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Abstract. An important problem in Web search is determining the importance of each page.
After introducing the main characteristics of this problem, we will see that, from the mathematical
point of view, it could be solved by computing the left principal eigenvector (the PageRank vector) of
a matrix related to the structure of the Web by using the power method. We will give expressions of
the PageRank vector and study the mathematical properties of the power method. Various Padé-style
approximations of the PageRank vector will be given. Since the convergence of the power method
is slow, it has to be accelerated. This problem will be discussed. Recently, several acceleration
methods were proposed. We will give a theoretical justification for these methods. In particular,
we will generalize the recently proposed Quadratic Extrapolation, and we interpret it on the basis
of the method of moments of Vorobyev, and as a Krylov subspace method. Acceleration results are
given for the various ε-algorithms, and for the E-algorithm. Other algorithms for this problem are
also discussed.
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1. Introduction. An important problem in Web search is classifying the pages
according to their importance. In section 2, we formulate and discuss this problem in
mathematical terms and explain how a rank is assigned to each page for creating the
so-called PageRank vector. Various expressions of this vector are given in section 3.
Since the PageRank vector is the dominant eigenvector of a stochastic and irreducible
matrix, it can be computed by the power method, whose iterates are analyzed in
section 4. The results of these two sections will justify the choices made for approxi-
mating of the PageRank vector and for accelerating the power method. Section 5 is
devoted to the construction of Padé-style rational approximations of the PageRank
vector. In section 6, we first present some general ideas on the acceleration of vector
sequences by extrapolation. Procedures based on vector least squares extrapolation
are discussed. Then, using this framework, we consider several algorithms which were
recently proposed for accelerating the convergence of the power method [31]. Their
effectiveness is theoretically justified. One of them is connected to Krylov subspace
methods, and to the method of moments of Vorobyev [50, 8]. The application of
the various ε-algorithms and of the E-algorithm to the PageRank problem is studied,
and convergence acceleration results are proved. Finally, other possible acceleration
techniques are considered.
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Let us also mention that other classes of acceleration techniques, such as aggre-
gation/disaggregation [30, 35, 25], lumping [37], adaptive methods [29], and the par-
allel computation of the PageRank vector [22, 32] are not discussed herein.

2. The problem. A query to a Web search engine often produces a very long
list of answers because of the enormous number of pages (over 8 billion in Google’s
database). To help the surfer, these pages have to be listed starting from the most
relevant ones. Google uses several metrics and strategies for solving this ranking
problem.

The importance of a page is called its PageRank, and the PageRank algorithm
[18, 41] is reportedly one of the main ingredients of Google’s link analysis. A page is
considered to be important if many other important pages are pointing to it. So, the
importance of a page is determined by the importance of the other pages. This means
that the row vector rT of all PageRanks is only defined implicitly as the solution of a
fixed-point problem, as we will see now.

Let deg(i) ≥ 1 be the outdegree (that is, the number of pages it points to) of
the page i. Let P = (pij) be the matrix which describes the transitions between the
pages i and j, where pij = 1/deg(i), pij = 0 if there is no outlink from page i to page
j, and pii = 0.

The PageRank vector rT satisfies rT = rTP , that is, r = PT r, and it can be
computed recursively by the standard power method

r(n+1) = PT r(n), n = 0, 1, . . . ,

assuming that r is present in the spectral decomposition of r(0). Unfortunately, this
iterative procedure has convergence problems. It can cycle, or the limit can depend
on the starting vector r(0) [33].

To avoid these drawbacks, the original PageRank algorithm was revised.
First, since some pages have no outlink (dangling pages), P is not stochastic (some

of its rows are zero). Different strategies were proposed to remedy this problem,

but the most used one is to replace P by another matrix P̃ as follows. Let w =
(w1, . . . , wp)

T ∈ R
p be a probability vector, that is, such that w ≥ 0 and eTw = 1

with e = (1, . . . , 1)T , and p is the total number of pages. Let d = (di) ∈ R
p be the

vector with di = 1 if deg(i) = 0, and 0 otherwise. We set

P̃ = P + dwT .

The effect of the additional matrix dwT is to modify the probabilities so that a
surfer visiting a page without outlinks jumps to another page with the probability
distribution defined by w. This matrix P̃ is stochastic, and thus it has 1 as its
dominant eigenvalue, with e as its corresponding right eigenvector. So I − P̃ is
singular.

Another problem arises since P̃ is reducible. In that case, P̃ can have several
eigenvalues on the unit circle, thus causing convergence problems to the power method.
Moreover, P̃ can have several left eigenvectors corresponding to its dominant eigen-
value 1 (see [3, 47, 49] for a general discussion, and [17] or [44] for the particular case

of the PageRank problem). Then P̃ itself is finally replaced by the matrix

Pc = cP̃ + (1 − c)E, E = evT ,

with c ∈ [0, 1] and v a probability vector. It corresponds to adding to all pages a
new set of outgoing transitions with small probabilities. The probability distribution
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given by the vector v can differ from a uniformly distributed vector, and the resultant
PageRank can be biased to give preference to certain kinds of pages. For that reason,
vT is called the personalization vector. The matrix Pc is nonnegative, stochastic,
and now irreducible since v is a positive vector. It has only one eigenvalue on the
unit circle. This eigenvalue is equal to 1, and e is its corresponding right eigenvector
[3, 40, 47, 49]. Indeed

Pce = cP̃e + (1 − c)evTe = ce + (1 − c)e = e.

Thus, the matrix I − Pc is singular. The power iterations for the matrix PT
c now

converge to a unique vector rc (obviously, depending on c), which is chosen as the
PageRank vector. Let us mention that P is extremely sparse, while Pc is completely
dense. However, the power method could be implemented only with sparse matrix-
vector multiplications, and without even storing Pc as described in section 4. As will
be seen below, the vector rc can also be computed as the solution of a system of linear
equations.

The PageRank problem is closely related to Markov chains [34]. For properties of
stochastic matrices, we refer the interested reader to [40] and [47]. For nonnegative
matrices, see [3] and [49].

We are finally faced with the following mathematical problem. We set Ac = PT
c .

The p × p matrix Ac has eigenvalues |cλ̃p| ≤ · · · ≤ |cλ̃2| < λ̃1 = 1, where the λ̃i

are the eigenvalues of P̃ , and we have to compute rc, its unique right eigenvector
corresponding to the eigenvalue λ̃1 = 1 [20, 34]. For that purpose, we can use the
power method, which consists in the iterations

r(n+1)
c = Acr

(n)
c , n = 0, 1, . . . ,(1)

with r
(0)
c given.

The vector r
(0)
c is the probability distribution over the surfer’s location at step time

0, and r
(n)
c is its probability distribution at time n. The unique stationary distribution

vector of the Markov chain characterized by Ac is the limit of the sequence (r
(n)
c ),

which always exists since Ac is primitive and irreducible, and it is independent of r
(0)
c .

This limit is the right eigenvector rc of the matrix Ac corresponding to its dominant
eigenvalue 1, and it is exactly the vector that we would like to compute [40, p. 691].

The sequence (r
(n)
c ) given by (1) always converges to rc, but if c � 1, the con-

vergence is slow since the power method converges as cn (see [34], and Property 12
below). So, a balance has to be found between a small value of c, which insures a fast

convergence of (r
(n)
c ), but to a vector rc which is not close to the real PageRank vector

r̃ = limc→1 rc, and a value of c close to 1, which leads to a better approximation rc
of r̃, but with a slow convergence. Originally, Google chose c = 0.85, which insures a
good rate of convergence [18].

However, computing a PageRank vector can take several days, and so convergence
acceleration is essential, in particular, for providing continuous updates to ranking.
Moreover, some recent approaches require the computation of several PageRank vec-
tors corresponding to different personalization vectors. Recently, several methods for
accelerating the computation of the PageRank vector by the power method were pro-
posed [31, 29]. In this paper we will provide a theoretical justification of the methods
of [31], and we will put them on a firm theoretical basis. Other convergence accelera-
tion procedures will also be proposed and discussed. In order to be able to prove that
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these algorithms accelerate the convergence of the power method, they have to be
strongly supported by theoretical results. This is what will be achieved in this paper.
It is not our purpose here to test these algorithms numerically, nor to compare them
with other possible procedures for obtaining the PageRank vector.

