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Subgroups of solvable groups with non-zero Mobius function
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Abstract. We obtain some results on the subgroups of finite solvable groups with non-zero
Mobius function. These are used to prove a conjecture of Mann in the particular case of
prosolvable groups: if G is a finitely generated prosolvable group, then the infinite sum
S tig(H)|G : H|™*, where H ranges over all open subgroups of G, is absolutely convergent in
some right half-plane of the complex plane.

1 Introduction

Let G be a finitely generated profinite group. We can consider G as a probability
space, relative to the normalized Haar measure, and denote by P(G, k) the proba-
bility that k random elements generate G. The group G is called positively finitely
generated (PFG) if P(G,k) > 0 for some k. In [3], Mann proposed the following
conjecture:

Conjecture 1.1. If G is a PFG group, then the function P(G, k), which is defined and
positive for all large integers k, can be continued in a natural way to an analytic
function P(G,s), defined for all s in some right half-plane of the complex plane.

The reciprocal of a function with these properties has some right to be called the
{-function of G. In [3] the existence of this function was proved for finitely generated
prosolvable groups (which have been shown to be PFG groups). More recently Mann
[4] proved that a function with these properties can also be defined for all arithmetic
groups with the congruence subgroup property. In dealing with these groups, Mann
proposed a new stronger conjecture. Let us recall some definitions needed to formu-
late this second conjecture.

The Mobius function p;(H) of a group G is defined for all finite index subgroups
H of G by the rules: u;(G) =1, and, for H < G, ) ¢ 5 us(K) = 0. For a finitely
generated profinite group G, consider the series

P(G,s) =Y u(H)|G: H| ™, (S)
H
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where H ranges over all open subgroups of G, arranged in some order. With a suit-
able ordering, and with a suitable insertion of parentheses, the series (S) converges,
for a positive integer k, to P(G, k). Thus if P(G,s) converges, it is a candidate for the
function mentioned in Conjecture 1.1. The conjecture proposed by Mann in [4] is the
following:

Conjecture 1.2. Let G be a PFG group. Then the infinite series (S) converges abso-
lutely in some right half plane.

This second conjecture holds when G is an arithmetic group with the congruence
subgroup property, but it appears to be much stronger than Conjecture 1.1 and much
harder to prove in general. The aim of this paper is to prove Conjecture 1.2 for fi-
nitely generated prosolvable groups:

Theorem 1.3. If G is a finitely generated prosolvable group, then the series (S) con-
verges absolutely in some right half-plane.

This improves the results obtained by Mann in [3, Section 5]. He considered a de-
scending normal subgroup basis { N}, for a finitely generated prosolvable group G
and proved that the infinite series (S) converges in some half-plane if, for each i € N,
one collects first the summands corresponding to the subgroups H containing N;.
Once we know that (S) converges absolutely, the order of summation of the terms
ug(H)|G : H|™ is unimportant and the definition of the {-function of G can be given
without reference to a descending normal subgroup basis.

Since only subgroups H with ug(H) # 0 occur in (S), let us denote by b,(G) the
number of such subgroups of index n. We say that b,(G) grows polynomially if it
is bounded above by n’, for some ¢ independent of n, and we say that y;(H) grows
polynomially if |ug(H)| is bounded above by |G : H|'. By [4, Theorem 3], the series
(S) converges absolutely in some half-plane if and only if both ug(H) and b,(G) grow
polynomially. Thus, in order to prove Theorem 1.3, we need to study the behaviour of
subgroups of finite solvable groups with non-zero M&bius function. One of the results
we will prove is:

Theorem 1.4. Let G be a finite solvable group and let H be a proper subgroup of G. If G
can be generated by d elements, then |uc(H)| < |G : H|.

This immediately implies that |ug(H)| < |G : H|? for any open subgroup H of a
d-generated prosolvable group. There remains the problem of bounding the number
of subgroups H with index n and non-zero Mobius function. It is known that if H is
proper subgroup of a finite group G with u;(H) # 0, then H can be expressed as an
intersection of maximal subgroups of G; when G is solvable, a stronger result holds:

Theorem 1.5. Assume that G is a finite solvable group and that H is a proper subgroup
of G with ug(H) # 0. Then there exists a family M, ..., M, of maximal subgroups of
G such that
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() H=M;N---N M,
(2) |G:H|=|G: M]|...|G: M,

From the fact that a finitely generated prosolvable group G has polynomial maximal
subgroup growth (see [3, Theorem 10]), it follows easily that b,(G) grows poly-
nomially too.

