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The analysis of temperature-dependent EXAFS spectra based on the

cumulant expansion is critically reviewed, seeking for accurate

relations between EXAFS parameters and physical properties of

crystals. The treatment is based on the distinction between the real

and effective distribution of distances, and is divided into three

logical steps. (a) The connection between lattice dynamics and

cumulants C�n of the real distribution is studied and the extent of the

usual approximations are numerically evaluated. Atomic vibrations

perpendicular to the bond direction make the EXAFS thermal

expansion larger than the crystallographic one; the difference is

connected to a shift of the effective pair potential rather than to its

asymmetry. Peculiar information on lattice dynamics of crystals can

be obtained from accurate EXAFS measurements and their cumulant

analysis. (b) The differences between cumulants of the real and

effective distribution (C�n and Cn, respectively) are calculated for

various physically realistic distributions. The largest discrepancy

concerns the ®rst cumulant: C�1 measures the thermal expansion of

the interatomic bond, while C1 is a better estimate of the

crystallographic thermal expansion. (c) The convergence properties

of the cumulant series are discussed and some phenomenological

procedures are suggested to monitor and possibly work out the

connected failures of the cumulant method. Bene®ts and risks of the

use of an effective pair potential are at last debated.

Keywords: EXAFS; cumulant analysis of EXAFS; anharmonicity;
local thermal expansion.

1. Introduction

The standard treatment of thermal disorder in EXAFS through a

harmonic Debye±Waller factor exp�ÿ2k2�2� (Lee et al., 1981) has

become inadequate with respect to the increasing accuracy of

experimental data and analysis techniques. After the ®rst pioneering

studies of AgI (Boyce et al., 1981) and CuBr (Tranquada & Ingalls,

1983), recent works have shown that anharmonic effects cannot be

neglected even for systems like germanium (Dalba, Fornasini,

Grazioli & Rocca, 1995) or GaAs (Dalba et al., 1994).

The cumulant expansion approach to EXAFS (Bunker, 1983;

Crozier et al., 1988) facilitates both the theoretical interpretation

(Frenkel & Rehr, 1993; Miyanaga & Fujikawa, 1994; Hung & Rehr,

1997; Yokoyama, 1998; Katsumata et al., 2001) and the experimental

analysis of anharmonic effects (Tranquada & Ingalls, 1983; Dalba et

al., 1993; Yokoyama et al., 1997). The EXAFS cumulants Cn para-

metrize the distribution of interatomic distances and can be

connected to the force constants of an effective pair potential (Stern

et al., 1991; Yokoyama et al., 1996). Several review papers have been

recently dedicated to the EXAFS Debye±Waller factor, including

anharmonicity effects (Dalba & Fornasini, 1997; Fornasini, 2001).

The sensitivity of EXAFS to anharmonicity can be exploited to

study the local thermal expansion (TroÈ ger et al., 1994). To this effect,

both the ®rst and third cumulant have often been considered equally

sensitive to thermal expansion. This equivalence corresponds to

considering the shift of the average value of the distance distribution

as entirely due to the asymmetry of the effective potential. Accurate

measurements on different crystals (Eisenberger & Brown, 1979;

Dalba et al., 1999) have, however, shown that the ®rst cumulant is

larger than the distance between the centres of thermal ellipsoids

owing to the effect of atomic vibrations normal to the bond direction

(Willis & Pryor, 1975; Ishii, 1992); as a consequence, EXAFS

measures a thermal expansion larger that the crystallographic one.

For germanium, the third cumulant reproduces the crystallographic

thermal expansion through the ratio C3=2C2, suggesting that the

thermal vibrations normal to the bond induce a positive shift of the

effective pair potential, without affecting its asymmetry (Dalba et al.,

1999). For other crystals, however, the thermal expansion is not

reproduced either by the ®rst or by the third cumulant, and a negative

shift of the effective potential is observed when the temperature

increases (Dalba, Fornasini, Gotter & Rocca, 1995; Kamishima et al.,

1997; Dalba et al., 1998).

