that k random elements generate G. The group G is called positively finitely
generated (PFG) if PðG; kÞ > 0 for some k. In [3], Mann proposed the following
conjecture:

Conjecture 1.1. If G is a PFG group, then the function PðG; kÞ, which is defined and
positive for all large integers k, can be continued in a natural way to an analytic
function PðG; sÞ, defined for all s in some right half-plane of the complex plane.

The reciprocal of a function with these properties has some right to be called the
z-function of G. In [3] the existence of this function was proved for finitely generated
prosolvable groups (which have been shown to be PFG groups). More recently Mann
[4] proved that a function with these properties can also be defined for all arithmetic
groups with the congruence subgroup property. In dealing with these groups, Mann
proposed a new stronger conjecture. Let us recall some definitions needed to formu-
late this second conjecture.

The Möbius function mGðHÞ of a group G is defined for all finite index subgroups
H of G by the rules: mGðGÞ ¼ 1, and, for H < G,

P
KdH mGðKÞ ¼ 0. For a finitely

generated profinite group G, consider the series

PðG; sÞ ¼
X
H

mGðHÞjG : Hj�s; ðSÞ



where H ranges over all open subgroups of G, arranged in some order. With a suit-
able ordering, and with a suitable insertion of parentheses, the series (S) converges,
for a positive integer k, to PðG; kÞ. Thus if PðG; sÞ converges, it is a candidate for the
function mentioned in Conjecture 1.1. The conjecture proposed by Mann in [4] is the
following:

Conjecture 1.2. Let G be a PFG group. Then the infinite series (S) converges abso-
lutely in some right half plane.

This second conjecture holds when G is an arithmetic group with the congruence
subgroup property, but it appears to be much stronger than Conjecture 1.1 and much
harder to prove in general. The aim of this paper is to prove Conjecture 1.2 for fi-
nitely generated prosolvable groups:

Theorem 1.3. If G is a finitely generated prosolvable group, then the series (S) con-

verges absolutely in some right half-plane.

This improves the results obtained by Mann in [3, Section 5]. He considered a de-
scending normal subgroup basis fNigi AN for a finitely generated prosolvable group G

and proved that the infinite series (S) converges in some half-plane if, for each i A N,
one collects first the summands corresponding to the subgroups H containing Ni.
Once we know that (S) converges absolutely, the order of summation of the terms
mGðHÞjG : Hj�s is unimportant and the definition of the z-function of G can be given
without reference to a descending normal subgroup basis.

Since only subgroups H with mGðHÞ0 0 occur in (S), let us denote by bnðGÞ the
number of such subgroups of index n. We say that bnðGÞ grows polynomially if it
is bounded above by nt, for some t independent of n, and we say that mGðHÞ grows
polynomially if jmGðHÞj is bounded above by jG : Hj t. By [4, Theorem 3], the series

(S) converges absolutely in some half-plane if and only if both mGðHÞ and bnðGÞ grow
polynomially. Thus, in order to prove Theorem 1.3, we need to study the behaviour of
subgroups of finite solvable groups with non-zero Möbius function. One of the results
we will prove is:

Theorem 1.4. Let G be a finite solvable group and let H be a proper subgroup of G. If G

can be generated by d elements, then jmGðHÞj < jG : Hjd .

This immediately implies that jmGðHÞjc jG : Hjd for any open subgroup H of a
d-generated prosolvable group. There remains the problem of bounding the number
of subgroups H with index n and non-zero Möbius function. It is known that if H is
proper subgroup of a finite group G with mGðHÞ0 0, then H can be expressed as an
intersection of maximal subgroups of G; when G is solvable, a stronger result holds:

Theorem 1.5. Assume that G is a finite solvable group and that H is a proper subgroup

of G with mGðHÞ0 0. Then there exists a family M1; . . . ;Mt of maximal subgroups of

G such that
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(1) H ¼ M1 V � � �VMt;

(2) jG : Hj ¼ jG : M1j . . . jG : Mtj.

From the fact that a finitely generated prosolvable group G has polynomial maximal
subgroup growth (see [3, Theorem 10]), it follows easily that bnðGÞ grows poly-
nomially too.

Note that Theorem 1.5 does not hold without the assumption that G is solvable.
For example take G ¼ Symð5Þ and consider the intersection HG Symð3Þ of two
point stabilizers: we have mGðHÞ ¼ 20 0 and jG : Hj ¼ 20; however the maximal
subgroups of G containing H are two point stabilizers K1 and K2 with index 5 and
K3 G Symð2Þ � Symð3Þ with index 10. It seems more di‰cult to decide whether
Theorem 1.4 remains true for arbitrary finite groups. One can conjecture that there
exists a constant a such that jmGðHÞjc jG : Hjad whenever H is a subgroup of a
d-generated finite group G. In all examples that we were able to check, this conjecture
holds with a ¼ 1.