For a detailed exposition of the PageRank problem, see [34] and [36]. Other
reviews are [26] and [2].

3. The PageRank vector. Since Pc is stochastic and irreducible, rc is the
unique right eigenvector of Ac = PT

c corresponding to the simple eigenvalue 1, that
is, Acrc = rc. By the Perron–Frobenius theorem (see, for example, [49, p. 35]), rc ≥ 0.
It is normalized so that eT rc = 1, and, thus, it is a probability vector.

In this section, we will study the properties of this vector, and, in particular, we
will give implicit and explicit expressions for it. Then we will discuss its computation
by the power method. This discussion will lead us, in the next two sections, to various
procedures for its approximation, and to processes for accelerating the convergence of
the power method.

3.1. Implicit expressions for the PageRank vector. Let us give implicit
expressions for rc.

Setting Ã = P̃T , we have

Acrc = cÃrc + (1 − c)veT rc

= cÃrc + (1 − c)v

= rc.

Thus, (I − cÃ)rc = (1 − c)v, that is, we have the following.
Property 1.

rc = (1 − c)(I − cÃ)−1v

= v + c(Ã− I)(I − cÃ)−1v.

The second expression is deduced from the first one by noticing that (I−cÃ)−1 =

I + cÃ(I − cÃ)−1.
Following Property 1, rc can be obtained as the solution of the dense system

of linear equations (I − cÃ)rc = (1 − c)v. Replacing Ac by its expression leads to

(I − cPT − cwdT )rc = (1 − c)v. But eTwdT = eT Ã− eTPT . Thus, since eTw = 1

and eT = eT Ã, we have dT = eT − eTPT , and, when w = v, we finally obtain the
sparse system (I − cPT )rc = γv, where γ = ‖rc‖1 − c‖PT rc‖1 [22]. A particular
choice of γ only results in a rescaling of the solution of this system, and it can always
be chosen so that rc is a probability vector. Various iterative methods for the solution
of this system are discussed in many papers, including [1, 4, 19].

From Property 1, we immediately obtain the following.
Property 2.

rc = (1 − c)

∞∑
i=0

ciÃiv

= v + c(Ã− I)

∞∑
i=0

ciÃiv.

These results were proved in [5]. These series are convergent since ρ(Ã) = 1 and
0 ≤ c < 1. Since rc can be expressed as a power series, it will allow us to construct
rational approximations of it; see section 5.
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Remark 1. It is easy to check from the result of Property 2 that eT rc = 1. Indeed
eT Ãi = eT , and thus

eT rc = (1 − c)

∞∑
i=0

cieT Ãiv = (1 − c)

∞∑
i=0

cieTv = (1 − c)

∞∑
i=0

ci,

since eTv = 1. But
∑∞

i=0 c
i = (1 − c)−1, which shows the result.

3.2. Explicit expressions for the PageRank vector. Let us now give explicit
forms for rc. We will first express it as a rational function, and then propose a
polynomial form.

3.2.1. Rational expressions. We assume that P̃ is diagonalizable. Thus, P̃ =
XDX−1, where D = diag(1, λ̃2, . . . , λ̃p), and where X = [e,x2, . . . ,xp] is the matrix

whose columns are the right eigenvectors of P̃ . Also, let Y = [r̃,y2, . . . ,yp] be the

matrix whose columns are the right eigenvectors of P̃T , that is, Ã. We have X−T = Y
and

(I − cÃ)−1 = X−T (I − cD)−1XT .

But

(I − cD)−1 =

⎛
⎜⎜⎜⎝

(1 − c)−1

(1 − cλ̃2)
−1

. . .

(1 − cλ̃p)
−1

⎞
⎟⎟⎟⎠ , XTv =

⎛
⎜⎜⎜⎝

1
xT

2 v
...

xT
p v

⎞
⎟⎟⎟⎠ ,

and it follows that

u = (I − cD)−1XTv =

⎛
⎜⎜⎜⎝

1/(1 − c)

xT
2 v/(1 − cλ̃2)

...

xT
p v/(1 − cλ̃p)

⎞
⎟⎟⎟⎠ .

So, we finally obtain rc = (1 − c)X−Tu = (1 − c)Y u. This result was given in [44],

where a similar proof when P̃ is not diagonalizable could also be found, thus leading
to the following result.

Property 3. If P̃ is diagonalizable,

rc = r̃ + (1 − c)

p∑
i=2

αi

1 − cλ̃i

yi,

with αi = xT
i v.

In the general case

rc = r̃ +

p∑
i=2

wi(c)yi,

with

w2(c) = (1 − c)α2/(1 − cλ̃2),

wi(c) = [(1 − c)αi + cβiwi−1(c)]/(1 − cλ̃i), i = 3, . . . , p,

and βi equal to 0 or 1.
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It follows from this result that since rc is a rational function without poles at
c = 1, there exists a unique vector which is the limit, when c tends to 1, of rc. This
vector is only one of the nonnegative normalized dominant left eigenvectors of P̃ , and
it will be chosen as the real PageRank vector. This vector depends on v, a natural
property since P̃ depends on the personalization vector, and also on the multiplicity
of the eigenvalue 1 as explained in [17]. Let us mention that, as proved in [20, 34],

the eigenvalues of the matrix Pc are cλ̃i for i ≥ 2; see also [24], where it is stated that

λ̃2 = 1 in the special case of the Google matrix.
Let us now give another expression for rc. It comes from the well-known expres-

sion for the resolvent of a matrix (see, for example, [9, pp. 19–20]). We have

(I − cÃ)−1 =
1

det(I − cÃ)
(I + cB1 + · · · + cp−1Bp−1),

where the matrices Bi are given by the Le Verrier–Faddeev–Souriau algorithm

B1 = Ã + γ1I, γ1 = −tr(Ã),

Bi = ÃBi−1 + γiI, γi = −1

i
tr(ÃBi−1), i = 2, . . . , p,

where “tr” designates the trace of a matrix. Moreover

det(I − cÃ) = 1 + γ1c + · · · + γpc
p,

Bp = 0,

Ã−1 = −(1/γp)Bp−1.

Thus, it follows from Property 1 that

rc =
1 − c

1 + γ1c + · · · + γpcp
(I + cB1 + · · · + cp−1Bp−1)v.

This result shows that rc is a rational function with a vector numerator of degree
p at most, and a scalar denominator of degree p, while in Property 3 both degrees
were at most p− 1. Let us conciliate these two results.

Since Ã has an eigenvalue equal to 1, then 1 + γ1 + · · · + γp = 0, and it follows
that

1 + γ1c + · · · + γpc
p = −γ1 − · · · − γp + γ1c + · · · + γpc

p

= γ1(c− 1) + γ2(c
2 − 1) + · · · + γp(c

p − 1).

Thus, after cancellation of c− 1 in the numerator and in the denominator, we obtain
the following.

Property 4.

rc = − (I + cB1 + · · · + cp−1Bp−1)v

γ1 + γ2(1 + c) · · · + γp(1 + · · · + cp−1)
.

Remark 2. In this expression of rc, the denominator can also be written as
β0 + · · · + βp−1c

p−1 with βi = γi+1 + · · · + γp for i = 0, . . . , p− 1.
Notice that if the minimal polynomial of Ac for the vector v has degree m < p,

then cancellation occurs between the scalar denominator polynomial and the matrix
numerator polynomial, thus reducing rc to a rational function of type (m− 1,m− 1)
[21, pp. 87–94].

Since, by Properties 3 and 4, rc is a rational function in the variable c, it is
justifiable to approximate it by a rational function with lower degrees, as proposed in
section 5.
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3.2.2. Polynomial form. We will now give a polynomial expression for rc. Let
Πm(λ) = a0 + a1λ + · · · + amλm be the minimal polynomial of Ac for the vector v
with m ≤ p. Since Ac has a unique eigenvalue equal to 1, Πm can be written as
Πm(λ) = (λ− 1)Qm−1(λ). So

Πm(Ac)v = (Ac − I)Qm−1(Ac)v = AcQm−1(Ac)v −Qm−1(Ac)v = 0.

