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Abstract

We consider two families of D1-D5—P states and find their gravity duals. In each case the geome-
tries are found to ‘cap off’ smoothly near= 0; thus there are no horizons or closed timelike curves.
These constructions support the general conjecture that the interior of black holes is nontrivial all the
way up to the horizon.
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1. Introduction

The traditional picture of a black hole has a horizon, a central singularity, and essentially
‘empty space’ in between. This picture leads to contradictions with quantum mechanics—
Hawking radiation leads to a loss of unitarity]. More recently a different picture of
the black hole interior has been suggested, where the information of the state of the hole
is distributed throughout the interior of the horizon, creating a ‘fuzzi§a)l' While the
general state of a Schwarzschild hole is expected to be very nonclassical inside the hori-
zon, we expect that for extremal holes we can find appropriately selected states that will
be represented by classical solutions[3hit was found that the generic state of the 2-
charge extremal D1-D5 system could be understood by studying classical solutions of
supergravity, and ifd—6] classical solutions were constructed for specific families of 3-
charge extremal D1-D5—P states. The traditional picture of the 3-charge extremal hole is
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r=0
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Fig. 1. (a) Naive geometry of 3-charge D1-D5-P; there is a horizen=ad and a singularity past the horizon.
(b) Expected geometries for D1-D5-P; the area at the dashed line wilggi\ﬁe 2r /sy,

pictured inFig. 1(a). But the 3-charge geometries constructe¢biB] were of the form
Fig. 1(b); the throat ‘caps off’ without any horizon or singularity. (All 2-charge extremal
states have a geometry that caps off likg. 1(b); the ‘naive geometry’ in this case has a
zero area horizon coinciding with the singularity-at 0.)

In this paper we pursue this program further, by finding further sets of 3-charge ex-
tremal CFT states and their dual geometries. One can write down a large class of 3-charge
extremal solutions of classical supergravity, and these will in general have pathologies. But
a basic tenet of our conjecture is that the geometries that are dual to actual microstates of
the 3-charge CFT will be regular solutions with no horizons, singularities or closed time-
like curves. The solutions ifb,6] were smooth, and we will find that the solutions we now
construct will also be free of horizons and closed timelike curves (though most will have
an orbifold singularity along certain curves). Thus our solutions will beHike 1(b) rather
than 1(a), and will lend support to the general ‘fuzzball’ picture of the black hole inferior.

In more detail, we do the following.

(a) In[11,12]a family of D1-D5 geometries was obtained, by taking extremal limits in
the general family of rotating 3-charge solutions construct¢tidh This family is labelled
by a parameter & y < 1. The geometries have no horizons and the only singularity is an
orbifold singularity along ars® in the noncompact directions. The corresponding CFT
duals can be identifief8,11,12] The orbifold singularity vanishes for the special case
y=1.
If we perform a spectral flow on the left sector of the CFT then from a 2-charge D1-D5
state we get a 3-charge D1-D5-P state[6lnwe found the geometries for the 3-charge
states that are related by spectral flow to the 2-charge stateywiti. Here we extend
this computation to find the geometries for 3-charge states starting from 2-charge states for
arbitraryy . It is straightforward to identify the corresponding CFT duals.

(b) Given a D1-D5-P state we can use dualities to interchange any two of its charges.
This leads to a new geometry which must also represent a true state of the 3-charge system,
since these dualities are exact symmetries of the theory. We construct these geometries

1 Additional evidence for this picture comes from a study of the nonzero size of supefTutie}
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obtained byS, T dualities. These geometries turn out to have orbifold singularities along
two nonintersecting® curves. These geometries and the ones obtained in (a) all fall into
a general class that we identify; they are rotating extremal solutions with parameters such
that there are no horizons and no closed timelike curves.

(c) Itis not immediately obvious what the CFT states corresponding to the geometries
in (b) are. To find information about the state, we study the infall of a quantum down the
‘throat’ of this geometry, and study the travel timesycra for a complete ‘bounce’. It
was found in[3] that this bounce time exactly equalled the time:gt for excitations
to travel around the corresponding ‘effective string’ in the CFT. By compuling;gra
for the geometries we find the length of each component of the effective string, and thus
identify the CFT state.

(d) We observe that the result found in (c) supports the picture of ‘spacetime bits’ ar-
rived at in[3]: Under duality the number of components of the effective string remains the
same, though the total winding number of the effective string changes. We also observe
that the travel time in the geometry and in the CFT are related by a redshift faataich
relates the time coordinate at infinity to the time coordinate in the AdS regibeqomes
unity if the momentum charge P vanishes).

2. D1-D5-P states from spectral flow of D1-D5 states
2.1. The D1-D5 CFT

We take IIB string theory compactified td4 1 x S* x T*. Let y be the coordinate along
st with

0<y<27R. (2.1)

The T is described by 4 coordinates, z2, z3, z4, and the noncompact space is spanned
by t,x1, x2, x3, x4. We wrapny D1 branes ons?, andns D5 branes ons! x T4. Let
N = nins. The bound state of these branes is described @dy4al)-dimensional sigma
model, with base spade, r) and target space a deformation of the orbifcd)V /Sy (the
symmetric product o copies of'4). The CFT hasV' = 4 supersymmetry, and a moduli
space which preserves this supersymmetry. It is conjectured that in this moduli space we
have an ‘orbifold point’ where the target space is just the orbi@1t)" /Sy [14].

The rotational symmetry of the noncompact directions. .., x4 gives a symmetry
sO(4) ~ su2); x sW2)g, which is the R symmetry group of the CFT.

The CFT with target space just one copy Bf is described by 4 real bosons!,
X2, X3, X* (which arise from the 4 directions, z», z3, z4), 4 real left moving fermions
vl v2 ¢3, ¢4 and 4 right moving fermiong L, 2, ¥3, . The central charge is= 6.
The complete theory with target spacg*)" /Sy hasN copies of thisc = 6 CFT, with
states that are symmetrized between sheopies. The orbifolding also generates ‘twist’
sectors, which are created by twist operatarsA detailed construction of the twist op-
erators is given iff15,16] but we summarise here the properties that will be relevant to
us.
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The twist operator of order links togethetk copies of the: = 6 CFT so that the(’, '
act as free fields living on a circle of lengkil. (L is the length of the spatial circle of the
CFT). Let us first discuss the NS sector. The left fermighsarry spin% under thesu2),
and the right fermiong/’ carry spin3 under thesu2)z. The ‘charge’ of a state is given
by the quantum numberg, j) = (j3, j3). Adding a suitable charge to the twist operator
we get a chiral primary
. k-1 - k—1

ot h=j= 5= h=j=—p (2.2)

We can act on this chiral primary with*; to get another chiral primary

_ — . k+1 - - k-1
of T=Jhoy T h=j=s h=j=t. (2.3)
Similarly we also get
_ - o k-1 - - k+1
O’k+EJj10'k : h:]:T, h:]:T, (2.4)
- k+1 - - k+1
of T=uNJ o h=j= % h=j= % (2.5)

(We can get additional chiral primaries by applying for example, (which increase:
—2

and; by % but we will not need such states in this paper).)

2.1.1. A subclass of states
In the NS sector we can start with the NS vacuum

Ons: h=j=0, h=j=0 (2.6)
and act withakjEjE to generate chiral primaries. Consider the subclass of states

N (k-1 - - N(k-=-1)
=77 h—]—k > (2.7
All copies of the CFT are linked into ‘long circles’ which are all of the same lerdth
and the spin orientation (given by the choiece—) for o) is also the same for each circle.
We therefore expect that the corresponding states exhibit some symmetry; it will turn out
that their gravity duals have axial symmetry around two cirgtes. Similarly we have
the states

N
(o7 7)¥10Ns: h=

N (k+1) ; N (k—1)

+— . _i_ N
(0 ) 1ONs: h=j=——5—, =j=7—> (2.8)
RS N (k-1 - - N(*k+2D
) =j=— =j== 2.
(o M) IONs: h=j T =5 (2.9)
N Nk+1) . NK+D
(@) F1ons: h=j=1—5=  h=j=o (2.10)
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2.1.2. Spectral flow

The NS sector states can be mapped to R sector states by ‘spectralifignwiinder
which the conformal dimensions and charges change as
C

24
g —a— 2.12)
g =q—«a i (2.
Settinga = 1 gives the flow from the NS sector to the R sector, and we can see that under
this flow chiral primaries of the NS sector (which have- ¢) map to Ramond ground
states withh = ;.

The field theory on the D1-D5 branes system is in the R sector. This follows from
the fact that the branes are solitons of the gravity theory, and the fermions on the branes
are induced from fermions on the bulk. The latter are periodic aroundthehoosing
antiperiodic boundary conditions would give a nonvanishing vacuum energy and disallow
the flat space solution that we have assumed at infinity.

If we seta = 2 in (2.12)then we return to the NS sector, and setting 3 brings us
again to the R sector. More generally, the choice

W =h-—oaq+ao? (2.11)

0=21+1 neZ (2.13)

brings us to the R sector.

2.1.3. The states we consider

Suppose we start with a chiral primary in the NS sector. Perform a spectraiXlag)
on the right movers witlr = 1; this brings us to an R ground state for the right movers.
Perform a spectral flow witbh = 21 + 1 on the left movers. This brings us to the R sector
but not in general to an R ground state. The state thus has a momentum charge

n,=h-—h. (2.14)
Applying this procedure to the staf2.7) we get an R sector state

N
k

[(o77) |0>NS]QL:2HMR:15yw——(k,n)) (2.15)
with
n 1 N 1 _ N - N
h=N<n2~|—%+Z), J=—E(2n~l—%>, h=. j==5
(2.16)
and
- 1
n,,:h—h:Nn(n—i—E). (2.17)

2.1.4. Explicit representations of the states

Let us construct explicitly the above CFT states. Consider one copy ofth@ CFT,
in the R sector. The fermions have modgs. The 4 real fermions can be grouped into 2
complex fermionsy ™, ¥~ which form a representation sf(2). (¢ * hasj = % andy—
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hasj = —%.) The anti-commutation relations are

{(¢+)jn» w;—} = 5m+p,0, {(1/[_):1’ 1/’;} = 5m+p,0~ (2-18)
Thesu2) currents are

I =W )V I = (), ¥

m—p
1 —\* — *
‘]n?z) = E[(w )m—pwp - (w+)m—pw;]' (219)

In the full theory withr1ns copies of thee = 6 CFT the currents are the sum of the currents
in the individual copies

J’z:,total — (Jrczl)]_ N (Jrclz (220)

)n1n5'

First consider the stat@ — (k, 0)) ((2.15)for n = 0). This gives a D1-D5 state with
momentum charge zero

)t N . N
[ ) IONS], g gpert B=70  P=5p

Each set ok copies of thec =6 CFT which are joined together lay, ~ behave like one
copy of thec = 6 CFT but on a circle of lengthL.