Note that Theorem 1.5 does not hold without the assumption that G is solvable.
For example take G = Sym(5) and consider the intersection H =~ Sym(3) of two
point stabilizers: we have y;(H) =2 # 0 and |G : H| = 20; however the maximal
subgroups of G containing H are two point stabilizers K; and K, with index 5 and
K3 =~ Sym(2) x Sym(3) with index 10. It seems more difficult to decide whether
Theorem 1.4 remains true for arbitrary finite groups. One can conjecture that there
exists a constant o such that |ug(H)| < |G : H|* whenever H is a subgroup of a
d-generated finite group G. In all examples that we were able to check, this conjecture
holds with o = 1.

2 The Dirichlet polynomial Ps(H, s)

In this section we recall some results from [2], that will be used in our study of sub-
groups with non-zero Mobius function. To any subgroup H of a finite group G, there
corresponds a Dirichlet polynomial P;(H,s), defined as follows:

a,(G, H) .
Pg(H,s) = EN”T with a,(G, H) := § uc(K).
ne G:K|=n
HER<o

Clearly the following is true:
Remark 2.1. If a,(G, H) # 0, then n < |G : H|; moreover u(H) = a;6.(G, H).

If N is a normal subgroup of G, then we may consider the Dirichlet polynomial
Pg/n(HN/N,s). We have that Pg/y(HN/N,s) divides Ps(H,s); more precisely:

Proposition 2.2 (see [2, Proposition 16]). If N is a normal subgroup of a finite group G
then

PG(H,s) = Pg/n(HN/N,s)Pc n(H,s)
where

b,(G,H,N) . -
ZT with b,(G,H,N) := Z Ug(H).

neN |G:K|=n

PG,N(H,S) =
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Remark 2.3. If b,(G, H,N) # 0, then there exists K such that |G: K|=n, H<K
and KN = G; in particularn = |G: K| = |[N: KNN| < [N : HNN|.

By taking a chief series 1 = Nj;; < --- < N, < N| = G and iterating Proposition
2.2, we obtain an expression of P;(H,s) as a product indexed by the factors in the
series:

Po(H,s) = [1 Po/mrnymi (HNij1/Nisi,9). (2.1)

1<i<l!

When £k is a positive integer, P;(H, k) is the probability that G is generated by
k random elements together with the elements of H. But also the polynomials
PG/N NNy (N 1/Niy1,5) have a probabilistic interpretation. If G can be
generated by d elements and k >d, then Pgy,, v, (HNiy1/Nip1,k) is the
conditional probability that & random elements g¢,...,g; satisfy the property
G={g1,...,9k, HNi 1) given that G = {gy, ..., gk, HN;). In particular:

Remark 2.4. If there exist d elements {gi,...,gqs> of G such that G = {H, gy,...,9a),
then 0 < Pg/n,., n,/n.,, (HNip1/Niy1,d) for 1 <i <.

3 Proof of Theorem 1.3

Lemma 3.1. Assume that G is a finite group, H is a subgroup of G and N is a normal
subgroup of G. If ug(H) # 0, then the following holds:

(1) g (HN) # 0;
(2) there exists K < G such that H < K, KN = Gand HONN = KNN.

Proof. Assume that ug(H) = ajg.n(G,H) # 0; by Proposition 2.2, there exist
positive integers u, v such that a,(G/N,HN/N)#0, b,(G,H,N)#0 and
uv = |G : H|. By Remarks 2.1 and 2.3, u <|G: HN| and v < |N : HN N|. Since
|G:H|=|G:HN||IN: HNN|, we have |G: H|=uwuv only if u=|G: HN| and
v=|N:HNN)|. By Remark 2.1,

a6:un|(G/N, HN /N) = pg/n(HN/N) = pug(HN) # 0.

By Remark 2.3, since bjy.unn|(G, H,N) # 0, there exists K with H < K, KN = G
and |[N : KNN|=|N: HNN|; clearly we must have KNN = HNN. [J

Proof of Theorem 1.5. The proof is by induction on |G: H|. Since we have
t6(H) = tgcoreq () (H /Coreg(H)), we may assume that Coreg(H) = 1. Let N be a
minimal normal subgroup of G. By Lemma 3.1, u;(HN) # 0 and there exists K such
that H < K, G=KN and KNN = HNN. Note that KN N = HN N is normalized
by K and by N which is abelian, and so it is a normal subgroup of G = KN. As
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Coreg(H) = 1, we conclude that KN N = HNN = 1. In particular, K is a maxi-
mal subgroup of G and |G: K|=|N|=|HN :H|. If HN =G, then H=K is a
maximal subgroup of G and we are done. Otherwise, by induction, there exists a
family My, ..., M, of maximal subgroups of G such that

HN= () M; and |G:HN|= [] IG: M.