Thus, Qm−1(Ac)v is the eigenvector of Ac corresponding to the eigenvalue 1, that is,
we have the following.

Property 5.

rc = Qm−1(Ac)v.

If we set Qm−1(λ) = b0 + · · · + bm−1λ
m−1, then bi = −(a0 + · · · + ai) = ai+1 +

· · · + am for i = 0, . . . ,m− 1 (compare with Remark 2).
Property 5, shows that approximating Qm−1 in some sense will lead to approxi-

mations of the vector rc. Such procedures will be described in section 6.

4. Computation of the PageRank vector. The PageRank vector rc can be

computed by the power method starting from any nonzero vector such that eT r
(0)
c = 1.

We will start it from v, a choice justified by Property 5, and by Property 7 given below:

r(0)
c = v,

r(n+1)
c = Acr

(n)
c , n = 0, 1, . . . .

Obviously, for all n, r
(n)
c ≥ 0. Moreover, eT r

(0)
c = 1. So, by induction, eT r

(n+1)
c =

eTAcr
(n)
c = (Pce)T r

(n)
c = eT r

(n)
c . Thus, we have the following.

Property 6.

r(n)
c = An

c v ≥ 0, and ‖r(n)
c ‖1 = eT r(n)

c = 1, n = 0, 1, . . . .

Substituting Ac by its expression, an iterate of the power method can be written
as

r(n+1)
c = cPT r(n)

c + c(dT r(n)
c )w + (1 − c)v.

So, an iteration costs only one matrix–vector product by the very sparse matrix PT .
Moreover, neither Ac nor Ã has to be stored. In addition, the vector d can be
eliminated, thus making the power method easy and cheap to implement. Since, as
seen above, dT = eT − eTPT , then, for any vector x, it holds, after replacing Ac, Ã,
and dT by their expressions, that

Acx = cPTx + (c‖x‖1 − ‖cPTx‖1)w + (1 − c)‖x‖1v.

If w = v, the formula given in [31, Alg. 1] for computing such matrix–vector products

is recovered. In the particular case of the power method, x = r
(n)
c , ‖r(n)

c ‖1 = 1, and
the above formula simplifies to

r(n+1)
c = Acr

(n)
c = cPT r(n)

c + (c− ‖cPT r(n)
c ‖1)w + (1 − c)v.

Only one vector has to be stored by iteration. See [34] for details about the operational
count.
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As will be seen in Property 14, it follows from Property 6 that the vectors r
(n)
c −rc

satisfy a difference equation, a result that will be used for proving that the ε-algorithms
accelerate the convergence of the power method (see section 6.3).

As proved in [5], an important property is that the vectors r
(n)
c computed by the

power method are the partial sums of the second series for rc given in Property 2.
Let us give a simpler proof of this result.

Property 7.

r(n)
c = (1 − c)

n−1∑
i=0

ciÃiv + cnÃnv, n ≥ 0,

= v + c(Ã− I)

n−1∑
i=0

ciÃiv.

Proof. Let us prove the second identity. For n = 0, the sum is zero and the result
is true. For n = 1, we have

r(1)
c = cÃr(0)

c + (1 − c)veT r(0)
c = v + (Ã− I)cv.

Assuming that the result holds for n, we have

r(n+1)
c = [cÃ + (1 − c)veT ]r(n)

c

= cÃr(n)
c + (1 − c)v by Property 6

= cÃv + c2Ã(Ã− I)

n−1∑
i=0

ciÃiv + (1 − c)v

= cÃv + c(Ã− I)

n∑
i=1

ciÃiv + (1 − c)v

= v + c(Ã− I)
n∑

i=0

ciÃiv.

The first result can be easily obtained from the second one.
Since the power method furnishes the partial sums of the power series for rc, its

iterates will be directly used for constructing Padé-type approximants of this vector;
see section 5.

Property 8 immediately follows from Property 7.
Property 8.

r(0)
c = v,

r(n+1)
c = r(n)

c + cn+1(Ã− I)Ãnv, n = 0, 1, . . . .

Moreover, the following holds.
Property 9.

(Ã− I)Ãnv =
1

cn+1
(r(n+1)

c − r(n)
c ), n = 0, 1, . . . .

This property, proved in [5], shows that it is possible to apply the power method
simultaneously for several values of c with only a small additional cost. Indeed, by
Property 9, one only has to compute the vectors (Ã − I)Ãnv once, and then use
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Property 8 for computing the partial sums r
(n)

c̃
of the series r

c̃
for a different value c̃

of c. So, we have

r
(0)

c̃
= v,

r
(n+1)

c̃
= r

(n)

c̃
+ c̃n+1 1

cn+1
(r(n+1)

c − r(n)
c ), n = 0, 1, . . . .

Since I + cÃ + · · · + cn−1Ãn−1 = (I − cÃ)−1(I − cnÃn), the results of Property
7 can also be written as follows for comparison with Property 1.

Property 10.

r(n)
c = (1 − c)(I − cÃ)−1(I − cnÃn)v + cnÃnv

= v + c(Ã− I)(I − cÃ)−1(I − cnÃn)v.

Let us now give expressions for the error. From Properties 1, 6, and 10, it is easy
to prove the following.

Property 11.

rc − r(n)
c = An

c (rc − v)

= cnÃn(rc − v)

= (I − cÃ)−1(r(n+1)
c − r(n)

c ).

Since Ã is a column stochastic matrix ‖Ã‖1 = 1, and since, in our case, it is also

reducible, then |λ̃2| = 1, and we obtain the following.
Property 12.

‖rc − r(n)
c ‖1 ≤ cn ‖rc − v‖1

≤ 1

1 − c
‖r(n+1)

c − r(n)
c ‖1.

Let us note that 1/(1 − c) is the 1-norm of the matrix (I − cÃ)−1 and that the
condition number of the PageRank problem is (1 + c)/(1 − c) [28].

Let us now explain how rational and polynomial approximations of rc could be
obtained from the iterates of the power method. In both cases, increasing the degree
of the approximation produces a sequence of approximations of rc of increasing order
which, under certain assumptions, converge to rc faster than the iterates of the power
method.

5. Padé approximation of the PageRank vector. As proved in Properties
3 and 4, rc is a vector rational function of type (p−1, p−1) (or (m−1,m−1), where
m is the degree of the minimal polynomial of Ac for the vector v) in the variable c,
that is, a rational function with a numerator of degree p − 1 (or m − 1) with vector
coefficients, and a common scalar denominator of degree p− 1 (or m− 1). Moreover,
by Property 2, the vector Taylor series expansion of rc is known. So, the partial sums
of this series could be used for constructing rational approximations of rc of type
(k − 1, k − 1) with k < p (or k < m). The coefficients of these rational functions
will be chosen so that their power series expansion agrees with that of rc as far as
possible. Such types of rational functions are called Padé approximants.

The first possibility is to construct the scalar Padé approximants [k − 1/k − 1]
separately for each component of rc. In that case, each component will be matched up
to the term of degree 2k−2 inclusively. However, each scalar Padé approximant could
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have a different denominator for each component. For more on Padé approximation,
see [6, 9].

A solution that seems preferable is to use vector Padé approximants since the
components of rc are rational functions with a common denominator, which is ex-
actly the characterizing property of vector Padé approximants. These approximants,
introduced by Van Iseghem [48], are defined as follows.

Let f be a vector formal power series

f(ξ) =

∞∑
i=0

σiξ
i, σi ∈ R

p.(2)

We look for a vector rational function whose series expansion in ascending powers of ξ
agrees with f as far as possible. By vector rational function, we mean a function with
vector coefficients in the numerator and with a scalar denominator. More precisely,
we look for a0, . . . ,ak−1 ∈ R

p, and b0, . . . , bk−1 ∈ R, with k ≤ p (or k ≤ m), such that

(b0 + · · · + bk−1ξ
k−1)(σ0 + σ1ξ + · · · ) − (a0 + · · · + ak−1ξ

k−1) = O(ξs),(3)

with s, the order of approximation, as high as possible. If s = k, this vector rational
function is called a Padé-type approximant of f , while it is called a Padé approximant
if s = 2k − 1.

Identifying to zero the vector coefficients of the terms of degree 0 to k − 1 in the
left-hand side of (3), we obtain

a0 = b0σ0,
a1 = b0σ1 + b1σ0,

...
ak−1 = b0σk−1 + · · · + bk−1σ0.