Note. We will call each such set of linked copiesamponent string

Thus in the presence of a twist operator of ordeve can apply fractional modes of
currents

J% 0, J9. (2.22)
k k
Since we are in the R sector the fermions have fractional qui_"eLs Apart from this

k
fractionation the situation is identical to the one studied@hwhere we had no twist
(k = 1) and we applied currents to find the states arising after spectral flow. In the present
case the lowest dimension current operator that we can apply to lower chafge te
Tk
(2.21) this is equivalent to applying/ ~)* , ¥, . The next operator we can applyis,,

k k k
and so on. The orbifold CFT requires that the total momentum on each component string be
an integer—we will discuss this issue (and possible exceptions) in more detail in S&ction
Thus we can apply

I aun I ad s (2.23)
k k k

which adds dimension and charge

Ah=k-1, Aj=—(k—1) (2.24)
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or we can apply

T2l _auny T e (2.25)

2

Tk
which adds dimension and charge
Ah=k+1, Aj=—k. (2.26)

To get states with a high symmetry we apply the same set of current operators to%ll the
twist operators in the state. Applyir{g.23)we get a state

(H[C# A f__%]>|‘1’"(k,0)) (2.27)

where the product runs over tl%econnected components of the CFT created by the twists.
This state has dimensions and charges

N N

h—N+N(k 1) | = (k-1
2% T TR T % :
_ N ; N
P -_ N 2.28
7 J % (2.28)
and
N
npz?(k—l). (2.29)

Applying (2.25)instead to each of the component strings we get the state

(H[J__ZJ__@ -, J__%])|l1/__(k,0)> (2.30)

with dimensions and charges

N N - N - N
4+k( +1), J % , T J % (2.31)
N

np = (k+1). (2.32)

We now observe that the stat230) has the correct dimensions and charges to be the
member of the spectral flow famili2.15) with » = 1. Similarly, the stat€2.27)can be

identified with the state obtained by spectral flow, wita- 1, from the statego,j ) ¥ [OINS
in Eq.(2.8).
We can apply further sets of currents to get states with spectral flonsb$ units

(]_[ [T J:%]) &~ (k,0)). (2.33)

These states have

N N N - N - N

="t Dnk+1 =~ _aN,  h=-— -2 @34
7 T prek+D, j=—o —nN, T =y (234
N

n,= ?n(nk +1). (2.35)

We can similarly get those witlh < 0; latter are obtained by applying modes/df instead
of J~.
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2.2. Gravity duals

2.2.1. Duals of 2-charge states

In [13] a set of D1-D5-P solutions was given. The solutions had axial symmetry along
two circlesy, ¢, and angular momentad,, Js. In [11,12] an extremal limit was obtained
for solutions withP = 0, getting the geometries

1
ds? = —=(dt? — dy?) + hf | ——— + db6?
s h( y)+ f<r2—|—a2y2+
2.2
a?y? 0105 cog 6
+h<r2+ w252 )coszedwz
2.2 ;
a?y?Q1Qssit o\
—i—h(r2 +a%y? - BT sir? 0 dg?
4
2ay+/ . H
- LQlQS(COSZOdy dy +siodrdg) + | 13 dx? (2.36)
hf Hs (3
where
= QRlQS, f:r2+a2y200529,
01 Os
Hi =1+ 7, Hs=1+ 7, h =+/H1Hs. (2.37)
These metrics have angular momenta
Jy=—j+j=0, Jp=—j—j=ynns (2.38)

with n1 andns the numbers of D1 and D5 brangs,j are the angular momenta in tihe R
factors of theso(4) =~ su2); x su2)g describing the angular directions. For

y=-, k=12... (2.39)
we obtain geometries that are the duals of the stgtes (k, 0)) (Eq.(2.21) [3,11,12]

2.2.2. Duals of 3-charge states obtained by spectral flow of 2-charge states

We would now like to find the duals of the 3-charge states obtained by spectral flow of
the above 2-charge states. We again start from the 3-charge nonextremal solutions and take
an extremal limit, keeping the charges and angular momenta at the values given by the CFT
state. For the case where all twists were triviai( 1 for all twist operators) this procedure
was carried out irf6]. The starting nonextremal solution was derived6h by starting
with the neutral rotating hole in 4 1 dimensions, and applying a sequence of boosts and
dualities. This solution is reproduced Appendix A Taking the limit for P # 0 needs
some care, but the procedure was described in detffl]iand needs no changes for the
more general case here.

We fix the values of the angular momenta and the momentum chargehe values we
desire, and then take the extremal limit. For general values of these parameters, we obtain
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the solution given ippendix A These solutions have pathologies in general; for example
they can have closed timelike curves. But we must select only those that correspond to
microstates of the 3-charge system, and these we expect to be free of pathologies.

We set the charges and momentum to equal those of the §2a383

Jy = —nnins, Jp = (n+ y)nins, n, =n(n+ y)nins. (2.40)
The metric is written naturally in terms of the dimensionful quantities
N 4G® N 4G®
yl = 7‘] 9 7/2 =Y bl
70105 " 70105 *
4G® (2r)%ga’®
p= 1= L, Os = ga'ns, (2.41)

whereG® is the 5D Newton'’s constant
. GO 4rSe2y't

- _ , 2.42
V(2r R) VR ( )

V is the volume off'4, R the radius of thes* andg the string coupling. We find

- V0105 Jy Q105 - V0105 Jy 0105

= = V1 V2= = y2 (2.43)

R nins R R  nins R

and thus, for the duals of the sta(@s33),

p=- YA, g VOO ) 0,2 95,64y (2a
We observe that

Qp=—"7Y2 (2.45)

We will see that it is this relation that selects, from the class of all axisymmetric solutions,
the geometries that are free of patholodiéssing (2.45)to simplify the extremal solution,
we get

d 2
ds? = —=(di® — dy?) + 9r (4 —dy)2+hf<; +d92>

hf r?+ (71 + 72)%n

72 — 52yncoL o
+h<r2+)71(371+172)77 - Q1Q5(y1h2f)’22)7700 )co§9d¢2
01 Qs(?fhz—fzzz)” 5"‘29> sinf 6 d¢?

1
h

+h <r2 + P21+ 72)n +

514 79) 202
JrQp()/l Y2)n

, 2
AF (cog 0dyr +sirf 0 dg)

2 We certainly have states of the system will # 0 and small or vanishing angular momenta, but as seen in
the 2-charge cag8] such states will break axial symmetry, and thus not be in the class that we are considering
at present.
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— Z—V%Q&"(h cog 0 dyr + 72 sin? 0 dg)(dt — dy)
~ ~ 4
2 QlQ*;l(;/l Y20 (0026 dy + siPo dg) dy + /% 3 dx?, (2.46)
. 5 i1
€ V105080 o sy ndy
Hyif
N info
- YOOSSTO o i+ Fody) A d
Hyf
1+ 72)nQp .
+ W T (Q1dt + Qsdy) A (COF 0 dy + SIrP O d)
01 05c080 , , .  _
- mdl/\dy—Tf(r + 72(71+ P20 + Q1) dyr Adé, (2.47)
20 _ M1
e = He’ (2.48)
where
n— 0105
0105+ QlQp + Q5Qp '
f=r?+ @1+ 72)n(71sirt o + j2co0),
Hi =1+ %, Hs=1+ %, h =+/H1Hs. (2.49)

3. Obtaining new solutions byS, T dualities

As mentioned in the introduction, we are interested in making geometries that are dual
to actual bound states of the D1-D5-P system, and not just formal solutions of supergrav-
ity carrying D1, D5, P charges. In the previous section we started with known states in the
CFT and found their gravity duals by looking for solutions with the same symmetries and
guantum numbers. In this section we make D1-D5-P solutions by a different method: we
start with a D1-D5—-P geometry that we have already constructed and peffarrdual-
ities to permute the charges. Since these dualities are exact symmetries of the theory, we
know that the resulting geometry represents a true microstate. But it will not be immedi-
ately obvious what the dual CFT state is. We will identify the CFT state later, by analyzing
the properties of the supergravity solution, and find that the change of CFT state under
theseS, T dualities provides insight into the AdS/CFT duality map.

The metric(2.46)is invariant under the interchange 6f, Os, so the only nontrivial
duality is the one which interchanges the momentum charge with, say, the D1 charge

P P F1 D1
s Ty.Tyy s
<Dl>—><Fl)—><P>—><P>. (3.1)
D5 NS5 NS5 D5
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The metric which results from this chain of dualities, and the corresponding dilaton are

1 01 ; dr?
ds? = — = (dt?® — dy? ~—d—d2h(— d92>
s*=—=(dr* - dy) AR A s g
) 72 — 72)ncof o
#(r2 4 G+ 7o - 22O fyj)”co Jeogaau?
i 2 — 7R sint o
+h <r2 + 7271+ P2 + Qst()/lﬁsz? e ) Sir?6 dg”
L =22
+ W(co@dvf +5si20 dg)?
ZVQ;Q( 1COS" 0 dyy + 2SI 0 d) (dt — dy)
_W /Q (cof0 dyr +sirPo de) dy + de,,
Cz:_inlQE’cosze(fzdt—l—fldy)/\dt[r—7w(f1dt+f2dy)Ad¢
H,f Hy f
+% /gl(det+Q5dy)/\(Co§9dw+3|n26d¢)
0, 0s5C080 , , . . _
dtNdy — ————(r"+v2(r1+ 72)n + Qp)dy Nd9,
i 7 (r*+ 72+ 720 + Q)p)
oty 3.2)
where
Hy=1+22 = /H, T (3.3)

75
The solution above is again of the general fd@6)but with different parametets

01=0p, 05 = 0Os, =01,
~_ Q1. /Q

= —_— s 34
e prl Qp 34

3 The quantitiesD; have units of (lengtf) so we have to be careful about the meaning3od). If we start
with the F-NS5-P system and d9 to get P-NS5-F then we ge% Q” , IQT% = ?21 etc., wherdj is the
string length. Starting with D1-D5-P and applyif@y 7, S to get P-D5-D1 we ge}’(’z—z = % Z—g = ZQ—gl
wherel; = g%lx is the D-string length. Since the classical geometry is unchanged by an overall rescaling, we can
write (3.4).
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4. Conical defect angles

The geometrie§2.46) possess, generically, an orbifold singularity along a circle in the
noncompact space directions, just like the subset of 2-charge m@&r38 Let us recall
the physics of these singularities, and then study the ‘conical defect’ angle (created in
the AdS part of the geometry by the orbifolding) for the metrics constructed in the above
sections.