These experimental results pose two questions, the ®rst one

concerning the actual accuracy of interatomic distances obtained

from EXAFS, the second one concerning the possibility of obtaining

peculiar information on local dynamics. The aim of this paper is to

contribute to the advancement in these topics, seeking for a

deeper understanding of the relations between the EXAFS para-

meters and the real structural and thermodynamical properties of

crystals.

We will rely on the distinction between real and effective distri-

butions (Bunker, 1983). Three logical steps will be singled out and

separately considered. The ®rst step is the reduction of two three-

dimensional distributions of atomic positions into a one-dimensional

real distribution of interatomic distances. This process is of geome-

trical nature, and depends on the vibrational properties of the crystal.

The second step is the sampling of the real distribution by the

photoelectron spherical wave, leading to an effective distribution of

distances. This process depends on the EXAFS mechanism. The third

step is the extraction of structural parameters from EXAFS spectra.

This process depends on the analysis procedure. Following this

schedule, we will distinguish three families of quantities: the cumu-

lants of the real distribution, C�n , those of the effective distribution,

Cn, and the polynomial coef®cients obtainable from the analysis, ~Cn.

The cumulant method, as well as the distinction between real and

effective distribution and the use of an effective pair potential, have

been recently criticized (Filipponi, 2001). Actually, convergence

problems can pose severe limitations to the cumulant method, in

particular when dealing with structural disorder. Here we will only

consider thermal disorder in the ®rst coordination shell of crystals,

and refer to temperature-dependent measurements analysed by the

ratio method (Dalba et al., 1993), taking the lowest-T spectrum

(typically at liquid helium temperature) as reference for phase shifts,

backscattering amplitudes and anelastic terms. The single scattering

treatment in the plane-wave approximation is suitable for ®rst-shell

moderate thermal disorder. The soundness of this method has been

checked on several systems, and has been recently con®rmed by the

accuracy of the results obtained on germanium (Dalba et al., 1999)

and their reproducibility by ab initio calculations (G. Birner, P. Pavone

& D. Strauch, private communication). The distinction between real

and effective distribution allows the separation of different effects

depending on different causes and can facilitate the comparison of

EXAFS results with the results from other techniques.



This paper is organized as follows. In x2 the connection between

cumulants of the real distribution and the local vibrational properties

is studied in the case of an ideally harmonic crystal. In x3, approx-

imate relations between cumulants of the real and effective distri-

butions are established. In x4 the connection between polynomial

coef®cients, ~Cn, and cumulants of the effective distribution, Cn, is

explored. x5 contains some considerations about the effective

potential, and x6 is dedicated to conclusions.

2. Real distribution of distances

Let us ®nd the relations between the ®rst cumulants C�n of the real

distribution of distances � �r;T� and the local thermal properties of

the crystal. Here, � �r;T� is the probability per unit radial length. We

will restrict our treatment to an ideally harmonic crystal potential, so

that the three-dimensional distributions of atomic positions are

ellipsoids and there is no crystallographic thermal expansion.

The instantaneous distance r is connected to the equilibrium

distance R by

r � R 1� 2�uk=R��u2=R2
� �1=2

; �1�
where �u is the instantaneous relative displacement and �uk is its

projection parallel to the bond. Below we will consider also the

projection �u? perpendicular to the bond: �u2 = �u2
k ��u2

?. To

simplify the notation, we will write �u2 instead of ��u�2.
The distribution � �r;T� can be connected to a one-dimensional

mean force pair potential, Ve (Cusack, 1987). In classical approx-

imation,

� �r;T� � exp ÿ�Ve�r�
� � R

exp ÿ�Ve�r�
� �

dr
� 	ÿ1

: �2�

2.1. Cumulants and lattice dynamics

Following the procedure introduced by Beni & Platzman (1976) for

the EXAFS Debye±Waller factor, we ®nd approximate expressions of

the ®rst cumulants of � �r;T� from canonical averages based on the

power expansion of (1).

For the ®rst cumulant C�1 = h r i, to ®rst order and in harmonic

approximation one has (Busing & Levy, 1964)

C�1 ' R� h�u2
?i=2R: �3�

The thermal vibrations perpendicular to the bond cause a positive

shift of C�1 with respect to R and give rise to an apparent thermal

expansion also for a harmonic crystal. By comparing the EXAFS C�1
with R, the value h�u2

?i for germanium has been recently obtained as

a function of temperature (Dalba et al., 1999), in good agreement with

dynamical calculations based both on models (Nielsen & Weber,

1980) and ab initio (G. Birner, P. Pavone & D. Strauch, private

communication).