(4)

For any choice of the coefficients bi of the denominator with b0 �= 0, the rational
function (a0 + · · · + ak−1ξ

k−1)/(b0 + · · · + bk−1ξ
k−1) obtained by this procedure is a

vector Padé-type approximant, and it is denoted by (k − 1/k − 1)f (ξ). Its order of
approximation is s = k, that is, (k − 1/k − 1)f (ξ) − f(ξ) = O(ξk). The computation
of the approximant (k − 1/k − 1)f needs the knowledge of σ0, . . . ,σk−1. Thus, in
practice, only small values of k could be used depending on the number of vectors one
could store.

Let us now try to improve the order of approximation, that is, to construct vector
Padé approximants. However, as we will see now, this order could not be improved
simultaneously for all components of the approximants since k has to be smaller than
p. Indeed, for eliminating the term of degree k in (3), it is necessary and sufficient that
0 = b0σk + · · ·+ bk−1σ1. Since a rational function is defined apart from a multiplying
factor, we can set b0 = 1, and we get

b1σk−1 + · · · + bk−1σ1 = −σk.

This is a system of p equations with k − 1 ≤ p unknowns. It has to be solved in the
least squares sense. Setting C = [σ1, . . . ,σk−1] ∈ R

p×(k−1) and b = (bk−1, . . . , b1)
T ,

this system can be rewritten as Cb = −σk. Let C† be a left inverse of C, that is, a
(k − 1) × p matrix such that C†C = I ∈ R

(k−1)×(k−1). Thus, b = −C†σk. Once the
bi’s have been obtained, the ai’s can be directly computed by the relations (4). The
matrix C† has the form C† = (ZTC)−1ZT , where Z = [z1, . . . , zk−1] ∈ R

p×(k−1) is
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any matrix such that ZTC ∈ R
(k−1)×(k−1) is nonsingular. The rational approximant

constructed in that way is called a vector Padé approximant of f , although its order of
approximation s is only equal to k, and it is denoted by [k− 1/k− 1]f (ξ). The reason
for this abuse of language is that we now have zTi [k−1/k−1]f (ξ)−zTi f(ξ) = O(ξ2k−1)
for i = 1, . . . , k−1. Obviously, since a left inverse is not unique, different vector Padé
approximants could be constructed. Of course, the simplest choice is Z = C. In that
case, C† is the pseudoinverse of C, and the corresponding Padé approximants can be
computed by the Recursive Projection Algorithm (RPA) [13, sect. 4.4].

Another way of proceeding for obtaining the coefficients bi is to consider the k−1
scalar equations

b1(z,σk−1) + · · · + bk−1(z,σ1) = −(z,σk),

...

b1(z,σ2k−3) + · · · + bk−1(z,σk−1) = −(z,σ2k−2),

where z is any vector such that the matrix of this system is nonsingular. For these
approximants, we again have [k− 1/k− 1]f (ξ)− f(ξ) = O(ξk), but now zT [k− 1/k−
1]f (ξ) − zT f(ξ) = O(ξ2k−1). These approximants are more costly than the previous
ones since more iterates of the power method are needed. They can be recursively
computed by applying the topological ε-algorithm [6] to the iterates of the power
method.

Intermediate strategies between using one vector equation and k− 1 vectors zi or
using k − 1 vector equations and only one vector z could also be employed as those
described in [11]. Other sequence transformations of the same type are given in [15].

By Property 2, rc is also the product of the vector v by a matrix power series.
Thus, rc can be approximated by matrix Padé approximants. However, this solution
involves high-dimensional matrix inversion, which is not possible in our case.

Let us now apply these general procedures for constructing Padé-type and Padé
approximants of rc. The second series of Property 2 for rc corresponds to f with
ξ = c, σ0 = v, and σi = (Ã− I)Ãi−1v for i ≥ 1. Following Property 9, these vector

coefficients are obtained directly from the power method since σi = (r
(i+1)
c −r

(i)
c )/ci+1.

The vector Padé-type approximants satisfy the same property as rc and the iterates
of the power method, namely, we have the following.

Property 13.

eT (k − 1/k − 1)f (c) = 1 ∀c ∈ [0, 1],

(k − 1/k − 1)f (c) ≥ 0 ∀c ∈ [0, δ], δ ∈ [0, 1].

Proof. We have eTσ0 = 1, and eTσi = 0 for i ≥ 1. Thus, multiplying the
relations (4) by eT gives eTai = bi for i = 0, . . . , k − 1, which shows the first result.

Since (k − 1/k − 1)f (c) approximates rc near zero, and for all c ∈ [0, 1), rc ≥ 0,
then ∃δ ∈ [0, 1] such that (k− 1/k− 1)f (c) ≥ 0 for c ∈ [0, δ]. Let us mention that the
value of δ is unknown but that is should be 1.

Let us also mention that the value of c in Padé-style approximants can be complex.

6. Acceleration of the power method. Let us begin by recalling some general
issues about sequence transformations for accelerating the convergence.

Let (x(n)) be a sequence converging to a limit x. The idea behind a convergence
acceleration method is extrapolation. It is assumed that the sequence (x(n)) behaves
in a certain way or, in other terms, as a certain function of n depending on some
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unknown parameters including its limit x. These parameters (and so also the limit
x) are determined by interpolation starting from an index n, and then the function is
extrapolated at infinity. If the sequence (x(n)) behaves exactly as the extrapolation
function, then the estimated limit obtained by the extrapolation process gives its
exact limit x. If (x(n)) does not behave exactly as the extrapolation function, then
the estimated limit given by the extrapolation process is only an approximation of
x, denoted by y(n) since it depends on n. So, an extrapolation process transforms
the sequence (x(n)) into a new sequence (y(n)) which, under certain assumptions
(that is, if the extrapolation function closely follows the exact behavior of (x(n))),
converges to x faster than (x(n)), that is, limn→∞ ‖y(n) − x‖/‖x(n) − x‖ = 0. A
sequence transformation for accelerating the convergence can always be considered as
an extrapolation procedure, and conversely an extrapolation procedure always leads
to an acceleration method for some classes of sequences. A sequence transformation
does not modify the sequence to accelerate, and the way it is generated is taken into
account only for obtaining acceleration results.

The set KT of sequences such that, for all n, y(n) = x is called the kernel of the
transformation T : (x(n)) 
−→ (y(n)). So, when a sequence belongs to the kernel of a
transformation, its limit is exactly obtained. An important conjecture about sequence
transformations is that, if a sequence is close, in a sense to be specified, to the kernel
of a transformation, then its convergence will be accelerated by this transformation.
Many numerical results point out that this conjecture is true. However, theoretical
results in this direction are very partial, and no general ones exist.

Thus, for constructing an efficient acceleration process for a given sequence, one
must first study its behavior with respect to n, and then construct an extrapolation
process based on an extrapolation function as close as possible (in some sense) to the
exact one. This extrapolation function will define the kernel of the transformation.

On sequence transformations for accelerating the convergence by extrapolation,
and, in particular, for the ε-algorithm and the other algorithms that will be used
below, see [13].