4.1. The physics of conical defects

Let us recall the reason why we get conical defects in 2-charge geometrigj.dn
method was developed to compute the gravity dualsafiostates of the 2-charge system
(not just the subclass giving the geometrigs36)). By S, T dualities we map the D1—

D5 system to the FP system, which has a fundamental string (F) wrappgtaarying
momentum (P) along?. The bound state of the FP system has the strands of the F string
all joined up into one ‘multiwound’ string, and all the momentum is carried as travelling
waves on the string. Metrics for the vibrating string were constructed, and dualized back
to get D1-D5 geometries. The general geometry was thus parametrized by the vibration
profile F(v) of the F string.

The detailed map between D1-D5 states and D1-D5 geometries is found in the fol-
lowing way. The vibration on the F string is written in terms of harmonics. If we have
a quantum of theith harmonic on the string then we get a twist operatpracting on
the NS vacuum in the D1-D5 CFT. The polarization of the vibration is given by an in-
dexi =1,...,4 labeling the four noncompact directions. Tém4) symmetry group of
the angular directions isc su2); x sw2)g, and writing the vector index in terms of
the representatio(‘%, %) of su2); x su2)r we get the choice of superscripts of the twist

operatora,f’i. The collection of all twist operators (arising from all quanta of vibration

on the F string) give an NS state, which is spectral flowed to get an R sector state in the
D1-D5 CFT. The geometry for this state is known, since it is obtainef,l# dualities

from the geometry created by the vibrating F string.

The strands of the F string wrap theirection, but under the vibration they carry they
separate out from each other, and spread out over a simple closed curve in the transverse
spacex?, ..., x%. It appears at first that there would be a singularity in the FP and D1-
D5 geometries at this curve, but it was found3j that all waves reflect trivially off this
singularity. The reason for this was explaineli] where it was found that for the D1-D5
geometries the singularity was just@ordinatesingularity similar to that at the origin of a
KK monopole; we have a ‘KK monopole tube’ (KK monopoles?) centered at the above
curve. As long as this curve does not self-intersect (it generically does not self-intersect
since it is just ans? in R*) the 2-charge D1-D5 geometry is completely smooth, with no
horizon or singularity.

The generic solution has no particular symmetry. If we look at solutions that have axial
symmetry then there are very few possibilities. We must let the F string swing in a uniform
helix in the covering space of thecircle; let this helix have turns. The vibrations are

now all in thekth harmonic, so the D1-D5 CFT state is createctdqy‘ﬁ (the choice
(——) says that we let the F string swing in the-x> plane; changing this plane changes
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the superscripts). The KK monopole tube now ‘runs over itselfimes, so all points on
the ST exhibit the geometry of KK monopoles coming together. But it is known that this
generates an ALE singularity, which has a conical defect angle ¢f 2 %).

4.2. Singularity structure of 3-charge metrics

We thus see that a conical defect is a ‘harmless singularity’—it arises only if we make
nongeneric states by letting tié run over itself, and in the full quantum theory one can
imagine that quantum fluctuations separate the intersecting strands and smooth out the
singularity. It is important though that the conical defect angle be of the forth 2 %);
if we find an irrational angle for instance then we would not be able to understand how the
given geometry sits in a family of geometries that are generically smooth. We would like
to understand more precisely the nature of these defects. In particular we would also like
to know the values of the parametersandy» for which such defects might arise. The
arguments we use below are similar to the ones givgdblinwhere more details can be
found.

Aroundr = 0 the 6-dimensional part of the 3-charge me(élc16) have the following
form:

52
ds’~—"1 hf~ 5 (dr2 + rzdiz>
Y1+ v2)4n R
+ hf(dO? + gyy COS O dVi? + gy SINP O dB? + 28y COS 0 SIP 0 dijr d)

+ 81 d1? + 28,y COS 0 dt dV + 28,4 SIN? 0 dt dp, (4.1)
where
Y =lyi+val, (4.2)
5 7 y - y
=¥y, =V -2, =¢ -y, 4.3
y=yy v=v-reg ¢=d-ny (4.3)
f~ (71 + 72)n(715i 6 + 72c0$6) (4.4)
andgyy, 8¢, 8uer 81t 81y 81g Are differentiable functions af with
gyy(T/2) =1, 8pp(0) =1. (4.5)

The above form of the metric shows thatrat 0 the y cycle shrinks. It is important to
know if, for some particular value af, some other cycle shrinks at the same time. This
can be understood by looking at the determinant of the metric restricted toithand¢
coordinates

(0105)% 1%y?

L7 sirf 6 coso. (4.6)

detg|t’1/~/’¢~) = 7R2 hf

This determinant only vanishestat= 0, 7/2: At 6 = 0 theg coordinate decouples frof
andr and the coefficient af$? vanishes, i.e., the cycle shrinks at this point. At = /2
the same happens for tifecycle. No other combination of th2andy cycles vanishes at
any other value of.

To proceed further, we need to look at the actual valugs ¢ andys.
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4.2.1. Geometries obtained by spectral flow: orbifold singularities
Let us consider first the case of the 3-charge metrics obtained by spectral flow from the
2-charge metrics i2.36) For them

1 1
y1=—n, y2=<n+z), y:z, keN, neZ. 4.7)
In this case the coordinat§s s andé are
~_ Y > 1\ y > y
—Z — — g = =, 4.8
5=2 d=v <n+k>R, b=g+n 4.8)

If $/R, ¥ and¢ were periodic coordinates with period 2i.e., if
Vo o« Vo5 oo
<R,1//,¢> (R,¢,¢)+2ﬂ(11,12,13) (4.9)

with I3, I, I3 integers, then the metri@t.1) would be smooth as can be seen from the
coefficients ofdy, dyy andd¢ in Egs.(4.1)—(4.5) However, it follows from the definition
(4.8) and from the periodicity of the asymptotic coordinate®t, v, ¢, thatj/R, ¥ and

¢ are subject to the further identifications:

y - = y s o 1 1
= ~ = 2zl =, —=,0 4.10
(598)~ (5.9.8) +2n1(5.~1.0) (4.10)
with [ =0,...,k — 1. The identifications above generate a group isomorphig;tand
the space characterized by the met#icl)is topologically equivalent to an orbifoldR3 x
$3)/Zy. The orbifold actiorZ; has fixed points where both teandy cycles shrink to

zero size, which happensat 0 andd = /2. Thus the spectral flow metrics wikh> 1
haveZ; orbifold singularities of the same kind as the original 2-charge me2i&6)

4.2.2. Metrics obtained afte§7, T;, S duality: orbifold singularities

Let us now turn to the case of the metrics obtained from the spectral flow metrics by
S, T dualities. Since these dualities interchamgeandr, and do not change the angular
momentaJy, andJy, we find, using2.43), (2.44)

, R’ -, J¢ k
yl = yl = = - )
/Q&Q% npns ns(kn + 1)
R . J 1
)/2/= / /yz/:}’l (fl Zﬂ (411)
/Q1Q5 ph5 5
We thus see that the parameterafter duality
y/ = y]/_ + yz/ = (412)

nsn(kn + 1)
is again of the forn{4.7) with the integetk replaced by the integer

k' =nsn(kn + 1). (4.13)
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In this case, then, thg, ¥ and¢ coordinates can be written as

y > 1y - k y

=, = _ = 4.14
k' nsn R + ns(kn +1) R ( )

§=
and the spacgt.1)is topologically equivalent toR3 x $3)/Z;, where now théZ;, group
acts as

Vo - Vo~ - 1 1 k

<R’w’¢> (R’w’(p)—i_hl(k” n5n’n5(kn—|—1)) (4.15)
with I =0,...,k’ — 1. Denote byw the generator of thi&;, group. We notice that, in
contrast with the orbifold actiof#.10) w acts nontrivially on all the three cyclds ¥ and
$. However, the group element’s” only acts by a-2x rotation on the cyclej. Thus at
r =0 andd = 0, where the other two cyclgsandé¢ shrink,«" has a fixed point and the
6-dimensional spad@.1) has an orbifold singularity. The order of this orbifold singularity
is k' /(nsn) = kn + 1. Similarly, if k andns have no common factors, the group element
w"*km+D) acts trivially ong and has a fixed point whefand+ shrink, which happens
atr =0 andd = /2. Thus atr = 0 andd = /2 there is an orbifold singularity of order
k'/(ns(kn + 1)) = n. If ns andk have a common factau, i.e.,ns = mnis andk = mk, then
"%+ has a fixed point at = 0 andd = /2 and the order of the orbifold singularity
increases t@’/(is(kn + 1)) = mn.

In conclusion, the metrics obtained from the spectral flow metricS bpd 7 dualities
have orbifold singularities at boitr = 0, 6 = 0), and at(r = 0, 6 = /2). The order of the
orbifold singularity iskn + 1 at(r = 0,6 = 0) andmn at (r =0, 60 = 7/2), wherem is the
highest common factor shared by andk.