The second cumulant C�2 = h�rÿ h r i�2i is the mean square relative

displacement (MSRD). An approximate expression based on (1) is

C�2 ' h�u2
ki ÿ h�u2

k�u2
?i=R2 � h�u4

?i ÿ h�u2
?i2

� �
=4R2; �4�

where the ®rst term on the right-hand side is the parallel MSRD, and

the third term is the variance of the distribution of �u2
?. In the case of

isotropy, h�u2
?i = 2h�u2

ki and (4) reduces to

C�2 ' h�u2
ki 1ÿ h�u2

ki=R2
� �

: �5�
It is customary to truncate (4) at the ®rst term (Beni & Platzman,

1976),

C�2 ' h�u2
ki: �6�

The relation between h�u2
ki and h�u2

?i depends on the peculiar

vibrational properties of the crystal. Only for an ideally isotropic

crystal would the ratio  = h�u2
ki=h�u2

?i be equal to 2 (Ishii, 1992);

for the ®rst shell of germanium the ratio increases with temperature

to an asymptotic value of about 6 (Nielsen & Weber, 1980; Dalba et

al., 1999). While h�u2
ki can be directly obtained from EXAFS

through (6), h�u2
?i can only be calculated from (3), once R is known

from other techniques.

The third cumulant, corresponding to the third central moment,

C�3 = h�rÿ h r i�3i, is the mean cubic relative displacement (MCRD).

The lowest-order approximate expression based on (1) is

C�3 ' �3=2R� h�u2
k�u2

?i ÿ h�u2
kih�u2

?i
� �

: �7�
The term within square brackets is the covariance between �u2

k and

�u2
?, which is zero in harmonic approximation.

2.2. Analytical form of the distribution

Complementary information can be gained by studying the

analytical expression of the distribution � �r�. We will follow the

approach of Stern (1997), with the difference of a clear-cut distinction

between real and effective distribution and the restriction to a

harmonic crystal.

Let us ®rst consider a Gaussian isotropic three-dimensional

distribution � �r�, with � = �x = �y = �z. For � � R, the one-dimen-

sional real distribution can be expressed as

� �r� ' 1

��2��1=2
r

R
exp ÿ �rÿ R�2

2�2

� �
; �8�

the ®rst three cumulants are

C�1 � R� �2=R; �9�

C�2 � �2 ÿ �4=R2; �10�

C�3 � 2�6=R3; �11�
and the position of the maximum is

rmax � R� �R2 � 4�2�1=2
� �

=2 ' R� �2=R: �12�
Equations (9) and (10) correspond to (3) and (5), respectively, since,

in the case of isotropy, h�u2
?i = 2h�u2

ki = 2�2. The right-hand sides of

(9) and (12) are equal; the apparent thermal expansion induced by

perpendicular atomic vibrations, (3), is to ®rst order amenable to a

shift of the maximum of the distribution, e.g. of the minimum of the

effective pair potential Ve. The contribution of the asymmetry of Ve to

the apparent thermal expansion, measured by the third cumulant, is

negligible in comparison.

Let us now relax the condition of isotropy, and consider a Gaussian

three-dimensional distribution � �r�, with variances �2
z = �2

k along the

bond direction and �2
x = �2

y = �2
? in the normal plane. An approximate

expression for the one-dimensional real distribution is (Stern, 1997)

� �r� ' 1

�k�2��1=2
exp ÿ �rÿ R�2

2�2
k

" #
1� �rÿ R�

R

�2
?
�2
k

" #
: �13�

The ®rst cumulant of this distribution,

C�1 � R� �2
?=R; �14�

is in agreement with (3), since h�u2
?i = 2�2

?. The second cumulant,

C�2 � �2
k ÿ �4

?=R2; �15�
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is instead different from (4), suggesting that the approximations

leading to (13) are too strong to allow a comparable accuracy.