For defining such an acceleration process for the iterates of the power method for
the computation of the PageRank vector, we use the idea behind Krylov’s method.
As proved in Property 5, rc = Qm−1(Ac)v, where Πm(λ) = (λ − 1)Qm−1(λ) is the
minimal polynomial of Ac for the vector v. We also have

rc = An
c rc = An

cQm−1(Ac)v = Qm−1(Ac)A
n
c v = Qm−1(Ac)r

(n)
c .(5)

Thus, replacing, in this relation, Qm−1 by an approximating polynomial Qk−1 of
degree k − 1 ≤ m− 1 leads to polynomial approximations of rc of the form

r(k,n)
c = Qk−1(Ac)r

(n)
c .(6)

As will be seen below, the polynomials Qk−1 will be constructed from the vectors r
(i)
c

for i ≥ n. Under certain assumptions, the new sequences (r
(k,n)
c ) will converge to rc

faster than the sequence (r
(n+k)
c ) produced by the power method, that is, such that

the sequence (‖r(k,n)
c − rc‖/‖r(n)

c − rc‖) tends to zero, for k fixed and n tending to
infinity. When n is fixed and k increases, then for k = m, the degree of the minimal
polynomial of Ac for the vector v, the exact result rc is obtained. Obviously, since m
is very large this is not a procedure that could be used in practice. However, when k

grows, the (r
(k,n)
c )’s become more accurate approximations of rc since we are getting

closer to the kernel of the transformation as explained above.
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Another procedure, called cycling, consists of computing r
(k,0)
c as above, and then

starting again the iterations (1) of the power method from r
(0)
c = r

(k,0)
c . This was the

strategy used in [31].
In both cases, it must be noted that the higher k, the greater the number of

vectors r
(i)
c obtained by the power method to store, thus limiting the value of k to

be used in practice. This value depends on the numbers of vectors one could store.
This is an important point to take into consideration since, if many vectors have to
be stored for accelerating the power method, one might as well use a more powerful
eigenvalue algorithm, like the restarted Arnoldi’s method [23]. Even if the PageRank
vector is computed only for a subset of the pages, again Arnoldi’s method may be
more interesting than the accelerated power method. This is a remark to take into
account when considering convergence acceleration procedures.

In section 6.1, we will explain in a different way, simplifying, unifying, and gen-
eralizing the Quadratic Extrapolation presented in [31]. This generalization will be
related to Krylov subspace methods, and some properties will be given. Then, in
section 6.2, this generalization will also be included in the framework of the method
of moments, where a polynomial Pk approximating the minimal polynomial Πm will
be constructed. In section 6.3, we will discuss the various ε-algorithms and recover
the Aitken Extrapolation, as well as the Epsilon Extrapolation given in [31]. These
algorithms are generalizations of the well-known Aitken’s Δ2 process. The section
closes by reviewing some other possible acceleration methods.

6.1. Vector least squares extrapolation. Let us give a first procedure for
computing the coefficients of the polynomial Pk which approximates the minimal
polynomial Πm. We set Pk(λ) = a0 + · · · + akλ

k, where the ai’s depend on k and
another index denoted by n, as we will see, and Pk(1) = a0+ · · ·+ak = 0. Considering
the iterates of the power method, we set

Rn = [r(n)
c , . . . , r(n+k−1)

c ].

Since, for all n, r
(n)
c = An

c v, it holds that

An
cPk(Ac)v = Pk(Ac)r

(n)
c = a0r

(n)
c + · · · + akr

(n+k)
c � 0.(7)

Since the coefficients ai are defined apart from a multiplying factor, and since Pk has
exact degree k, we can assume that ak = 1 without restricting the generality. Thus,
(7) can be rewritten as

Rna � −r(n+k)
c ,

with a = (a0, . . . , ak−1)
T . Solving this system in the least squares sense gives

a = −(RT
nRn)−1RT

n r(n+k)
c .(8)

Let us remark, in connection with [31], that (RT
nRn)−1RT

n is the pseudoinverse of Rn.
By taking into account that Pk(1) = 0, the computation can be simplified as in

[31]. We have a0 = −a1 − · · · − ak−1 − 1. Replacing a0 by this expression in (7) gives

R′
na

′ = −(r(n+k)
c − r(n)

c )(9)

with R′
n = [r

(n+1)
c − r

(n)
c , . . . , r

(n+k−1)
c − r

(n)
c ] and a′ = (a1, . . . , ak−1)

T . This system

is then solved in the least squares sense, that is, a′ = −(R
′T
n R′

n)−1R
′T
n (r

(n+k)
c − r

(n)
c ).
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Remark 3. Instead of formula (8), any other left inverse of Rn could be used,
thus leading to

a = −(ZT
nRn)−1ZT

n r(n+k)
c ,

where Zn = [zn, . . . , zn+k−1] is a p × k matrix such that ZT
nRn is nonsingular. The

system (9) can be solved in a similar way.

We now have to compute r
(k,n)
c by (6). We set

Qk−1(λ) = b0 + b1λ + · · · + bk−1λ
k−1.

Since Pk(λ) = (λ− 1)Qk−1(λ), it follows that

bi = −(a0 + · · · + ai) = ai+1 + · · · + ak, i = 0, . . . , k − 1.(10)

Note that since a0+· · ·+ak = 0 and ak = 1, we also have b0 = −a0 and bk−1 = ak = 1.

Let b = (b0, . . . , bk−1)
T . Thus, r

(k,n)
c = Rnb. Denoting by L the k×k lower triangular

matrix whose elements are equal to 1, then, from (10), b = −La, and it follows that

r(k,n)
c = Rnb = −RnLa = RnL(RT

nRn)−1RT
n r

(n+k)
c .

We also have Acr
(k,n)
c = Rn+1b.

Thus, from what precedes, we obtain

r(k,n)
c = Qk−1(Ac)r

(n)
c = b0r

(n)
c + b1r

(n+1)
c + · · · + bk−1r

(n+k−1)
c .(11)

Since r
(n+i)
c = Ai

cr
(n)
c , this relation shows that r

(k,n)
c ∈ Kk(Ac, r

(n)
c ), the Krylov

subspace of dimension k spanned by the vectors r
(n)
c , . . . , Ak−1

c r
(n)
c . More precisely,

since bk−1 = 1, r
(k,n)
c ∈ r

(n+k−1)
c + Kk−1(Ac, r

(n)
c ). Moreover, the vector

e(k,n) = Pk(Ac)r
(n)
c = (Ac − I)Qk−1(Ac)r

(n)
c = Acr

(k,n)
c − r(k,n)

c

belongs to Kk+1(Ac, r
(n)
c ), more precisely, since bk−1 = 1, e(k,n) ∈ r

(n+k)
c +Kk(Ac, r

(n)
c ).

From (11), we also see that e(k,n) = ΔRnb ∈ Kk(Ac,Δr
(n)
c ); more precisely, it be-

longs to Δr
(n+k−1)
c + Kk−1(Ac,Δr

(n)
c ) (Δ is the usual forward difference operator).

Since r
(k,n)
c approximates the eigenvector rc of Ac, the vector e(k,n) plays the role of

a residual. We have

RT
ne(k,n) = RT

nRna + RT
n r(n+k)

c

= −RT
nRn(RT

nRn)−1RT
n r(n+k)

c + RT
n r(n+k)

c

= 0.

Thus, e(k,n) is orthogonal to the columns of Rn, and we have the following.
Theorem 1.

r(k,n)
c ∈ r(n+k−1)

c + Kk−1(Ac, r
(n)
c ),

Acr
(k,n)
c − r(k,n)

c ⊥ Kk(Ac, r
(n)
c ).

This result shows that vector least squares extrapolation can be considered as a
Krylov subspace method for computing rc.
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Moreover, since Kk(Ac, r
(n)
c ) ⊆ Kk+1(Ac, r

(n)
c ), we have the following.

Corollary 1.

‖e(k+1,n)‖ ≤ ‖e(k,n)‖.

Obviously, when k = m, e(m,n) = 0.

Writing down the conditions of Theorem 1, we immediately obtain several deter-
minantal expressions. Such expressions have no direct practical use, but they could be
of interest in proving theoretical results about our vector least squares extrapolation,

and in obtaining recursive algorithms for the computation of the vectors r
(k,n)
c .

Corollary 2.

e(k,n) = (−1)k−1

∣∣∣∣∣∣∣∣∣∣

r
(n)
c · · · r

(n+k)
c

(r
(n)
c , r

(n)
c ) · · · (r

(n)
c , r

(n+k)
c )

...
...

(r
(n+k−1)
c , r

(n)
c ) · · · (r

(n+k−1)
c , r

(n+k)
c )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(r

(n)
c , r

(n)
c ) · · · (r

(n)
c , r

(n+k−1)
c )

...
...

(r
(n+k−1)
c , r

(n)
c ) · · · (r

(n+k−1)
c , r

(n+k−1)
c )

∣∣∣∣∣∣∣∣

.

The determinant in the numerator denotes the vector obtained by expanding it
with respect to its first row by the classical rules for expanding a determinant.

Let D
(n)
k be the determinant in the denominator of e(k,n). Comparing this result

with (11) shows, since r
(n+i)
c = Ai

cr
(n)
c , that we have the following.