1<i<u 1<i<u
We have HNNK = H(NNK) = H; hence H = M, N---N M, N K. Moreover
|G:H|=|G:HN||HN : H| = |G: HN||G: K|=|G: M;|...|G: M,||G : K]|.
Hence My, ..., M,, K is the required family of maximal subgroups of G. [

Theorem 3.2. Suppose that G is a finitely generated prosolvable group and denote by
b, (G) the number of subgroups H such that |G : H| =n and ug(H) # 0. Then there
exists a constant 8 such that b,(G) < n”.

Proof. Recall that G is PMSG by [3, Theorem 10], which means that there exists o
such that, for each n € N, the number of maximal subgroups of G with index 7 is
bounded by n*. Now, for n # 1, we want to count the subgroups H with |G : H| =n
and pg(H) # 0. By Theorem 1.5, if H is one of these subgroups, then there exist a
factorization n = ny ...n, and a family M, ..., M, of maximal subgroups of G with
|G: M| =n; for ] <i<tand ﬂl<i<tMi = H. There are at most n choices for the
factorization n = n; ... n, (see [5]) and for any fixed factorization, there are at most n}*
choices for the maximal subgroup M;, and consequently at most n* choices for the
family My, ..., M,. We conclude that b,(G) < n**'. [

Proof of Theorem 1.4. If G is a finite solvable group, then the polynomials which
appear in (2.1) are very simple; indeed

Ci
P6/Ni1, NifNigy (N1 [Ni1,8) = 1= -5
i

where m; = |N;/Nj;1| and ¢; is the number of complements of N;/N;;; in G/Njyi
which contain HN;; /N, ;. Since G can be generated with d elements, from Remark
2.4, we get

¢ <mf. (3.1)

Now let J = {j|1 < j</and ¢; # 0}. We have

Po(H,s) = H(1 - ;%)

jeJ J
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By Remark 2.1, either ug(H) = 0 or

m= Hm, |G: H| and ug(H)=an(G,H) |"‘l_Ic
jeJ jeJ
In the latter case, by (3.1), we conclude that |ug(H)| = [I;c; ¢ < e, m! =m®.
U

4 A final remark

As stated earlier, one can conjecture that there exists a constant o such that
ug(H) <|G: H \“d whenever H is a subgroup of a d-generated finite group. By
Theorem 1.4, in the solvable case we can take o = 1; one can ask how sharp
this choice is. Note that if G is an elementary abelian p-group of rank d, then
(1) = (=1)9p@@+0/2 — (—1)9|G| "D/ (see for example [1, Corollary 3.5]). This is
nearly the worst case, as the following result shows.

Proposition 4.1. Let G be a finite solvable group and let H be a subgroup of G.
If there exist d elements g,...,9q such that G=<{H,gi,...,dqay, then
luG(H)| < |G H|""DP2,

Proof. We argue as in the proof of Theorem 1.4, but we need more precise informa-
tion about the numbers ¢;. We recall some notation and results from [2]. Let Q be the
set of irreducible G-modules N such that N is G-isomorphic to N;/N;;; for some
i<l For any NeQ, let Jy ={jeJ|N;/Nj;1 Z¢N}. As in the proof of The-
orem 1.4, either ug(H) =0orm=][[,.,m =|G: H| and u(H) = (=) [eso
In the latter case, to prove our statement it suffices to show that for any N € Q, we

have

(d+1)/2
I]o< ( 11 m_,) _ |z

JjeJn JjeJn

Now for a fixed N € Q, let t = ||, ¢ = |[Endg(N)| and let z be the cardinality of the
set of cocycles f e Z'(G/Cg(N), ) which satisfy the condition (hCq(N))” =0 for
all he H. Since G is solvable, z < |Z'(G/Cs(N),N)| < |N|; moreover N is an
Endg(N)-vector space, so that ¢ < |N|. As described in [2, Section 3], if j € Jy, then

¢ =q"z, withy,=|{ieJy|i<j}|

By Remark 2.4, if j* = max;.y, j, then ¢;- = ¢"" 1z < IN|“. Hence

ch: H dz=q zl/2t<|N|t(d+1)/2.

jely 0<i<i—1

This concludes the proof. [
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