Note: In the classical limit of the D1-D5 system we takg ns — oo, though BPS
states exist of course for aily, ns. If we start with a largens then the orbifold shifts
involving % in (4.15) are very close together, and cannot be seen in the classical limit
ns — oo. But since microstates exist for all, ns the geometries studied in this section
can be considered fars of order unity, and then they give well-defined classical metrics
with the orbifold group(4.15)

4.2.3. Absence of horizons and closed timelike curves

If we write down a generic 3-charge solution with rotation, we find closed timelike
curves (see for exampld9]). But we expect that geometries that actually arise as du-
als to 3-charge states will be free of pathologiesj@hcomputations were developed to
show that the geometries constructed there had no horizons and no closed timelike curves.
A similar result holds for the geometries found in this paper; the computations are given in
Appendix B

5. Wave equation for a scalar
In [3,20] the wave equation for a massless minimally coupled scalar was studied in the

2-charge geometry. Such a scalar arises for instance from fluctuations of the métfic on
for example the component,.,. It was found that the wavepacket spent a titeycra
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traveling down and back up the ‘throat’ of the supergravity solution. The tnggra
exactly equalled the time taken for excitations to travel around the ‘effective string’ in the
dual CFT. We now computarsycra for the 3-charge solutions we have found, and then
use the result to find the dual state in the CFT.

The wave equation for a massless minimally coupled scalar in the 6D geonfetry is

1
0P = ——0,(/—gg""9,®) =0. (5.1)
\/_—g M( v )
We giveg”', detg in Appendix C Writing
t -
O, y,r,0,Y,¢)= exp(—iw; + ik% +imiy + imz(l))d)(r, 0) (5.2)
we get a wave equation that is separable ih[21]. We write
d(r,0) = Hr)O (). (5.3)
We introduce the dimensionless radial coordinate
R2
=2 (5.4)
0105

and the following convenient quantities

S=Vnlyi+yl =y, o’= [(w2 —22)

1/2
V= <1+A—(w2—kz)w —(w—k)2&> ,

R2 R2
o  0p(01+ 0Os)
§= n(——li—nu 1—m2y2 |,
Vi n 0105 v Y
¢ =N+ myyz +mayr). (5.5)
Then the radial and angular part of the wave equation become
d 2 d 2 2 £ %7
4— 3 )— |H 1- —=—|H=0, 5.6
dx(x(x+ )dx> +|:G x Y +x+82 x| (56
d d
—(sin¥y— |® + AO
sin29d9(' d@) +
2 2 S q
my m vitvye i -
- —~ sir6 + 72cog0) |© =0. 5.7
+[ 020 s2g T o2 (7 + 72 ) (5.7)

Reality of the metric implies that the wave equation is real; thus the complex conjugate of
a solution gives another solution. We can thus take

£§>0. (5.8)
The solutions witké < 0 are obtained by complex conjugation.

4 The 6D string metric is obtained by ignoring té, and the 6D Einstein metric turns out to be the same as
the 6D string metric.
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5.1. Solving the wave equation

The radial wave equation can be solved in the two regions

outer region: x> 1,
inner region: x < o2. (5.9)

If one chooses the frequency of the scattering wave to be very low

02> 1 (5.10)

the inner and outer regions have a wide overlap, where the two limiting solutions can be
matched. Due to this large overlapping region, we expect that a reliable solution can be
found, in the low frequency limi¢5.10) without the need to introduce a further region or

to make any further assumption on the parameters. In particular the quantity

(0? - AZ)% + (v — ,\)2% (5.11)
is notassumed to be small. For largdt can be seen fror(b.5)thatv becomes imaginary;
this corresponds to energies where the quantum travels over the potential barrier in the
‘neck’ region instead of tunneling through it. Since the CFT is known to describe the low
energy dynamics of the system, we will restrict ourselves towgak can choose the sign
of v to be positive.

Note also that in the low frequency lim{.10)the angular part of the wave equation
(5.7)reduces to the angular equation in flat space and thus the eigenvéue

A=1(1+2). (5.12)

The technique of matching solutions across the two regions is well known, and details
of the computation are given ilippendix D Here we outline the main steps and results.
The solution in the outer region is a linear combination of Bessel’s functions

1
How= —= [C1Ju(o 7 Vx) + C2dy (07 Hx)]. (5.13)
The coefficients”1 andC2 are fixed by demanding continuity with the inner solution. The
latter is uniquely determined by the requirement of regularityy-at0 and is given in terms
of the hypergeometric function

Hin=x°‘(x+82)ﬂF<p,q;l+ 2a;—i> (5.14)
32

with

_ gl . .

=25 = 23 |A +maiy2 +moyil,

E Unfow 0p(Q1+ Qs) . .
= =YX | - )\ === == _ _
B % = 25 (n 0105 miy1—may2 |,

1 v 1 v
== - == - —. 5.15
p 2+0t+/3+2, q 2+a+/3’ > ( )
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As a result of the matching we get

C; T(—v+DI(-»TG+a+B+ 5T G+a—B+ 5)( 82 )“ (5.16)

Ci TO+DI® TGE+a+p-HrE+a—p-y\402) " '
Note that since? < 1 <« o2 we haveC, « Cj.

5.2. Time of travel and absorption probability
For very largex we get from(5.13)
20 1 (=Ll T _ Ty Y
Hout= 7@[6“” vx 4)(C16 2 4 Coe 2)
+e OV (01 4+ Coe )| (14 0(x2)). (5.17)

The ratio between the outgoing and the ingoing wave amplitude is (ignoring the constant
phase shift caused the by facterg;)
Cie™'Z + Crel?

= i% —i
Ci1e''2 4+ Coe

. . (C C2\?
=e—zﬂv+(l_e—21ﬂv)<c_i+0<c_j> ) (518)

In [22] a procedure was given to compute the travel time in the throat fRgrve
summarize the method here. The quantum coming in from infinity tunnels through the
‘neck’ region with some probability « 1 and enters the ‘throat’. Here it travels freely
down to the ‘cap’ and bounces back up. We again have the same probabilitgt it
emerges to infinity, while with probability X p it turns back for another trip in the throat.
We thus get emergent waves at times separated by a fixed intery@tra.

To find p and Atsygra We note thafk can be written in the form

R

o0
R=a+b)y et (5.19)
n=1

wherea andb are some real functions aef. Let us send in from infinity a wave packet

/ dky £ ye i (5.20)

wherek, /R is the radial wave numbét. = ~/w? — A2, After scattering from the geometry
the wavepacket will be

/dk, Fl)[e TR 4 R FriR], (5.21)
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From the form(5.19)of R we see that the wave packet will have peaks at

ker=w(@—2rnAt), n=01,.... (5.22)

Then > 1 peaks represent waves that have travelléthes down the throat and back, and
we identify At = Atsucra. From(5.19)we also see that the probability to enter the throat
and reemerge is

P=p’=b> (5.23)

Note. In order to be able to distinguish between successive peaks of the wavepacket, the
separation between the peaks (seen at infinity) should be larger than the width of the
wavepackets. This implies

=)~ (5.24)

A\t R
ks

.

Our approximate solutio¢5.16)is only valid in the low frequency limit, < R%/./010s5,
so we should havar > /010s/R. We will find thatAr ~ R/§ so the requiremerfs.24)
is

2

R
5> 010s. (5.25)

The above condition can be satisfied either by takirigrge oré small.
We now list the results found iAppendix E
5.2.1. Energy threshold for absorption

If the wave frequencw is low enough so that

v+1

B<a+ (5.26)

then the wave is reflected back at the neck region and the absorption probability vanishes.
We can interpret this threshold in the following way. If the energy of the quantum is

low enough then we cannot fit a complete wavelength in the ‘throat’. In the limit of large

R the throat is a large asymptotically AdS region. The spectrum of a scalar in such an

asymptotically AdS geometry was computed8]. Adapting those results to the notation

of our paper, we find that the energy levels are given by solutions to the equation

I+2
ﬁ=a+—%—+h k=012 ... (5.27)

If we take the limitR — oo then we get a large AdS region, and we can compare quan-
tities to those computed in asymptotically AdS space. Taking this limit we see that the
frequencieg5.26) which are not absorbed are those which lie belowAld& excitation
spectrum.
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5.2.2. Travel time in the geometry
If w is high enough so that
v+1
2

then the reflection amplitude computed(E16) has a form similar t¢5.19)with the sum
over phase factors

Z 2nin(p— a—1+”>_2 2ningar (5.29)

n=1
The factorﬂ — o depends linearly om; the parametew, on the other hand has a nonlinear
dependence om that will distort the wave packet. Note however that

1+v &-lgl=8d+v) [, 142
5= 55 _(,3 @ >(1+0(ae)), (5.30)

B>at (5.28)

B—a-

where

+ Q
eE(1+1)—\/(z+1)2—(w2 )Q1R2Q5 — (=122
We take all theQ; to be of the same order. We see frdBnZS)that travel time makes good
sense only i§ g' « 1. Thus eithes « 1 or L < 1 (or both). In either case we find that
de <« 1. We then find

1 2
+ P nB—a— it2_ o + (w independent terms (5.32)

2 2,/né
In this limit the wave packet is not distorted and it travels up and down the throat in the
time

(5.31)

p—a—

TR 7©R

N

5.2.3. Absorption probability
The probability for the wave to be absorbed and reemitted in the throat is found to be

47_[2 2 S 4v

Z(F%wr%v+n>(53>
FG+a+p+Hré+p—a+y\?
(rF(%+a+ﬁ—%)F(%+ﬂ—a—%)> '

At = (5.33)

(5.34)

The probability for just absorption or just emissiorpis= v/P.

5.2.4. The factor, as a redshift
In [3] the travel time was computed for 2-charge D1-D5 geometries, and was found to
be

TR
AtsuGrA= 7 (5.35)



S. Giusto et al. / Nuclear Physics B 710 (2005) 425-463 445

This is seen to differ by a factor from the 3-chargé5.33) We offer a simple physical
explanation for this factor.