Corollary 3. It holds that e(k,n) = Q̃k−1(Ac)r
(n)
c /D

(n)
k , with

Q̃k−1(λ) = (−1)k−1

∣∣∣∣∣∣∣∣∣

1 · · · λk

(r
(n)
c , r

(n)
c ) · · · (r

(n)
c , r

(n+k)
c )

...
...

(r
(n+k−1)
c , r

(n)
c ) · · · (r

(n+k−1)
c , r

(n+k)
c )

∣∣∣∣∣∣∣∣∣
.

Note that the polynomial Q̃k−1(λ)/D
(n)
k is monic. Moreover, the ratio of de-

terminants given in Corollary 2 shows that e(k,n) can also be expressed as a Schur
complement (see [9, p. 150] or [52]), thus leading to the following.

Corollary 4.

e(k,n) = r(n+k)
c −Rn

⎛
⎜⎜⎝

(r
(n)
c , r

(n)
c ) · · · (r

(n)
c , r

(n+k−1)
c )

...
...

(r
(n+k−1)
c , r

(n)
c ) · · · (r

(n+k−1)
c , r

(n+k−1)
c )

⎞
⎟⎟⎠
−1⎛
⎜⎜⎝

(r
(n)
c , r

(n+k)
c )
...

(r
(n+k−1)
c , r

(n+k)
c )

⎞
⎟⎟⎠.

Let us now express the vectors r
(k,n)
c as a ratio of determinants. We have the

following theorem.
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Theorem 2.

r(k,n)
c = (−1)k−1

∣∣∣∣∣∣∣∣∣∣

r
(n)
c · · · r

(n+k−1)
c

(Δr
(n)
c ,Δr

(n)
c ) · · · (Δr

(n)
c ,Δr

(n+k−1)
c )

...
...

(Δr
(n+k−2)
c ,Δr

(n)
c ) · · · (Δr

(n+k−2)
c ,Δr

(n+k−1)
c )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(Δr

(n)
c ,Δr

(n)
c ) · · · (Δr

(n)
c ,Δr

(n+k−2)
c )

...
...

(Δr
(n+k−2)
c ,Δr

(n)
c ) · · · (Δr

(n+k−2)
c ,Δr

(n+k−2)
c )

∣∣∣∣∣∣∣∣

.

Proof. We have e(k,n) = ΔRnb. Taking into account that bk−1 = 1, this relation

can also be written as e(k,n) = ΔR̃nb̃ + Δr
(n+k−1)
c , with R̃n = [r

(n)
c , . . . , r

(n+k−2)
c ]

and b̃ = (b0, . . . , bk−2)
T . Solving, as above, the system e(k,n) = 0 in the least squares

sense gives b̃ = −(ΔR̃T
nΔR̃n)−1ΔR̃T

nΔr
(n+k−1)
c . Thus, since r

(k,n)
c = R̃nb̃+r

(n+k−1)
c ,

we get

r(k,n)
c = r(n+k−1)

c − R̃n(ΔR̃T
nΔR̃n)−1ΔR̃T

nΔr(n+k−1)
c .

This relation shows that r
(k,n)
c is a Schur complement, and the result follows from

Schur’s determinantal formula.
Since Acr

(k,n)
c = Rn+1b, we immediately have the following.

Corollary 5. e(k,n) is given by a formula similar to the formula of Theorem

2 after replacing the first row of the numerator by Δr
(n)
c , . . . ,Δr

(n+k−1)
c . Moreover

(Δr
(n+i)
c , e(k,n)) = 0 for i = 0, . . . , k − 2, that is, ΔR̃T

ne(k,n) = 0.

Note that Rn = [R̃n, r
(n+k−1)
c ], and b = (b̃T , bk−1)

T . Polynomial expressions for

r
(k,n)
c and e(k,n) similar to that of Corollary 3 can easily be deduced from Theorem

2 and Corollary 5. The preceding results can be easily modified if Rn is replaced by
Zn.

Thus, in this section, we have generalized to an arbitrary value of k the Quadratic
Extrapolation presented in [31] which corresponds to k = 3. Moreover, it has been
related to Krylov subspace methods.

In practice, the value of k is limited by the dimension p of the problem and by

the number of vectors to store for computing the vector r
(k,n)
c . For k = 2, we obtain

the new vector sequence transformation

r(2,n)
c = (Ac − αnI)r

(n)
c = r(n+1)

c − αnr
(n)
c with αn =

(Δr
(n)
c ,Δr

(n+1)
c )

(Δr
(n)
c ,Δr

(n)
c )

.

This relation corresponds to the ratio of determinants given in Theorem 2.
These vector least squares extrapolation procedures follow an idea similar to that

used in the least squares extrapolation discussed in [13, sect. 3.10] for scalar sequences
and in the vector transformations proposed in [15].

6.2. The method of moments. The generalization of the Quadratic Extrap-
olation [31] discussed in the previous section could be interpreted as a special case of
the method of moments of Vorobyev [50, pp. 14–16] (see also [8, pp. 154–157]). Thus,
we will have a different point of view on this generalization, which is always helpful
for obtaining theoretical results, such as acceleration properties.
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Let u0, . . . ,uk be linearly independent vectors in R
p and z0, . . . , zk−1 also, where

k + 1 ≤ p. The method of moments consists of constructing the linear mapping Ak

on Ek = span(u0, . . . ,uk−1) such that

u1 = Aku0,
u2 = Aku1 = A2

ku0,
. . . . . . . . . . . . . . . . . .

uk−1 = Akuk−2 = Ak−1
k u0,

Pkuk = Akuk−1 = Ak
ku0,

where Pk is the projection on Ek orthogonal to Fk = span(z0, . . . , zk−1).
These relations completely determine the mapping Ak. Indeed, for any u ∈ Ek,

there exist numbers b0, . . . , bk−1 such that

u = b0u0 + · · · + bk−1uk−1.(12)

Thus,

Aku = b0Aku0 + · · · + bk−2Akuk−2 + bk−1Akuk−1(13)

= b0u1 + · · · + bk−2uk−1 + bk−1Pkuk ∈ Ek.

Since Pkuk ∈ Ek, there exist numbers a0, . . . , ak−1 such that

Pkuk = −a0u0 − · · · − ak−1uk−1,(14)

that is,

a0u0 + · · · + ak−1uk−1 + Pkuk = (a0 + a1Ak + · · · + ak−1A
k−1
k + Ak

k)u0 = 0.

But

(zi,uk − Pkuk) = 0 for i = 0, . . . , k − 1,

that is, for i = 0, . . . , k − 1,

a0(zi,u0) + · · · + ak−1(zi,uk−1) + (zi,uk) = 0.

Solving this system gives the ai’s and, thus, Ak is completely determined.
Now, if we set

Pk(ξ) = a0 + · · · + ak−1ξ
k−1 + ξk,

then

Pk(Ak)u0 = 0,

which shows that Pk is an annihilating polynomial of Ak for the vector u0.
We will be looking for the eigenvectors of Ak belonging to Ek. Let u ∈ Ek. From

(13) and (14), we have

Aku = b0u1 + · · · + bk−2uk−1 + bk−1(−a0u0 − · · · − ak−1uk−1)

= −a0bk−1u0 + (b0 − a1bk−1)u1 + · · · + (bk−2 − ak−1bk−1)uk−1.(15)
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If λ is an eigenvalue of Ak and u is the corresponding eigenvector, then

Aku = λ(b0u0 + · · · + bk−1uk−1),

and, since u0, . . . ,uk−1 are linearly independent in Ek, we see from (15) that we must
have

−a0bk−1 = b0λ,

bi − ai+1bk−1 = bi+1λ, i = 0, . . . , k − 2,(16)

that is, in matrix form,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ 0 · · · · · · 0 −a0

1 −λ
. . . 0 −a1

0 1
. . .

. . .
...

...
...

. . .
. . . −λ 0 −ak−3

...
. . . 1 −λ −ak−2

0 · · · · · · 0 1 −ak−1 − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0

b1
...

bk−3

bk−2

bk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Since this system has a nonzero solution, its determinant must be zero, that is,

Pk(λ) = 0.