2.3. Numerical simulations

The expressions for the cumulants and the maximum position of

the real distribution given above are based on approximations. The

errors introduced by these approximations depend on the overall

degree of both thermal disorder and anisotropy. A quantitative

evaluation has been attempted by a numerical simulation, consisting

of the random sampling of a three-dimensional Gaussian distribution

� �r� to reconstruct the one-dimensional distribution � �r� and calcu-

late its parameters C�n and rmax.

The width and anisotropy of the three-dimensional distribution

were varied by imposing different values of �2
z = h�u2

ki and of the

ratio  = 2�2
x=�

2
z = 2�2

y=�
2
z = h�u2

?i=h�u2
ki. The results of the simu-

lations are summarized in Figs. 1±4 as functions of the relative width

C�2=R2 and for different values of the ratio . Typical ®rst-shell

experimental values of C�2=R2 at 400 K range from 0.0006 for

germanium to 0.0025 for � -AgI. The ratio  does not exceed 6 for the

®rst shell of germanium and does not exceed 10 for the ®rst shell of

� -AgI.

Fig. 1 refers to the MSRD, as expressed in (4), and shows the

percentage error which is made by the usual approximation C�2 =

h�u2
ki in an ideal harmonic crystal. In the case of isotropy,  = 2, the

value h�u2
ki slightly exceeds C�2, as expected from (5). As soon as

anisotropy is introduced, h�u2
ki becomes smaller than C�2 , as an effect

of the third term in (4). In any case, for ®rst-shell realistic values of

C�2=R2 and , the difference does not exceed 0.5%. In real crystals,

the discrepancy between C�2 and h�u2
ki is augmented by anharmo-

nicity effects (Dalba, Fornasini, Grazioli & Rocca, 1995; Strauch et al.,

1996).

Fig. 2 refers to the apparent thermal expansion C�1 ÿ R induced by

perpendicular vibrations, and shows the error caused by neglecting

higher-order terms with respect to (3). The error increases with

anisotropy , but is smaller than 1% for realistic ®rst-shell cases.

Fig. 3 connects the apparent thermal expansion C�1 ÿ R to the shift

of the maximum position of the distribution, rmax ÿ R. In the case of

anisotropy, the numerical simulations extend the results found

analytically for isotropic distributions [equations (9) and (12)]. In the

case of isotropy, the shift of the maximum position completely

accounts for the apparent thermal expansion. The discrepancy

Figure 1
Ratio between parallel and total MSRD, h�u2

ki=C�2 , for different values of the
ratio  = h�u2

?i=h�u2
ki.

Figure 2
Ratio between the apparent thermal expansion C�1 ÿ R and the ®rst-order
contribution h�u2

?i=2R [see equation (3)].

Figure 3
Ratio between the shift of the maximum of the distribution, rmax ÿ R, and the
apparent thermal expansion C�1 ÿ R.

Figure 4
Numerical evaluation of the asymmetry parameter C�3=�C�2 �3=2 of the real
distribution � �r� for an ideally harmonic crystal (full symbols). The
experimental values for the ®rst shell of germanium are shown for comparison
(open diamonds).



increases with anisotropy, but is always smaller than 4% for realistic

®rst-shell cases.

The connection between cumulants of the real distribution and

mean square relative displacements has been performed here for an

ideal harmonic crystal. The results are nevertheless relevant also for

real crystals. In a recent EXAFS work on germanium it was found

that the ratio C�3=2C�2 very well reproduced the crystallographic

thermal expansion, without being affected by atomic vibrations

perpendicular to the bond (Dalba et al., 1999). It was then argued that

the apparent thermal expansion induced by perpendicular vibrations

mainly corresponded to a positive shift of the minimum of the

effective potential, and not to its asymmetry. The present numerical

results con®rm those assumptions. As further evidence, in Fig. 4 the

asymmetry coef®cients C�3=�C�2 �3=2 calculated for an ideally harmonic

crystal (full symbols) are compared with the experimental values

measured for germanium (open diamonds). The comparison con®rms

that the main contribution to the experimental third cumulant comes

from the crystal anharmonicity, and the contribution of the vibrations

perpendicular to the bond is negligible.