2 The Dirichlet polynomial PG (H , s)

In this section we recall some results from [2], that will be used in our study of sub-
groups with non-zero Möbius function. To any subgroup H of a finite group G, there
corresponds a Dirichlet polynomial PGðH; sÞ, defined as follows:

PGðH; sÞ :¼
X
n AN

anðG;HÞ
ns

with anðG;HÞ :¼
X

jG:K j¼n
HcKcG

mGðKÞ:

Clearly the following is true:

Remark 2.1. If anðG;HÞ0 0, then nc jG : Hj; moreover mGðHÞ ¼ ajG:HjðG;HÞ.

If N is a normal subgroup of G, then we may consider the Dirichlet polynomial
PG=NðHN=N; sÞ. We have that PG=NðHN=N; sÞ divides PGðH; sÞ; more precisely:

Proposition 2.2 (see [2, Proposition 16]). If N is a normal subgroup of a finite group G

then

PGðH; sÞ ¼ PG=NðHN=N; sÞPG;NðH; sÞ

where

PG;NðH; sÞ :¼
X
n AN

bnðG;H;NÞ
ns

with bnðG;H;NÞ :¼
X

jG:K j¼n
HcKcG;KN¼G

mGðHÞ:
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Remark 2.3. If bnðG;H;NÞ0 0, then there exists K such that jG : K j ¼ n, HcK

and KN ¼ G; in particular n ¼ jG : K j ¼ jN : K VNjc jN : H VNj.

By taking a chief series 1 ¼ Nlþ1 < � � � < N2 < N1 ¼ G and iterating Proposition
2.2, we obtain an expression of PGðH; sÞ as a product indexed by the factors in the
series:

PGðH; sÞ ¼
Y

1cicl

PG=Niþ1;Ni=Niþ1
ðHNiþ1=Niþ1; sÞ: ð2:1Þ

When k is a positive integer, PGðH; kÞ is the probability that G is generated by
k random elements together with the elements of H. But also the polynomials
PG=Niþ1;Ni=Niþ1

ðHNiþ1=Niþ1; sÞ have a probabilistic interpretation. If G can be
generated by d elements and kd d, then PG=Niþ1;Ni=Niþ1

ðHNiþ1=Niþ1; kÞ is the
conditional probability that k random elements g1; . . . ; gk satisfy the property
G ¼ hg1; . . . ; gk;HNiþ1i given that G ¼ hg1; . . . ; gk;HNii. In particular:

Remark 2.4. If there exist d elements hg1; . . . ; gdi of G such that G ¼ hH; g1; . . . ; gdi,
then 0 < PG=Niþ1;Ni=Niþ1

ðHNiþ1=Niþ1; dÞ for 1c ic l.

3 Proof of Theorem 1.3

Lemma 3.1. Assume that G is a finite group, H is a subgroup of G and N is a normal

subgroup of G. If mGðHÞ0 0, then the following holds:

(1) mGðHNÞ0 0;

(2) there exists KcG such that HcK , KN ¼ G and H VN ¼ K VN.

Proof. Assume that mGðHÞ ¼ ajG:HjðG;HÞ0 0; by Proposition 2.2, there exist
positive integers u, v such that auðG=N;HN=NÞ0 0, bvðG;H;NÞ0 0 and
uv ¼ jG : Hj. By Remarks 2.1 and 2.3, uc jG : HNj and vc jN : H VNj. Since
jG : Hj ¼ jG : HNj jN : H VNj, we have jG : Hj ¼ uv only if u ¼ jG : HNj and
v ¼ jN : H VNj. By Remark 2.1,

ajG:HNjðG=N;HN=NÞ ¼ mG=NðHN=NÞ ¼ mGðHNÞ0 0:

By Remark 2.3, since bjN:HVNjðG;H;NÞ0 0, there exists K with HcK , KN ¼ G

and jN : K VNj ¼ jN : H VNj; clearly we must have K VN ¼ H VN. r

Proof of Theorem 1.5. The proof is by induction on jG : Hj. Since we have
mGðHÞ ¼ mG=CoreGðHÞðH=CoreGðHÞÞ, we may assume that CoreGðHÞ ¼ 1. Let N be a
minimal normal subgroup of G. By Lemma 3.1, mGðHNÞ0 0 and there exists K such
that HcK, G ¼ KN and K VN ¼ H VN. Note that K VN ¼ H VN is normalized
by K and by N which is abelian, and so it is a normal subgroup of G ¼ KN. As
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CoreGðHÞ ¼ 1, we conclude that K VN ¼ H VN ¼ 1. In particular, K is a maxi-
mal subgroup of G and jG : K j ¼ jNj ¼ jHN : Hj. If HN ¼ G, then H ¼ K is a
maximal subgroup of G and we are done. Otherwise, by induction, there exists a
family M1; . . . ;Mu of maximal subgroups of G such that

HN ¼ 7
1cicu

Mi and jG : HNj ¼
Y

1cicu

jG : Mij:

We have HN VK ¼ HðN VKÞ ¼ H; hence H ¼ M1 V � � �VMu VK . Moreover

jG : Hj ¼ jG : HNj jHN : Hj ¼ jG : HNj jG : K j ¼ jG : M1j . . . jG : Muj jG : K j:

Hence M1; . . . ;Mu, K is the required family of maximal subgroups of G. r

Theorem 3.2. Suppose that G is a finitely generated prosolvable group and denote by

bnðGÞ the number of subgroups H such that jG : Hj ¼ n and mGðHÞ0 0. Then there

exists a constant b such that bnðGÞc nb.