Moreover, we must have bk−1 �= 0, since otherwise all the bi’s would be zero. Since
an eigenvector is defined up to a multiplying factor, then bk−1 can be arbitrarily set
to 1 and, from (16), we have

bi = ai+1 + bi+1λ, i = k − 2, . . . , 0.

We see that, for λ = 1, these relations are the same as (10).
As seen above, for u as in (12), Aku is given by (15), and the transformation map-

ping the coordinates b0, . . . , bk−1 of u in the basis formed by the elements u0, . . . ,uk−1

into the coordinates of Aku in the same basis is given by the matrix Ãk of the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 −a0

1
. . .

... −a1

0
. . .

. . .
...

...
...

. . .
. . . 0 −ak−2

0 · · · 0 1 −ak−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

b0

b1
...

bk−2

bk−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−a0bk−1

b0 − bk−1a1

...

bk−3 − bk−2ak−2

bk−2 − bk−1ak−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, the polynomial Pk is the characteristic polynomial of the k × k matrix Ãk

which represents the mapping Ak in Ek. Consequently, Ãk is regular if and only if
a0 �= 0, and the rank of Ak is equal to the rank of Ãk.

In the particular case where ui = Ai
cu0, i = 0, 1, . . . , which is the case we treated,

it is possible to obtain an expression for Ak. Let u be as in (12). Then

Acu = b0Acu0 + · · · + bk−2Acuk−2 + bk−1Acuk−1

= b0Acu0 + · · · + bk−2A
k−1
c u0 + bk−1A

k
cu0

= b0Aku0 + · · · + bk−2A
k−1
k u0 + bk−1A

k
cu0,
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and it follows that

PkAcu = b0Aku0 + · · · + bk−2A
k−1
k u0 + bk−1Pkuk

= b0Aku0 + · · · + bk−2A
k−1
k u0 + bk−1A

k
ku0

= Ak(b0u0 + · · · + bk−1uk−1) = Aku,

which shows that Ak = PkAc on Ek. Since, if u ∈ Ek, Pku ∈ Ek, then the domain of
Ak can be extended to the whole space R

p by setting

Ak = PkAcPk.

Now let u ∈ R
p. Setting Uk = [u0, . . . ,uk−1], Zk = [z0, . . . , zk−1], and a =

(a0, . . . , ak−1)
T , the conditions (Pku − u, zi) = 0 for i = 0, . . . , k − 1 can be written

as ZT
k Uka = −ZT

k u and it follows that Pku = −Uka = Uk(Z
T
k Uk)

−1ZT
k u, which gives

Pk = Uk(Z
T
k Uk)

−1ZT
k .

It must be noted that Ak is not an injection since Pk is not.

6.3. The ε-algorithms. The ε-algorithms are sequence transformations which
map a given sequence into new ones which, under certain assumptions, converge faster
to the same limit. Let us now discuss the various ε-algorithms for vector sequences.

As above, let (x(n)) be a vector sequence converging to x. The vector ε-algorithm
consists in the recursive rule

ε
(n)
−1 = 0,

ε
(n)
0 = x(n),

ε
(n)
j+1 = ε

(n+1)
j−1 +

[
ε
(n+1)
j − ε

(n)
j

]−1

for j = 0, 1, . . . and n = 0, 1, . . . , where the inverse of a vector y is defined by
y−1 = y/(y,y). The vectors with an odd lower index are intermediate computations
without any interesting meaning, while those with an even lower index approximate
x. These rules are also valid for the scalar ε-algorithm (in which case the ε’s are not

in bold in what follows) with ε
(n)
0 = (x(n))i, the ith component of x(n). The rules of

the topological ε-algorithm are slightly different, and can be found, for example, in

[13, sect. 4.2]. The computation of ε
(n)
2k needs the knowledge of x(n), . . . ,x(n+2k) and

the storage of 2k + 1 vectors, thus restricting k to small values in our case.
The kernels of the scalar ε-algorithm (applied separately on each components), of

the vector ε-algorithm, and of the topological ε-algorithm contain the set of sequences
satisfying the characteristic relation

b0(x
(n) − x) + · · · + bk−1(x

(n+k−1) − x) = 0, n = 0, 1, . . . ,(17)

where the bi’s are any numbers satisfying b0bk−1 �= 0. Thus, if one of these ε-
algorithms is applied to a sequence (x(n)) satisfying (17), then, by construction,

ε
(n)
2k−2 = x for n = 0, 1, . . . .

Let us now study our particular case. From (5), we have rc = Qm−1(Ac)r
(n)
c .

Moreover, since rc = Ai
crc for all i,

∑m−1
i=0 birc =

∑m−1
i=0 biA

i
crc = Qm−1(Ac)rc = rc,

assuming that
∑m−1

i=0 bi = 1, which does not restrict the generality. Thus, subtracting
the second relation from the first one, we get the following.
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Property 14.

Qm−1(Ac)(r
(n)
c − rc) = b0(r

(n)
c − rc) + · · ·+ bm−1(r

(n+m−1)
c − rc) = 0, n = 0, 1, . . . .

Thus, applying one of the ε-algorithms to the vector sequence (r
(n)
c ) gives ε

(n)
2m−2 =

rc for n = 0, 1, . . . and produces approximations ε
(n)
2k−2 of rc for k < m. Since, by the

theory of the ε-algorithms, there exist numbers b′0, . . . , b
′
k−1 such that

b′0(r
(i)
c − ε

(n)
2k−2) + · · · + b′k−1(r

(i+k−1)
c − ε

(n)
2k−2) = 0, i = 0, 1, . . . ,

then

ε
(n)
2k−2 = Qk−1(Ac)r

(n)
c , n = 0, 1, . . . ,

with Qk−1(λ) = b′0 + · · ·+ b′k−1λ
k−1. These vectors ε

(n)
2k−2 are rational approximations

of rc in the Padé style. In the case of the topological ε-algorithm, it is well known
that the vectors it computes can be represented as a ratio of determinants, and we
have (see, for example, [13, p. 221]) the following.

Theorem 3. For the topological ε-algorithm, ε
(n)
2k−2 = Q̃k−1(Ac)r

(n)
c /Q̃k−1(1),

with

Q̃k−1(λ) =

∣∣∣∣∣∣∣∣∣

1 · · · λk

(y,Δr
(n)
c ) · · · (y,Δr

(n+k−1)
c )

...
...

(y,Δr
(n+k−2)
c ) · · · (y,Δr

(n+2k−3)
c )

∣∣∣∣∣∣∣∣∣
,

where y is such that Q̃k−1(1) �= 0.

Let us now analyze the behavior of the vectors ε
(n)
2k−2 when k is fixed and n tends

to infinity. The relation of Property 14 shows that the vectors r
(n)
c − rc satisfy a

linear homogeneous difference equation of order m− 1 with constant coefficients. In
the particular case where the zeros cλ̃2, . . . , cλ̃m of Qm−1 (which are the eigenvalues
of Ac) are real and simple, and all the eigenvectors of Ac are present in the spectral
decomposition of v, the solution of this difference equation is

r(n)
c = rc +

m∑
i=2

(cλ̃i)
nvi, n = 0, 1, . . . ,(18)

where the vectors vi ∈ R
p depend on the eigenvectors of Ac. The solution of the

relation of Property 14 was studied in its full generality in [12] (see also [13, Thm.
2.18]), but it will not be reproduced here for length reasons. Let us mention only that

if an eigenvalue λ̃i has multiplicity ki, then vi is replaced in (18) by a polynomial of
degree ki − 1 with vector coefficients.

Using (18), we have the following convergence and acceleration results which
support, in particular, the numerical results given in [31] for k = 1. They follow
directly from the acceleration theorems proved by Wynn [51] for the scalar ε-algorithm
and by Matos for the vector ε-algorithm [39]

Theorem 4. If Ac is diagonalizable, and if all the eigenvectors of Ac are present
in the spectral decomposition of v, then, for 1 ≤ k ≤ m− 1,

‖ε(n)
2k − rc‖2 = O((cλ̃k+2)

n),

lim
n→∞

‖ε(n)
2k − rc‖2

‖ε(n)
2k−2 − rc‖2

= 0.
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If some of the eigenvalues of Ac are multiple, they have to be counted according
to their multiplicity, and the polynomial factors in the solution of the relation of
Property 14 come into the discussion. However, the theory and the results remain
essentially the same (in particular Theorem 4), but they become more complicated to
write down (see, for example, Theorem 5 of [39]). These results are also valid for the
topological ε-algorithm.