3. Effective distribution of distances

The effective distribution of distances measured by EXAFS,

P�r; k;T� � � �r;T� exp�ÿ2r=��k��=r 2; �16�
is generated by the weakening of the photoelectron wave with

distance r, because of its spherical nature and ®nite mean free path

��k�. The cumulants Cn are de®ned by the relationR1
0

P�r; k;T� exp�2ikr� dr � exp
P1

n� 0

�2ik�nCn�k;T�=n!

� �
: �17�

If the mean free path � were a constant, then the phase and amplitude

of EXAFS would depend only on odd and even k-independent

cumulants, respectively. According to Bunker (1983), the weak k

dependence of � can be treated as a perturbation with respect to a

central value �0, leading to the addition of even and odd cumulants

into the expressions of EXAFS phase and amplitude, respectively.

These additive terms, containing the k dependence of �, can be non-

negligible; however, they cancel when the analysis is performed by

comparison with a suitable reference, as is the case of temperature-

dependent measurements analysed by the ratio method. This analysis

procedure justi®es the usual assumption of a k-independent effective

distribution,

P�r; �0;T� � � �r;T� exp�ÿ2r=�0�=r 2: �18�
A rough quantitative estimate of the error induced by neglecting the

k dependence of � has been attempted utilizing the experimental

values of C2 for the ®rst shell of germanium at 77 and 450 K. The

results are shown in Fig. 5. Neglecting the k dependence of � in the

analysis causes an under-evaluation of the slope, e.g. of C2 by about

40% at 77 K and 15% at 450 K. The error is, however, cancelled when

the relative value C2(450 K) ÿ C2(77 K) is considered.

3.1. Analytical relations between cumulants

We want now to investigate the connection between the cumulants

of the real and effective distributions. To this effect, let us rewrite (18)

as

� �r� � AP��r; �� g�r; ��; �19�
where A =

R
P�r; �� dr, P��r; �� = P�r; ��=A and g�r; �� = r 2 exp�2r=��.

The index 0 in �0 has been omitted for clarity. Let �n and ��n be the

moments of the effective and real distributions, respectively. By

expanding g�r; �� as a Taylor series around r = �1, one ®nds the

relations between the moments,

��n ' A
�
g��1; ���n � g��1; ����n�1 ÿ �1�n�
� g00��1; ����n�2 ÿ 2�1�n�1 � �2

1�n�=2

� g000��1; ����n�3 ÿ 3�1�n�2 � 3�2
1�n�1 ÿ �3

1�n�=3!

� . . .
�
; �20�

where g0; g00; g000; . . . indicate ®rst, second, third, . . . derivatives of

g�r; �� with respect to r, and

A ' �g��1; �� � g00��1; ����2 ÿ �2
1�=2

� g000��1; ����3 ÿ 3�1�2 � 2�3
1� � . . .

�ÿ1
: �21�

The cumulants are linear combinations of moments,

C1 � �1; �22�

C2 � �2 ÿ �2
1 �23�

C3 � �3 ÿ 3�1�2 � 2�2
1; �24�

C4 � �4 ÿ 3�2
2 ÿ 4�1�3 � 12�2�

2
1 ÿ 6�4

1; �25�
. . .

From (20) one can obtain approximate relations connecting the

cumulants. In particular, one recovers the expression for the ®rst

cumulants already derived by Freund et al. (1989) and currently

utilized in EXAFS analyses,

C�1 ' C1 � �2C2=C1��1� C1=��: �26�

3.2. Numerical simulations

A quantitative evaluation of the difference between the cumulants

up to the third order has been attempted by direct calculations

performed on a set of distributions with physically reasonable para-

meters: (a) Gaussian distributions with different values of position

and width; (b) skewed distributions � �r� = B exp�ÿB�rÿ r0�� with

different values of position r0 and skewness parameter B, convoluted

with Gaussian distributions of different width; (c) two distributions

derived from the excluded volume model for the IÐAg distance in
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Figure 5
Logarithm of A�k� = exp�ÿ2r=�� exp�ÿ2k2C2� for the ®rst shell of germanium.
The experimental values of C2 at 77 and 450 K have been utilized. Dashed
lines refer to a constant � value of 10 AÊ , continuous lines to a more realistic
k-dependence, � = 2k/3 + 5/3.
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� -AgI at 300 and 370 K (Boyce et al., 1981); (d ) the distributions of

the CdÐSe distance in CdSe obtained at various temperatures from

18 to 300 K from EXAFS measurements (Dalba et al., 1998).