Consider first the D1-D5 system. In the dual CFT the absorption of the quantum is
described by the creation of a set of left and a set of right moving excitations, which
travel at the speed of light around the ‘component string’ in a tierr = Atsucra
Now suppose we have a P charge as well. This corresponds to the presence of left movers
on the component strings. But the left and right excitations in the CFT travel around the
component without interacting with each other, so one may think that one again gets the
sameAr as in the 2-charge case and thus the value of the P charge does natenter

But this cannot be right, since the D1, D5, P charges can all be permuted by duality.
Indeed the facton makesAr in (5.33)invariant under such permutations. To understand
the role ofy consider the limit of the metri(2.46)for smallr and small conical defeét

2

V0105

In this case we have a large AdS type region which would possess a CFT dual description.
In this limit f <« Q; and thus one can replad& by Q;/f, obtaining an asymptotically

AdS x S2 geometry. As is clear from our computation above, the time of travel is domi-
nated by the time spent by the wave in this part of the geometry. Let us look at the form of
the metric(2.46)in the ‘near horizon’ limit(5.36) We get

r<J0i (=15, 6« (5.36)

dsr%.h_ _ —(/02 + VZ)(’,’ dl";)Z + zd,OZ , + ,02 d)ﬁ)‘z +d92
0105 pe+y
+ coS 0 dy? +sif 0 dg2, (5.37)
where we have made the following coordinate redefinitions
2_1° R -t o1 0,(Q1+ Qs)
b =—="" ==, y=—|y—n—m———"¢
n 0105 R R 0105
v L 0p(Q1+Q9) 1y
v=yv 77|:V1 y27Q1Q5 }R Ve
~ 0,01+ Qs)] t y
o _ 2 R 5.38
p=¢ 77[1/2 " 08 AT (5.38)

As anticipated, the near horizon metds?, is locally AdS x $° with curvature radius
(0105)Y%, but the time is rescaled by with respect to the time at asymptotically flat
infinity. Thus the time computed in the CFT will be a factorrpfimes the time between
wavepackets measured at infinity. If we take a liRit—> oo keeping other parameters
fixed thenQ, — 0,7 — 1 and we can directly compare the CFT time to the gravity time.
We will take such a larg® limit in the more detailed analysis of the CFT state below.

6. Finding the CFT duals

We started with CFT statg®.15)and found their gravity dual®.46) We then made
new solutions by applyin§7, T, S duality to(2.46)and obtained the solutiorf3.2). What
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are the CFT states dual to the geomet(88)? We use two closely related tools to identify

the CFT duals: the time of travalisycra down the throat of the supergravity solution, and
the threshold of absorption into this throat. Longer travel times map to longer components
of the ‘effective string’ in the CFT, and lower absorption thresholds also reflect longer
effective strings.

6.1. Time of travel

In [3] it was found that for the 2-charge D1-D5 geomet(286)a quantum falling
into the throat emerges after a time

TR
AtSUGRA= > (6.1)

or its integer multiples. In the dual CFT the corresponding stat@.B&1) where twist
operators have joined together

k== (6.2)
Y

copies of the CFT together to create ‘effective strings’ of lengtiR2 = ZZE | In the grav-

ity picture a quantum can fall down the throat of the geometry; in the dual CFT description
the energy of the quantum gets converted to a set of left and a set of right moving vibra-
tions on the ‘effective string24,25] These vibrations travel at the speed of light and meet
halfway around the effective string, so that the energy can leave the effective string after a
time

1
AtceT = 527'[ Rk =m Rk (6.3)

in exact agreement wit(6.1). (If the vibrations fail to collide and leave the string, then
they encounter each other again after a t{8\8), etc., this corresponds to the successive
waves emerging at separatioAssycra in the gravity picture.)

Note that the number of effective strings created by the twists is

ninsg N
= =—. 6.4
m=— . (6.4)

Recall that each connected piece of the effective string is termed a ‘component string’.

6.1.1. The number of component strimgsfor the 3-charge state8.2)

The 3-charge geometri¢®.46)had D5, D1, P charge&s, n1,n,). The orbifold CFT
had N = n1ins, the winding number of each component string waand thus the number
of component strings was

N  nins
m—=—=—

k k

(6.5)
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By the dualityST,T;, S we obtained the geometri¢3.2) which had chargés
ng = ns, ny=np, n’p =n. (6.6)
The orbifold CFT now has

N'=ning=nsn,. (6.7)

The travel time for such geometries is derived5t83) Take the limitR’ — oo; this gives
a large AdS region which will be the dual of the CFT. We @é,} — 0,7 — 1 and the
travel time is

/

AISUGRA = T _ 7 R nsn(nk +1) (6.8)
Y

=

where we use.12) Thus we expect the winding number of each component string to be
K = k™2 = nsn(nk +1). (6.9)
ni
The number of components of the effective string are then

/_N’_n5np ni _ nins
=—= =
Kk on, &

m

. (6.10)

We thus see that whil&/, k change toN’, k¥, the number of components of the effective
string remains unchanged

m' =m. (6.11)

To interpret this fact we recall the physical significancemofound in[3]. When we put

a particle in the throat of the gravity solution then we excite left and right movers on one
component string in the dual CFT. Putting another particle in the throat excites another
component string, and so on. Let each particle have the longest possible wavelength which
can still fit in the throat of the geometry. When we have enough patrticles in the throat so
that we use up all the: component strings in the CFT then we find that we have enough
energy in the supergravity solution to give a backreaction of order unity in the geometry;
the geometry distorts and we can no longer study the particles as independent excitations.
We now see that unde¥, T dualities this critical number of particles for the geometry
stays unchanged.

5§, T dualities certainly map a state of the 3-charge system to another state of the system, but after duality
we may not be in a range of parameters where the state is well described tgrtfioemalfield theory. The

conformal limit is the low energy limit, and is attained for sn@. If we start with a large circle radius

R then after dualities we get smat!'. But since we are dealing with BPS states we can follow the state as we
increaser’ and get back to a CFT domain. It is this latter CFT state that we will mean when we look at the states
after STy T, S duality.
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6.1.2. Level of excitation of the component strings
The CFT state for the geometri¢ga46)hadn , units of momentum distributed equally
overm component strings; thus each component had

np

T = (6.12)

m

units of momentum. It will be helpful to write this in terms of the basic units of momentum
on the component string. Since the string has winding nurhlibe excitations come in
units of%. Thus the number of these basic units of momentum on each component string
is
A npyk n, N ninsn
T=kT=-"-=-"L— L
m m m m2

(6.13)
For the state afte§7, T, S duality we haven’p = n1 units of momentum, distributed over
m’ =m component strings, and

ni A ni ninsnp

=" fropr="4le 1 (6.14)
m m ni m
sSo we see that
Fr=7= ”1:152"1’ (6.15)

ThusT is a duality invariant; the charges permute under dualities and we have seen that
stays unchanged. We note that the number of possible states on each component string de-
pends on the numbdt: we have to just excite free bosons and fermions on the component
string so that the total level (as measured in units of the basic excitation on the component
string) isT. Thus we see that under, 7., S duality the number of allowed states on the
component strings remains unchanged.

6.1.3. The state afte§7,T;, S duality

The angular momentum of the state does not change undéftit¥e, S duality (theT
dualities are all along compact directions, while angular momentum reflects the properties
of the state in the noncompact directions). For the entire state we havéArb)

1 -
j=—nlzns<2”+‘), j=-== (6.16)

Both before and after th87,T,, S duality we haven component strings, so the angular
momentum on each component string is

~ 1 2
j=—§—nk, j=—=. (6.17)

Both before and after the duality we have the same ‘level’ of excitafimm each compo-
nent string. The state before the duality was giveftb$3)—the chargé j, /) was attained
by the lowest energy possible by having all fermion spins aligned and all fermions in the
lowest levels allowed by the Pauli exclusion principle. We see that the only way to make
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the state afte§7,7;, S duality is to make a construction similar (2.33)

(H[/:anjzn%l ...J:k_%])|xp——(k/,0))_ (6.18)

The component strings now have windikigeach instead of, but the rest of the construc-
tion is the same.

6.2. Absorption threshold

In Section5 it was found that an incoming wave was absorbed only if
v+1
5

Take the CFT limitR — oo which givesQ, — 0, — 1. The angular momentum com-
ponentsni, mo imply for the twosw(2) factors the eigenvalues

B—a>

(6.19)

mi —mp2 - mi +m2
m=———, m=———————.

2 2

The condition(6.19) then gives a pair of conditions from the two possible signs of the
absolute value i

(6.20)

a)—Z(m%—i-ﬁz%) —)»—l—Z(m% —nﬁ%) >yl +2),

jo, o
—2(m= = A=2(m=—m= 1+ 2). 6.21
) (mN—i-mN)—}— <mN mN>>y(+ ) ( )
Here(j, j) are the angular momenta of the geometry into which the quantum is falling
J Y Jj v
J__ r Eap—- 6.22
(”+ 2)’ N2 (6.22)
Note thathi’\ are the increments dfg, Lo caused by the incoming quantum, so we can
write (6.21)as
l
Ah>y+<§—m)y—2mn, (6.23)
_ I
Ah >y + (E - m)y. (6.24)

6.2.1. Absorption of quanta in the CFT description

In [24-26]the CFT description of absorption was studied. We have supposed that the
guantum being absorbed is a scalar arising from the compdngof the metric on the
T4. The quantum has angular momentinwhich means that it is in the representation
(é, %) of sw2);, x sw2)g. In the CFT state this quantum creates an excitation that has

X, Y-, X, V-, (6.25)
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where theX variables carry the indicas j (we must symmetrize over the two permuta-
tions) and there arkfermions on each of the left and right sectors. The fermions are in the
Ramond sector, and thus both fermionic and bosonic excitations come in multiples of the
basic harmonic on the component strings

Ah=Ah = % =y. (6.26)
The (J3, J3) quantum numbers iBu2); x su2)x are (m,m). There are two species of
left moving fermions withm = % and two withm = —%; similarly for the right movers.
We will simply write ¢+, ¢+ without distinguishing the two species since the difference
is irrelevant for the discussion below. Thus on the left sector we must’fa\m fermions
¥+ and5 — m fermionsy ~. On the right sector we havg+ m fermionsy+ and5 —
fermionsy —.