Other approximations of the Padé style are the vectors E
(n)
k−1 computed by the

scalar E-algorithm (applied componentwise) or the vector E-algorithm [7] (see also
[13, pp. 55–72, 228–232]). Applying the convergence and acceleration results proved
in [7, 45, 38], conclusions similar to those of Theorem 4 can be obtained. Let us also
mention that the ε-algorithm and E-algorithm are related to Schur complements [52,
pp. 233–238].

For the scalar ε-algorithm, when k = 2, the well-known Aitken’s Δ2 process is
recovered. The kernel of Aitken’s process is the set of scalar sequences (x(n)) satisfying

b0(x
(n) − x) + b1(x

(n+1) − x) = 0, n = 0, 1, . . . ,

with b0 + b1 �= 0, or, equivalently,

x(n) = x + αμn, n = 0, 1, . . . ,

with μ �= 1. Note that the form of the first relation is the same as (17) when k = 2.
Aitken’s Δ2 process can be written in different ways. For example, we have the

three following equivalent formulae:

ε
(n)
2 = x(n) − (x(n+1) − x(n))2

x(n+2) − 2x(n+1) + x(n)
(19)

= x(n+1) − (x(n+2) − x(n+1))(x(n+1) − x(n))

x(n+2) − 2x(n+1) + x(n)
(20)

= x(n+2) − (x(n+2) − x(n+1))2

x(n+2) − 2x(n+1) + x(n)
.(21)

If each component of the vectors r
(n)
c successively plays the role of x(n), then (19) is ex-

actly the Aitken Extrapolation given by formula (15) of [31], while (20) corresponds to
the Epsilon Extrapolation of [31]. Another implementation of the same extrapolation
method can be obtained by using (21). However, let us mention that, although these
are completely equivalent from the mathematical point of view, the numerical stability
of these formulae can be quite different. It is well known that Aitken’s process acceler-
ates the convergence of sequences such that ∃δ �= 1, limn→∞(x(n+1)−x)/(x(n)−x) = δ,

which, by Property 11, is exactly our case with δ = cλ̃2. Thus, the effectiveness of the
methods proposed in [31] is justified by the preceding discussion and by Theorem 4.

Each of the scalars ε
(n)
2 produced by Aitken’s process applied separately on each

component has a different denominator. On the contrary, using the vector or the

topological ε-algorithm for transforming the vectors r
(n)
c will lead to vectors ε

(n)
2 with

the same denominator for each component, and thus will be more similar to the exact
form of rc.

Let us recall that the ε-algorithms are related to various Padé-style approximants
[6, 9]. If the scalar ε-algorithm is applied to the partial sums of a formal power
series f with scalar coefficients, then the quantities ε

(n)
2k it computes are the Padé

approximants [n+k/k]f of f . Reciprocally, the quantities ε
(n)
2k given by this algorithm
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with ε
(n)
0 = x(n) are the [n+k/k]f Padé approximants of the series f(ξ) = x(0)+(x(1)−

x(0))ξ+(x(2)−x(1))ξ2+ · · · . In particular, the ε
(n)
2 ’s computed by Aitken’s process are

identical to its Padé approximants [n/1]f (1). Thus, applying the scalar ε-algorithm
separately on each component of a series with vector coefficients, as in [31], produces
Padé approximants with, in general, a different denominator for each component,
while, in our case, all denominators should be identical by Properties 3 and 4. On the
contrary, the vector and the topological ε-algorithms provide rational approximations
of the series (2), but with the same denominator for all components. Thus, they seem
to be better adapted to the acceleration of the power method. Moreover, it would
also be interesting to consider the approximants [k − 1/k − 1] for increasing values
of k instead of the approximants [n/1]. It is possible to use the vector E-algorithm,
which also leads to rational vector approximations of rc with a unique denominator
for all components, and allows more flexibility by an arbitrary choice of auxiliary
vector sequences; see [13, sect. 4.3].

6.4. Other algorithms. Of course, the acceleration procedures studied above
are not the only possible ones. Among them, there exist several other acceleration
methods whose kernel is the set of sequences satisfying (17), where the vectors x(n)

are those obtained by the power method, and x is the vector rc we are looking for. In
this section, we will briefly review some of them, since they probably are those having
the best acceleration properties, as explained at the beginning of section 6.

The relation of Property 14 can also be written as

r(n)
c = r(k,n)

c + α0Δr(n)
c + · · · + αk−2Δr(n+k−2)

c , n = 0, 1, . . . ,

that is,

r(n)
c = r(k,n)

c + ΔR̃nα,(22)

with α = (α0, . . . , αk−2)
T and R̃n = [r

(n)
c , . . . , r

(n+k−2)
c ], as in section 6.1.

There are several ways to compute this vector α. One of them leads to a sequence
transformation named the multilevel vector theta-type (VTT) defined in [14] by

r(k,n)
c = r(n)

c − ΔR̃n(ZT
n Δ2R̃n)−1ZT

n Δ2r(n)
c , n = 0, 1, . . . , k > 2,

where Zn ∈ R
p×(k−1).

The multilevel biorthogonal vector theta-type (BVTT) transformation is a partic-
ular case of the VTT, with the same kernel [14].

A general methodology, based on various strategies, for constructing sequence
transformations whose kernel contains sequences of the form (22) is described in [10].
These transformations can be implemented either by one of the ε-algorithms given in
the preceding section, by the RPA [13, sect. 4.4], or by the Sβ-algorithm [27]. The
case where the matrix to be inverted is singular is treated similarly in [15] by using
pseudoinverses and pseudo-Schur complements, whose properties are studied in [43].
Another vector sequence transformation related to the method of moments is the
modified minimal polynomial extrapolation (MMPE) of Pugachev [42]. Application
of other vector extrapolation methods, such as the RRE and the MPE, to PageR-
ank computations are discussed in [46], but numerical experiments have yet to be
carried out.
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7. Conclusions. In this paper, we analyzed the PageRank problem and its so-
lution by the power method. Several procedures for accelerating the convergence
of its iterates were proposed, and some theoretical results were given. However, no
results for comparing these algorithms exist so far. When the parameter k in these
acceleration methods increases, in general their efficiency increases, but the number of
vectors to store also increases, thus putting a restriction on their practical use due to
the huge dimension of the problem. Moreover, the behaviors of these algorithms are
quite similar, and the choice between them is, more or less, a matter of taste. Thus,
extensive numerical experiments have to be carried out, and perhaps they could help
in making this choice.

Let us mention another problem related to PageRank computations. When c
approaches 1 (which corresponds to the real PageRank vector), Property 12 shows
that the speed of convergence of the power method reduces, and, moreover, the matrix
Ac becomes more and more ill conditioned (as proved in [28], its condition number
behaves as (1 − c)−1), the conditioning of the eigenproblem becomes poor, and rc
cannot be computed accurately. So, to avoid these drawbacks, rc can be computed
for several values of c far away from 1 by any procedure, and then these vectors can be
extrapolated at the point c = 1 (or at any other point). In order for an extrapolation
procedure to work well, the extrapolating function has to mimic as closely as possible
the behavior of rc with respect to the parameter c. Extrapolation algorithms based
on the analysis of this dependence, given in [44], are described in [17]; see [16] for
more developments.
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Numer. Math. 50, Birkhäuser Verlag, Basel, 1980.

[7] C. Brezinski, A general extrapolation algorithm, Numer. Math., 35 (1980), pp. 175–187.
[8] C. Brezinski, Projections Methods for Systems of Equations, North-Holland, Amsterdam,

1997.
[9] C. Brezinski, Computational Aspects of Linear Control, Kluwer, Dordrecht, 2002.

[10] C. Brezinski, Vector sequence transformations: Methodology and applications to linear sys-
tems, J. Comput. Appl. Math., 98 (1998), pp. 149–175.



574 CLAUDE BREZINSKI AND MICHELA REDIVO-ZAGLIA

[11] C. Brezinski, Biorthogonal vector sequence transformations and Padé approximation of vector
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