The results for the ®rst cumulant are shown in Fig. 6. As expected,

according to (26), C1 is always smaller than C�1 . The relative extent of

the difference (open symbols, left-hand scale) increases with the

relative width of the distribution. The difference, ranging from a few

thousandths to more than one hundredth of an AÊ ngstroÈ m for realistic

®rst-shell cases, can hardly be neglected. The upper part of the ®gure

(full symbols, right-hand axis) shows that the difference is satisfac-

torily accounted for by the ®rst-order term �2C2=C1��1� C1=��
of (26).

The results for the second cumulant are shown in Fig. 7. The upper

part of the ®gure (squares, upper axis) refers to real distributions � �r�
of Gaussian shape: C2 is larger than C�2 , the relative difference

increasing with the width of the distribution. The lower part of the

®gure refers to asymmetric real distributions � �r�. A regular trend is

evidenced if plotted against the adimensional variable C�3=�C�2 C�1 �,
whose experimental ®rst-shell values at 400 K range from 0.006 for

germanium to 0.018 for � -AgI. C2 is now smaller than C�2 , the

difference increasing with the asymmetry C�3 and decreasing with the

width C�2 .

The results for the third cumulant are shown in Fig. 8. Here, only

asymmetric real distributions have been considered. A regular trend

is evidenced if the plot is performed against the adimensional vari-

able C�4=�C�3 C�1 �, whose experimental value is about 0.1 for the ®rst

shell of � -AgI at 400 K. C3 is smaller than C�3 , the difference

increasing with the ¯atness C�4 and decreasing with the asymmetry C�3.

3.3. EXAFS and local distance

The interatomic distance is the basic physical quantity to which

EXAFS is sensitive; its accurate determination is, however, far from

trivial. According to (3), the ®rst cumulant of the real distribution C�1
is larger than the distance R between the centres of thermal ellipsoids

owing to the effect of perpendicular vibrations. On the other hand,

according to (26), the ®rst cumulant of the effective distribution C1 is

smaller than C�1 , owing to the weakening of the photoelectron wave

with distance.

The two effects to a large extent compensate each other. To give an

example, a comparison between R, C1 and C�1 for germanium is shown

in Fig. 9 (Dalba et al., 1999). C1 is a better estimate of R than C�1 . The

temperature dependence of C�1 measures the thermal expansion of

the chemical bond between absorber and backscatterer atoms.

According to (3), the difference between C�1 and R contains peculiar

information on h�u2
?i.

4. Experimental determination of cumulants

The number of independent parameters which can be obtained from

an EXAFS spectrum is limited by the �k and �r windows (Stern,

1993). As a consequence, the cumulant expansion of (17) has to be

truncated and only a ®nite number of polynomial coef®cients ~Cn can

be derived from EXAFS analysis. For high-quality spectra, the

cumulant order n can be as high as 6; usually n � 4.

The question arises of the accuracy by which the polynomial

coef®cients ~Cn approximate the cumulants Cn. This problem was

®rstly addressed by Dalba et al. (1993) in a paper dedicated to

Figure 6
Relative difference between ®rst cumulants of the effective and real
distributions (open symbols, left-hand vertical axis), and ratio between the
total difference C�1 ÿ C1 and the ®rst-order contribution � =
�2C2=C1��1� C1=�� (full symbols, right-hand vertical axis). Squares, circles,
triangles and diamonds refer to Gaussian, skewed, excluded volume and CdSe
distributions, respectively.

Figure 7
Relative difference between the second cumulant of the effective and real
distributions. The upper horizontal axis refers to Gaussian distributions
(squares). The lower axis refers to the other asymmetric distributions. Squares,
circles, triangles and diamonds refer to Gaussian, skewed, excluded volume
and CdSe distributions, respectively.