6.2.2. Identifying the excitations
Recall the structure of the CFT stag33)into which we are absorbing the quantum.
On each component string we have fermion zero modes. For the left movers we started by
choosing the state which is killed by thig, and then applied operatars” which resulted
in the application of modeg —, --- ¢ _, (for both species ofy ~). For the right movers we
k

also have the vacuum killed by tliq;, but applied no other excitations.

Consider first the right movers. The excitatidi needs a minimura of % =y, this
is the first term on the RHS db.24) Now consider the fermions. Suppose that é
Then we havé operators)* acting on the state of the CFT. But we can choose each of
these operators to be a zero mq?z@ which changes the vacuum on a component string
to one that is killed by, . The fermions then do not contribute 207 and we find exact
agreement witlf6.24) Note that we could find at most two such zero modes on any given
component string, so we will have to apply tt{_zgL in general to many different component
strings®

Now suppose thak = 4 — 1. We have — 1 operatorg* and oney—. Thest again
give no contribution taAh, but the lowest allowed mode faf~ is v, and we again
get agreement witf6.24) Proceeding this way, we find agreement fokrr*mlfor the right
movers.

Now consider the left movers, and let= é We have to apply operatorsy ™. The
lowest excitation results if we use the operatgrs to annihilate/ modesy—,, which
gives a totalAh = % — nl (including the bosorm X) which agrees witt{6.23) Next con-
siderm = é — 1. Now we havé — 1 operators/ ™ which again annihilate modes_, and
one operators ~ which creates the lowest allowed moge (43’ again in exact agree-

6 We can read off the value gf = 1 from the classical geometry, for example by the conical defect angles of
the metricq2.46) Butn, ng are infinite in the classical limit, and so= "1,% is also infinite in this limit. Thus
the absorption thresholds computed from the classical geometry have an essentially infinite number of component
strings, and we will not ‘run out of component strings’ for any valué tifat we choose.
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ment with(6.23) (The operatory — cannot just fill in one of the empty levels created by
annihilation of modeg/_, since the overall operator describing the absorption is taken to
be normal ordered.)

We thus see that the absorption threshold seen in the wave equation analysis can be
understood in detail in terms of the occupied levels on the effective strings. This computa-
tion supports the conjecture that the state after duality has the(fofi@)analogous to the
states before th8T,T;, S duality; the absorption computation applies equally to both sets
of geometries.

6.3. A puzzle about the orbifold theory

Consider the CFT statg.18) dual to the geometries obtained aft&f, 7;, S duality.
The momentun?’ per component string (given ii6.14) is fractional in general, not an
integer. Interestingly, when this momentum is measured in units of the basic exc%ation

on the component string then we getiategerf’. (If 7’ were nonintegral, we would have

a severe contradiction, since we could not carry the excitation on the component string.)
But here we face a puzzle, since in the orbifold CFT the quaftitig alsorequired to

be integral. The reason for this is as follows. We have to orbifold by the symmetric group

Sy which permutes theV’ copies of thee = 6 CFT. In a given state of the CFT we can

label the copies by how they make up the different component strings, and even inside

each component string the copies can be ordered by the sequence in which they link up to

make the ‘long cycle’. But one part of the symmetry group still survives: we can cyclically

permute the copies inside a component string

c1—C2—> = Ck —> C1. (6.27)

This symmetry forces the momenta on the component string to be integral.

Faced with this problem, we first review the steps that led us to our solutions. The
fundamental string (F) is an elementary excitation of the theoryfan x S* x T4, so
the 2-charge FP solutions we started with certainly correspond to BPS states of the full
string theory. Since, T dualities are exact symmetries of the theory the 2-charge D1-D5
states are also states of the theory. Spectral flow was just a coordinate change, and so the
3-charge solutions that were obtained by spectral flow must also be valid. Finally, the exact
symmetry ST, T;, S was used to get the solutions which we are now discussing, so we
conclude that they must be allowed states of the string theory.

Even though one may accept the gravity solutions one may question the identification
of the CFT state. We have made each component string have the same winding number
k', but if we allowed the winding numbers to be different then we could have carried the
momenturm/p = n1 on the component strings in such a way that each component string
had an integral numb@t of units of momentum. But let us recall the evidence we have that
the component strings should all be equal: (a) We have learn from the explicit construction
of 2-charge systems that states with axial symmetry have all component strings identical,
if the component strings are different then all symmetries are broken in general. (b) The
return time from the throat gave a precise value that could be put in correspondence with the
length of the component strings; if component strings had different lengths then we would
get distortion of the wavepacket since different parts would be returned after different
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times. (c) The threshold of absorption worked out exactly—if we change the structure of
the filled levels on the component strings then the allowed levels that could be excited by
the incoming quantum would change. For all these reasons it seems hard to have any other
construction of the CFT state.

It may be that we need changes in our understanding of the CFT dual to the gravity
theory. It is not completely clear where the orbifold point sits in the moduli space, though
there are some leading candid4g@%,28] It is also not clear if the orbifold7*)"V /Sy does
describe some point in the moduli space, or if we need to consider other related orbifold
theories like the iterated orbifold29].

Before concluding we note a point about the winding number of the component strings.
The geometrief.46)had an integrat, since this number can be traced back to the number
of turns of the helix of the F string in the starting FP solution that le(Rtd6) For the
geometries obtained aftefT, T;, S duality we still found in Eq.(6.9) that the winding
number of each component strikgwas integral. This was important, sincéfifturned out
fractional we could make no sense of the CFT state. But if we assume that the qudntities
do not need to be integral and only thieneed to be integral in general, then afsgr, 7., S
duality we would get fractional’ in general. What then are the rules for the allowed CFT
states?

For the D1-D5 CFT we can hawe component strings with equal winding if

nins

e Z. (6.28)
m

Given thatn was found to be a duality invariant, and that ns, n,, permute under duality,
we conjecture that the state can havequal length component strings if all the following
conditions are true

nins

npny ninsnp

2

nshp N
ez, —=eZ, eZ, T =
m m m m

€z, (6.29)

where we have included the requirement tiiabe integral. We hope to return to these
issues elsewhere.

7. Discussion

Our basic conjecture states that the black hole interior is not ‘empty space with a central
singularity’ but a ‘fuzzball’ of horizon size. If we consider extremal holes, and look at
states where in the dual CFT we have many component strings in the same state, then we
can have a good description of the geometry in classical supergravity. All 2-charge states
could be approached through such classical geometries, gBgbinsome classes of 3-
charge extremal states were considered and their dual geometries identified; the geometries
were smoothly capped askig. 1(b). In the present paper we have looked at two families
of states and their dual geometries. The geometries were again found to be ‘capped’; there
were no horizons or closed timelike curves.

The first family arose from spectral flow of a subfamily of 2-charge states. These 2-
charge states generically had an orbifold singularity along a curve; this was understood
as a ‘trivial’ singularity in the sense that it arose from the coincidence of two or more
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‘KK monopoles tubes’ and was thus arose only as a limit in a family of regular solu-
tions. Since spectral flow is given by a coordinate transformatiofds x 2 [11,12]

it is not surprising that a similar orbifold singularity arose also for the 3-charge states
obtained by spectral flow of the 2-charge states. What was interesting to note was that
the conical defect angle did not get corrected when the asymptotically AdS solution is
modified to become an asymptotically flat solution. If the conical defect parameter had
changed away from the forr}’g to say an irrational value then we would not be able

to understand the orbifold singularity in any simple way as a limit of nonsingular solu-
tions.

The second family we considered was found by applhydnd” dualities to the first
family of geometries so that the D1 and P charges got interchanged. We identified the CFT
states dual to this second family of geometries by computing the time of tha¥gkra
for a quantum to fall down the throat and bounce back out. The winding number of the
‘component strings’ in the CFT, computed by this method, gave a minimum threshold
energy for excitations of the CFT state. This minimum energy agreed with the threshold of
energy below which the incident quantum was unable to enter the throat of the geometry,
thus confirming the identification of the CFT state. We noted that the CFT states found
this way had a fractional momentum on each ‘component string’ (the total momentum
was of course an integer). This suggested that we need to go beyond the simple orbifold
CFT to understand all 3-charge bound states; we may need to understand deformations
away from the orbifold poinf30] or perhaps we may have to consider iterated orbifolds
[29].

The conical defect in the 2-charge D1-D5 geometries could be directly linked to the
winding numberk of each component string. For the metrics obtained by spectral flow
from 2-charge geometries we have a similar relation since spectral flow is just a coordi-
nate transformation on the geomeftyl,12] The conical defect is caused by an orbifold
singularity of orderk along thes? given by (r = 0,6 = 7/2) and the component strings
in the dual CFT state have winding numberFor the geometries obtained aftgy T
dualities the situation is more complex—we have orbifold singularities along two differ-
ent St curves, with ordekn + 1 at(r = 0,6 = 0) and ordennn at (r = 0,0 = 7/2) (m
is the highest common factor shared by k). There is a suggestive pattern though that
we observe. It was argued [B0] that the D1-D5 CFT with charge®, ns) could be
mapped to the theory with chargésins, 1), and that the orbifold point occurs at this lat-
ter value of the charges. If we set = 1 to enable a comparison to the orbifold theory,
then we observe that the product of the orders of the two orbifold groug@s:is- 1)n
which in this case equals, the winding number of the effective string in the dual CFT
state.

We have noted that the travel time is symmetric between the three charges of the so-
lution, but the factom enforcing this symmetry is responsible for providing a ‘redshift’
which relates the time at infinity to the time in the AdS region. The AdS region is the one
that is dual to the CFT description, so understanding such effects in more detail may help
us to identify the deformations in the CFT that correspond to deforming AdS space to flat
space at infinity.
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Appendix A. Non-extremal rotating 3-charge metrics and their extremal limits

The metric for general rotating 3-charge solutions was givdt3h and the metric, 2-
form field and dilaton were given {i6] by generating the solution by a different technique.
We have

dS2=_<1_Mcosf?8,,) dr? (1+Msinhzap) dy?