Proof. Recall that G is PMSG by [3, Theorem 10], which means that there exists a

such that, for each n A N, the number of maximal subgroups of G with index n is
bounded by na. Now, for n0 1, we want to count the subgroups H with jG : Hj ¼ n

and mGðHÞ0 0. By Theorem 1.5, if H is one of these subgroups, then there exist a
factorization n ¼ n1 . . . nt and a family M1; . . . ;Mt of maximal subgroups of G with
jG : Mij ¼ ni for 1c ic t and 7

1cict
Mi ¼ H. There are at most n choices for the

factorization n ¼ n1 . . . nt (see [5]) and for any fixed factorization, there are at most na
i

choices for the maximal subgroup Mi, and consequently at most na choices for the
family M1; . . . ;Mt. We conclude that bnðGÞc naþ1. r

Proof of Theorem 1.4. If G is a finite solvable group, then the polynomials which
appear in (2.1) are very simple; indeed

PG=Niþ1;Ni=Niþ1
ðHNiþ1=Niþ1; sÞ ¼ 1 � ci

ms
i

where mi ¼ jNi=Niþ1j and ci is the number of complements of Ni=Niþ1 in G=Niþ1

which contain HNiþ1=Niþ1. Since G can be generated with d elements, from Remark
2.4, we get

ci < md
i : ð3:1Þ

Now let J ¼ f j j 1c jc l and cj 0 0g. We have

PGðH; sÞ ¼
Y
j A J

1 � cj

ms
j

 !
:
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By Remark 2.1, either mGðHÞ ¼ 0 or

m ¼
Y
j A J

mj ¼ jG : Hj and mGðHÞ ¼ amðG;HÞ ¼ ð�1ÞjJj
Y
j A J

cj:

In the latter case, by (3.1), we conclude that jmGðHÞj ¼
Q

j A J cj <
Q

j A J m
d
j ¼ md .

r

4 A final remark

As stated earlier, one can conjecture that there exists a constant a such that
mGðHÞc jG : Hjad whenever H is a subgroup of a d-generated finite group. By
Theorem 1.4, in the solvable case we can take a ¼ 1; one can ask how sharp
this choice is. Note that if G is an elementary abelian p-group of rank d, then
mGð1Þ ¼ ð�1Þdpdðdþ1Þ=2 ¼ ð�1Þd jGjðd�1Þ=2 (see for example [1, Corollary 3.5]). This is
nearly the worst case, as the following result shows.

Proposition 4.1. Let G be a finite solvable group and let H be a subgroup of G.

If there exist d elements g1; . . . ; gd such that G ¼ hH; g1; . . . ; gdi, then

jmGðHÞj < jG : Hjðdþ1Þ=2
.

Proof. We argue as in the proof of Theorem 1.4, but we need more precise informa-
tion about the numbers ci. We recall some notation and results from [2]. Let W be the
set of irreducible G-modules N such that N is G-isomorphic to Ni=Niþ1 for some
ic l. For any N A W, let JN ¼ f j A J jNj=Njþ1 GG Ng. As in the proof of The-
orem 1.4, either mGðHÞ ¼ 0 or m ¼

Q
j A J mj ¼ jG : Hj and mGðHÞ ¼ ð�1ÞjJj

Q
j A J cj.

In the latter case, to prove our statement it su‰ces to show that for any N A W, we
have

Y
j A JN

cj <

� Y
j A JN

mj

�ðdþ1Þ=2

¼ jNjjJN jðdþ1Þ=2:

Now for a fixed N A W, let t ¼ jJN j, q ¼ jEndGðNÞj and let z be the cardinality of the
set of cocycles b A Z1ðG=CGðNÞ;NÞ which satisfy the condition ðhCGðNÞÞb ¼ 0 for
all h A H. Since G is solvable, zc jZ1ðG=CGðNÞ;NÞjc jNj; moreover N is an
EndGðNÞ-vector space, so that qc jNj. As described in [2, Section 3], if j A JN , then

cj ¼ qnj z; with nj ¼ jfi A JN j i < jgj:

By Remark 2.4, if j � ¼ maxj A JN j, then cj � ¼ qt�1z < jNjd . Hence

Y
j A JN

cj ¼
Y

0cict�1

qiz ¼ qtðt�1Þ=2zt < jNj tðdþ1Þ=2:

This concludes the proof. r
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