Figure 8
Relative differences between the third cumulant of the effective and real
distributions. Circles, triangles and diamonds refer to skewed, excluded
volume and CdSe distributions, respectively.



thermal disorder in � -AgI. There, a procedure was suggested, based

on temperature-dependent measurements: the polynomial coef®-

cients ~Cn can be considered good estimates of the cumulants Cn if

their temperature dependence is physically reasonable, i.e. Einstein-

like for ~C2, proportional to T 2 and T 3 for ~C3 and ~C4, respectively.

Progressive deviations from expected behaviours when the

temperature increases indicate the need for higher-order polynomial

coef®cients, if not the breaking off of the convergence properties. The

soundness of this criterion was supported by tests on model distri-

butions. In any case, only the ®rst three cumulants are generally taken

into account for their physical meaning, and for them the corre-

spondence with the polynomial coef®cients is important; higher-order

polynomial coef®cients are often introduced in the analysis only to

guarantee the accuracy of the ®rst three cumulants.

An EXAFS spectrum samples a portion of the characteristic

function of P�r; �;T�. The cumulant expansion is often utilized to

extrapolate the characteristic function to k = 0 and to reconstruct, by

Fourier transform, the distribution of distances (Stern et al., 1992;

Ono et al., 1993). Tests on model distributions (Dalba et al., 1993)

have shown that, also when the polynomial coef®cients are drama-

tically different from cumulants, as for skewed distributions with

rather pathological convergence properties, they allow a reasonably

accurate reconstruction of the starting distribution.

When the ratio method is utilized for the analysis of EXAFS

spectra, only values � ~Cn relative to the reference spectrum can be

obtained. If temperature-dependent measurements are available,

absolute values of ~Cn can be calculated by ®tting the temperature

dependence of � ~Cn with physical models. The use of the Einstein and

Debye models for C2 is well established (Dalba & Fornasini, 1997);

classical T 2 and T 3 behaviours are used for third and fourth cumu-

lants, respectively. Recently, low-temperature quantum deviations of

the third cumulant from the classical behaviour have been experi-

mentally observed (Dalba et al., 1999), in agreement with theoretical

calculations (Frenkel & Rehr, 1993; G. Birner, P. Pavone & D. Strauch,

private communication).

The ratio method can be safely used when only one atomic species

is present in the studied coordination shell and multiple scattering

contributions are negligible. In spite of not giving absolute values of

the cumulants, the ratio method has the advantage that back-

scattering amplitudes, phase shifts and anelastic terms cancel; also the

spherical wave corrections and, as previously observed, the additive

terms containing the k dependence of � to a great extent cancel.

Besides, the plots of phase differences and amplitude ratios at the

basis of the ratio method are very sensitive to statistical noise and

systematic errors, allowing a rather fast and easy assessment of the

accuracy and reliability of experimental results.

The cumulant expansion and the ratio method have provided

accurate and original results on thermodynamical properties of

perfect crystals. The extension of these analysis techniques to systems

affected by structural disorder is problematic, the main limitation

being the poor convergence properties of the cumulant series.

However, while the cumulant method is certainly useless for liquid

systems (Filipponi, 2001), for amorphous solid systems the situation is

not clear-cut. As a matter of fact, in an EXAFS study of amorphous

germanium thin ®lms (Dalba et al., 1997) it was possible to separate

the contributions of thermal and structural disorder, and the distri-

bution reconstructed from cumulants was in good agreement with the

distribution obtained by Filipponi & Di Cicco (1995) through a

completely different approach. Recently, the cumulant method was

again used to study the implantation-induced microstructural modi-

®cations in a-Ge (Ridgway et al., 2000).

5. Effective pair potential

The basic result of the analysis of an EXAFS spectrum is the deter-

mination of a distribution of distances � �r�, or at least of its leading

parameters. The further connection of the distributions � �r;T� to an

effective pair potential Ve�r� through (2) requires some comments.

First of all, the effective potential Ve�r� obtained by inversion of (2)

should not be confused with the interaction potential between a pair

of atoms. The effective potential Ve�r� depends on the statistically

averaged behaviour of all the atoms in the crystal, and can in prin-

ciple depend on temperature (Mustre de Leon, 1992). The use of the

effective potential, eliminating the trivial Maxwell Boltzmann

temperature dependence of � �r;T�, allows the residual temperature

dependence to be emphasized, which is connected to more subtle

physical effects.