+
S ~/H1Hs A ~/H1Hs
Msinh2, ( r2dr? 2)
—————2dtdy+ f/ H1H: + do
7/ T IS G g
2 2
S (a3 —al)K1K500529:| )
+ | (r® + a?)/H1Hs + coS 0 dyr
[ +ad) Vs .
(a? — a?)K1Ks5SinP o7 . 5
+ [(r2 +a3)y/H1Hs + sir 0 d¢
~/ H1Hs
M . 2
——— (a1c020dy +arsinfod
b i (1008 0 4+ aasiT 0 do)
2M cos 0
+ 7[(411 coshBy coshBs coshs,, — ap sinhdy sinhds sinhé ) dt
f+~/H1Hs
+ (a2 sinhdy sinhés coshs,, — ay coshsy coshss sinhé,) dy d |
2M sirf6
+ 7[(512 coshs; coshis coshs;, — aj sinhdy sinhéds sinhé ) dt
f/H1H5

+ (a1 sinhéy sinhés coshs, — ap coshéy coshss sinhg ) dy] do

Hq 4
[ dx?,

Co= M;;)Islze [(az coshdy sinhds coshs, — ay sinhdy coshds sinhé ) dr
+ (a1 5inhdy coshss coshs,, — ap coshsy sinhds sinhs,) dy| A dyr
Mfs;;j 0 [(al coshpy sinhés coshs,, — ap sinhéy coshds sinhé ) dt
+ (a2 sinhéy coshss coshs,, — ag coshdy sinhds sinhs ) dy] ANde
B M sinh 21

dt nd
2fHy Y
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M sinh &5
2fHy

H
2 =L (A.1)
Hs

(r? + a3 + M sint? 81) cof 0 dy A d¢,

Here

f=r?+d?sinf0 +a3co,
M sink? s;
H,-51+Ki=1+fl, i=1,5. (A.2)

In terms of the parameters appearing in the metric, the D1, D5 and momentum charges
and the two angular momenta are

M M M
01 =?sinh23l, Os =?sinh23p, Q,,:isinh?ap, (A.3)
Jy = —M (a1 coshs; coshbs coshs,, — ap sinhdy sinhés sinhé ;) ——

7/ 0105
4G®

J¢ = —M (a coshsy coshis coshs, — aj sinhéy sinhds sinhé ) ——=

4G0

¥1 ,
4G(5)

. /0105 (A.4)
274G '

with G® the 5D Newton’s constant. The extremal limit is the limit in whigh— 0 while

01, 0s, Qp, 71, Y2 are kept finite. We will give the extremal metric for generic values of
the charges and of the angular momenta satisfying

(71— 72)* ~4Q, > 0. (A5)
In this case we find it convenient to parametr@g as
N S = \2
Yi—vye ity
= -\ = 0. A.6
er ( 2 ) ( 2u ) e i

The extremal metric, Ramond field and dilaton are

dszz—i(dtz—dyz) Q[? =P (dr — dy)2+hf< . 1dr~2 — +d92)
7 hf re4+u~t(y1+ y2)4n

A+wyi+A—-wy
21
00500

+h r2+(171+772)n

Q-+ A+ wy2
21

~2 _ ,.,2 .

+ Vi~ LZ?;QSSWO) Sir? 0 dep?

+h(r?+ G+ 72n
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~ ~ \2..2
—QP(”;;VZ) T (cog0dy +sirP 6 dg)°
- L}%}QS[M co 0 dy + 7o sirt 6 do|(dt — dy)
2(y1+ v2)n/ Q105 . Hy &
_ m [cofody +sirPode]dy + | Tis ;dxiz, (A7)
N 26
Co= —&ﬁ%(fzdt+?1dy) Ay
V4 i o
- Qlﬁ%ﬁ'(hdthdy) Ado
+ %(gm + Qsdy) A (COLO dy + Sin? 0 dg)
01
20 1—wm+@Q %
- QSL(# L (Gu oy T A Wye Ql> dy A do,
Hyf 21
(A.8)
2 = % (A.9)
f=r2+(J7l+)72)n[(1+u)n2_'l;(1_my2 sirPo
N 1- u)h;;(lJru)fz co§9:|,
01 Os
Hi =1+ 7, Hs=1+ 7, h =+/H1Hs. (A.10)

The metric(A.7) with 1 # 1 can be obtained from the met(i2.46) which corresponds to
the casew = 1, via a boost in the y direction:

t — t coshs + y sinhg, y — ycoshs + ¢ sinh$ (A.11)
with
-1
28— H

i (A.12)
n

Appendix B. Singularities, closed timelike curves and horizons

The determinant of the metr{é..7)

/—g = hf sinf coshr (B.1)

only vanishes at = 0 and9 = 0, 7 /2. Note that) = 0, /2 are the points where spherical
coordinates degenerate, so singularitiegof) can only occur at = 0. In a neighborhood
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of r =0y can be decoupled from all the other coordinates by the coordinate change

f=t—cy,
V=9 —cyy.
b=0¢—cpy (B.2)
with
o (1= DIpP( = 72)° = (1 + 72)* + 21427/ 0105 7
(= D7+ ) + 72— )71 (1 — ) + 7214 w1 + 2421 + 1)/ 0105
ey = 12yl — ) + 721+ )]

(M DI+ w) + 721 = wllyid — ) + 7214 w1+ 2121+ 1)/0105’
=2 A7 A+ p) + 72(1— w] .

(= DA+ ) + 721 — w7 (A — ) + 721+ )] + 2?1+ 1)/ 0105
In the new coordinates, the part of the metric that involvesdr is

hf

ds? = m(mz +Gredy®) + 0(r%) (B.3)
with
_ A + 721
(= DA+ ) + 721 — WA — ) + 721+ )] + 221+ 1)/ 0105

(B.4)
From the expressions above we see that, unlessl, the transformatio(B.3) involves a
shift of ¢ by the periodic coordinate. At r = 0 they circle shrinks. Thus, as explained in
[6], metrics withu # 1 have closed timelike curves.

The geometrie$2.46)dual to CFT states havye = 1. (The conditior = 1 is seen to
give, using(A.6), the relationQ , = y1y2.) For these metrics one can show that there are
no closed timelike curves by looking at the determinamf the metric restricted to the
three periodic coordinates ¢ and¢:

B r2sirt 6 cofo
~ V(O1+ N 05+ )

oo

[(r2 (1 7P)(f + 01+ 05+ 0p) + anQS}.

(B.5)
Using an argument given if6], it is enough to show that the determinant above never
vanishes to prove that the metric is free of closed timelike curves. By explicit inspection,
we know that the zeros gf atr =0 or6 = 0, 7/2 do not signal the presence of closed
timelike curves. So we need to show tigahas no other zeros. This follows from the fact
that f + Q; > 0 fori = 1,5, p. In order to prove this last statement, consider first the
geometries obtained by spectral flow, which have

pL=—an,  Ja=al+y),  Qp=a’n(n+y). (B.6)
Sincen € Z andy < 1 we haveQ, > 0 and thus
0105 9
n= (B.7)

0105+ (01 + Q5)Qp Qp



458 S. Giusto et al. / Nuclear Physics B 710 (2005) 425-463

and

n< 1. (B.8)

Let us look atf + Q1 and distinguish the two cases> 0 andnr < 0. (It will be very
important here that is an integer and that@ y <1.) If n > 0

2
f+Q1>Q1—a2nm/>Q1<1—aQny)=Q1(l—#>>0. (B.9)

p
If n <0 (and thus: + y < 0)

2
f+01> 01+an+y)ny > Ql(“ “("Qi@ - Ql(H%) -7
P

(B.10)
In both cases we us€®.7). The symmetry of the metric under interchangedafand Qs
then also impliesf + Qs > 0. Look now atf + Q. 1f n >0

f+Qp>0Qp—d’nny =a’n(n+(L-ny)>0 (B.11)
as1-n>0.1fn <0 (and thus: + y < 0)

f+0p=0p+a?m+ymy =a’(n+y)n+ny)>0 (B.12)

asn+ny <n+y <0.Inorder to prove that the same results hold for the metrics &fter
T dualities it is enough to notice thgtis duality invariant, since the transformation;af
andy» (3.4) cancel that ofy:
W = 2,05 _2, (B.13)
0105+ (Q1+ 050, 01

One can also verify that the metri¢3.46) do not have any horizon. For this purpose
we again refer to an argument given[6]: there is no horizon if one can find a timelike
vector in the forward light cone which has a nonzero positive component along the radial
direction. In turn, the existence of such a vector follows from the fact that the determinant
of the metric restricted to the y, v, ¢ coordinates

§=—r2(r’ + n(1 + 72)?) sinf 6 cos 6 (B.14)

is always negative (apart from the points- 0 andé =0, 7 /2, where we know there is no
horizon by direct analysf3.

The form of the metric around= 0 given in(B.3) shows that the metriq#\.7) gener-
ically have orbifold singularities. IfR is the radius of they circle, the conical defect
parameter is given by

y = leylR. (B.15)
7 The naive geometry with no rotatig1] hasj; + 7» = 0, and this case has a horizonrat 0; for the

geometries we constructed as duals of actual microsfatesy, # 0 and the analysis around= 0 done in
Sectiond.2 shows that there is no horizonsat 0.
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Appendix C. Inverse metric

The determinant of the extremal met(®:46)is

/—g = hf sinf cosor. (C.1)

The inverse of the metri2.46)is

t_ 0105+ QlQp+Q5Qp>

&= hf<f+Q1+Q5+Qp r?+ (71 + 72)%n
g, 4 10 i (014 Qs)z)
8" T hf (f o150yt 24+ 010s '
o = B (1 01+ Qs )
hf r24+ (714 72)%n

wy _ 1 (L 7 _ L)
8 Thf\co2e T 2 T 25 it 02

b _ i( 1 7 vin )
£ = Sife 2 r24 (14 72)2

SR
g - 2 ~ ~\2 El
hf ré+ (y1+72)%n
g =V 010s 1
hf 2+ 1+ 72%n
g =Y 010s V2
hf  r?+(n+v2%n

R 0105721 (i Vi 01+ Qs)
hf r2 2+ (m+72)%m 0105 )’
oy — /0105 7/177< V5 01+ Qs)
hf r2 24+ (+7v2%n 0105
2 (o452
grr = —l” + it y2)™n , g99 = i, XiXj — ESU (C2)
hf hf Hy
Appendix D. Solution of the wave equation
D.1. Matching region
In the matching region & x <« o2 the wave equation becomes
d d
45 <x25> Hmatch+ (1 - VZ)Hmatch: 0. (D.1)
A basis of independent solutions is
1 v 2 vl
Hr;aitchz x 2, Hrfneitchz X o2, (D.2)
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D.2. Outer region

In the outer regionx > 1 the radial equation is

d dH
Yix <x2 d;’m> +[o7% +1 -] Hou=0 (0-3)
with solution
1
Hout= E[Clh(o_lﬁ) +C2J,U(a_1«/§)]. (D.4)
In the matching region this gives
1 (o 2% 72 1 1 (o 2% 2 1
Hoyt=C1— Co— . D.5
o 1ﬁ< 4 ) Fo+D 2ﬁ< 4 ) T(—v+1) (03

D.3. Inner region

In the inner regiong —2x « 1, the wave equation simplifies to

d AT 2, §° 1,
45 <x(x +4 )E>H|n + [1 Ve 4+ Xt 82 ; Hm =0. (D6)
By defining
Hin=x"(x+ 8%’ F (D.7)
with
_k
28 p= 28 (D-8)

the equation above reduces to an hypergeometric equatidn. forff the two independent
solutions, only one is regular at=0:

Hmzxa(x+52)ﬁp<p,q;1+ 2a;—;—2), (D.9)
where
1 v 1 v
== — == — D.10
p 2+(x+ﬂ+2, q 2+ot+ﬂ > ( )

To get the larger behavior we write

F(p q; 1+ 20, 82)

C'(1+ 20)T §2
1+ 20) ( v) (ﬁz) (p,p—Zot;v-i—l;——)
5 X

X

52

T Trdtoa—p-

—q 2
r(1+2a)r(v) ( ) F<q’q_2a;_v+1;_5_> (D.11)
TG +a—p+3) *
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and note that

e ¢]

F(p+mlg+n) T'Q) "
F(p,q;v;2)= E —.
P aVD= L TR gy Tw+m
One thus gets (dropping an overall constant)

1 r'w) (X)% 2 -1
Hpy,= — — 1+0(68
" JELXmF@+a—ﬂ+§>82 (+0(%7)

r'(—v) x\ 2 2 1 :|
— 1+0(6 . D.13
r@w@+a—ﬂ—@(ﬁ) (1+0(%7) (b-13)

(D.12)

D.4. Matching the solutions

Matching the coefficients of(~1%")/2 betweenHoy: and Hi, we find the ratioC»>/C1
given in(5.16)

Appendix E. Computation of travel time and absorption probability

In order to write the reflection amplitud® given in (5.16)—(5.18)as in(5.19)it is
important to know the sign of the arguments

v+1
2

of the gamma functions appearing(.16) As we chose8 >0, o + 8 + izl is always
positive and thus we are left with only two possibilities.

Casel

atp+

(E.1)

a—ﬂ+3%3>0 (E.2)

In this case one can use the series expansion

(E.3)

FQ+aX_f%§§G&f@—a»B@ﬂ—b+Lak%

F(z+b) prd k!

((@)g is the Pochhammer symbol amik, a, b) the Bernoulli polynomial) which is valid
for z +a > 0, to show thatR has no oscillating factor like ex@rinw/RAt), and thus
there is no absorption.

Case 2

1
a—ﬂ+5%—<0 (E.4)

One can rewrite the ratio of gamma functiong%nl6)with negative arguments as
FrG+a—pB+3)
FrG+a—p—1%)
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TG +B—a+3)sinte—p+5Y)
CTG+B—a— 3 sintre— B+ )
TG+B—a+})
T TG+p-a-%
so thatR is brought into the forn¢5.19)
Ry S e ()Y
22 + 1) e2riv — 1\ 20
FG+a+B+rG+p—a+%)
FG+a+B—35TG+p—a—3%)
4a2e=imv (S NPTG+a+B+HMG+B—a+3)
‘m(ﬂ) FG+a+p-prd+p—a—15)

00
e~y + (e—inv _ einv) ZEZHin(/S—a—%—”) (E.S)
n=1

o0
x Y ePrintpatE) (E.6)
n=1

From the equation above we can read off the probability of absorption/emig&sR)
and the time of trave(5.33)

References

[1] S.W. Hawking, Commun. Math. Phys. 43 (1975) 199.
[2] S.D. Mathur, Nucl. Phys. B 529 (1998) 295, hep-th/9706151.
[3] O. Lunin, S.D. Mathur, Nucl. Phys. B 623 (2002) 342, hep-th/0109154.
[4] O. Lunin, JHEP 0404 (2004) 054, hep-th/0404006.
[5] S.D. Mathur, A. Saxena, Y.K. Srivastava, Nucl. Phys. B 680 (2004) 415, hep-th/0311092.
[6] S. Giusto, S.D. Mathur, A. Saxena, hep-th/0405017.
[7] D. Mateos, P.K. Townsend, Phys. Rev. Lett. 87 (2001) 011602, hep-th/0103030;
R. Emparan, D. Mateos, P.K. Townsend, JHEP 0107 (2001) 011, hep-th/0106012.
[8] I. Bena, P. Kraus, hep-th/0402144.
[9] I. Bena, hep-th/0404073.
[10] B.C. Palmer, D. Marolf, hep-th/0403025.
[11] V. Balasubramanian, J. de Boer, E. Keski-Vakkuri, S.F. Ross, Phys. Rev. D 64 (2001) 064011, hep-
th/0011217.
[12] J.M. Maldacena, L. Maoz, JHEP 0212 (2002) 055, hep-th/0012025.
[13] M. Cvetic, D. Youm, Nucl. Phys. B 476 (1996) 118, hep-th/9603100;
D. Youm, Phys. Rep. 316 (1999) 1, hep-th/9710046;
M. Cvetic, F. Larsen, Nucl. Phys. B 531 (1998) 239, hep-th/9805097.
[14] N. Seiberg, E. Witten, JHEP 9904 (1999) 017, hep-th/9903224;
F. Larsen, E.J. Martinec, JHEP 9906 (1999) 019, hep-th/9905064;
J. de Boer, Nucl. Phys. B 548 (1999) 139, hep-th/9806104.
[15] O. Lunin, S.D. Mathur, Commun. Math. Phys. 219 (2001) 399, hep-th/0006196.
[16] O. Lunin, S.D. Mathur, Commun. Math. Phys. 227 (2002) 385, hep-th/0103169.
[17] A. Schwimmer, N. Seiberg, Phys. Lett. B 184 (1987) 191.
[18] O. Lunin, J. Maldacena, L. Maoz, hep-th/0212210.



S. Giusto et al. / Nuclear Physics B 710 (2005) 425-463 463

[19] C.A.R. Herdeiro, Nucl. Phys. B 582 (2000) 363, hep-th/0003063;
C.A.R. Herdeiro, Nucl. Phys. B 665 (2003) 189, hep-th/0212002;
L. Dyson, JHEP 0403 (2004) 024, hep-th/0302052;
N. Drukker, hep-th/0404239;
E.G. Gimon, P. Horava, hep-th/0405019.
[20] 1.Y. Park, hep-th/0403218.
[21] M. Cvetic, F. Larsen, Phys. Rev. D 56 (1997) 4994, hep-th/9705192.
[22] O. Lunin, S.D. Mathur, Nucl. Phys. B 615 (2001) 285, hep-th/0107113.
[23] O. Lunin, S.D. Mathur, Nucl. Phys. B 642 (2002) 91, hep-th/0206107.
[24] C.G. Callan, J.M. Maldacena, Nucl. Phys. B 472 (1996) 591, hep-th/9602043.
[25] S.R. Das, S.D. Mathur, Nucl. Phys. B 478 (1996) 561, hep-th/9606185.
[26] S.D. Mathur, Nucl. Phys. B 514 (1998) 204, hep-th/9704156;
S.S. Gubser, Phys. Rev. D 56 (1997) 4984, hep-th/9704195;
J.M. Maldacena, A. Strominger, Phys. Rev. D 56 (1997) 4975, hep-th/9702015.
[27] F. Larsen, E.J. Martinec, JHEP 9906 (1999) 019, hep-th/9905064.
[28] J. Gomis, L. Motl, A. Strominger, JHEP 0211 (2002) 016, hep-th/0206166.
[29] S. Gukov, E. Martinec, G. Moore, A. Strominger, hep-th/0404023.
[30] R. Dijkgraaf, Nucl. Phys. B 543 (1999) 545, hep-th/9810210.
[31] J.C. Breckenridge, R.C. Myers, A.W. Peet, C. Vafa, Phys. Lett. B 391 (1997) 93, hep-th/9602065.



	3-charge geometries and their CFT duals
	Introduction
	D1-D5-P states from spectral flow of D1-D5 states
	The D1-D5 CFT
	A subclass of states
	Spectral flow
	The states we consider
	Explicit representations of the states

	Gravity duals
	Duals of 2-charge states
	Duals of 3-charge states obtained by spectral flow of 2-charge states


	Obtaining new solutions by S, T dualities
	Conical defect angles
	The physics of conical defects
	Singularity structure of 3-charge metrics
	Geometries obtained by spectral flow: orbifold singularities
	Metrics obtained after STyTz1S duality: orbifold singularities
	Absence of horizons and closed timelike curves


	Wave equation for a scalar
	Solving the wave equation
	Time of travel and absorption probability
	Energy threshold for absorption
	Travel time in the geometry
	Absorption probability
	The factor eta as a redshift


	Finding the CFT duals
	Time of travel
	The number of component strings m' for the 3-charge states (3.2)
	Level of excitation of the component strings
	The state after S Ty Tz1 S duality

	Absorption threshold
	Absorption of quanta in the CFT description
	Identifying the excitations

	A puzzle about the orbifold theory

	Discussion
	Acknowledgements
	Non-extremal rotating 3-charge metrics and their extremal limits
	Singularities, closed timelike curves and horizons
	Inverse metric
	Solution of the wave equation
	Matching region
	Outer region
	Inner region
	Matching the solutions

	Computation of travel time and absorption probability
	References