Secondly, (2) is based on the classical approximation; its use at low

temperatures, where the classical approximation fails, leads to a

meaningless potential Ve�r�, whose shape dramatically changes with

temperature (Dalba et al., 1998).

For the cases studied up to now, it seems reasonable to assume that,

in the range of validity of the classical approximation, the tempera-

ture dependence of Ve�r� is limited to its minimum position, the shape

being unaffected. The temperature dependence of the ®rst cumulants

C�1 is then a joint effect of the shift of the potential minimum and of

the potential asymmetry. As it was previously demonstrated, the

thermal vibrations perpendicular to the bond direction always

produce a positive shift of the minimum position of Ve�R�.
In the case of germanium, it was possible to distinguish experi-

mentally the two effects: the asymmetry of the potential Ve�R�,
monitored by the ratio C�3=2C�2, fully accounts for the crystallographic

thermal expansion of the crystal, while the positive shift of the

potential minimum is due to the atomic perpendicular vibrations

(Dalba et al., 1999).

The situation is more complex in other systems. A negative shift of

the minimum position of Ve�r� has been experimentally observed in

superionic conductors AgI (Dalba, Fornasini, Gotter & Rocca, 1995)

and CuBr (Kamishima et al., 1997). Correspondingly, the ratio

C�3=2C�2 is unable to account for thermal expansion. The negative

contribution to the potential shift is evidence of an anomalous local

behaviour. The negative shift of CuBr and AgI has been recently
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Figure 9
Temperature dependence of the EXAFS cumulants for the ®rst shell of
germanium (Dalba et al., 1999): C1 (squares) and C�1 (circles). The continuous
line is the crystallographic thermal expansion (Touloukian et al., 1977). The
diamonds are EXAFS distances quoted by Filipponi & Di Cicco (1995).
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reproduced by theoretical investigations based on a cluster distortion

coupling model (Ishii & Kamishima, 2001).

6. Conclusions

The cumulant analysis of EXAFS spectra can provide very accurate

results on the local structure and dynamics of crystalline systems.

The highest accuracy, at least for relative values, is obtained when

temperature-dependent measurements are performed down to liquid

helium temperature and the data analysis is performed by the ratio

method. In this way, the convergence properties of the cumulant

series can be evaluated from the temperature dependence of the

polynomial coef®cients ~Cn obtained from the analysis. Besides, the

ratio method allows an ef®cient cancellation of unknown physical

quantities, including the k dependence of the mean free path, and an

easy evaluation of the quality of experimental data and of the

reliability of ®nal results.

Extracting the maximum of structural and dynamical information

from EXAFS results requires a good knowledge of the relations

connecting the cumulants Cn of the effective distribution to the

cumulants C�n of the real distribution and to the physical properties of

the crystal. These relations and their usual approximations have been

quantitatively studied in this paper.

Particularly intriguing is the determination of the interatomic

distance and its temperature dependence. The ®rst cumulant of the

real distribution, C�1 , is larger than the crystallographic distance R; its

temperature dependence measures the thermal expansion of the

interatomic bond. The ®rst cumulant of the effective distribution, C1,

has no direct physical meaning; in any case it can be considered a

better estimate of the crystallographic distance R than C�1 .

The understanding of the difference between EXAFS and crys-

tallographic distances is necessary to assess the accuracy of structural

parameters obtained from EXAFS. The study of crystalline model

compounds is a sort of calibration for subsequent applications to

more complex systems. Besides, a clear-cut de®nition of the EXAFS

distance is important when accurate multiple-scattering calculations

are attempted.

The different temperature dependence of C�1 and R provides

peculiar information on atomic vibrations perpendicular to the bond.

This property, besides its fundamental interest for testing the phase

relationships between eigenvectors of the dynamical matrix obtained

from calculations, can be exploited to study phenomena in which

perpendicular vibrations play a relevant role, like negative thermal

expansion and order±disorder or displacive phase transitions.

Finally, the temperature dependence of the EXAFS effective pair

potential can help in clarifying the relations existing between the

local dynamical behaviour and the average thermodynamical prop-

erties of materials.
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