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Abstract

We derive the effectiveN = 1, D = 4 supergravity for the seven main moduli of type IIA orie
tifolds with D6-branes, compactified onT 6/(Z2×Z2) in the presence of general fluxes. We illustr
and apply a general method that relates theN = 1 effective Kähler potential and superpotential t
consistent truncation of gaugedN = 4 supergravity. We identify the correspondence between var
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1. Introduction

Compactifications of superstrings and M-theory3 may lead to four-dimensional vacu
with exact or spontaneously broken supersymmetries. The pattern of residual and
supersymmetries strongly depends on the set of moduli fields predicted by the com
cation geometry and on the detailed dynamics of these moduli. Even for the pheno
logically attractive compactifications with spontaneously brokenN = 1 only, information
on the dynamics of moduli is provided by the much larger symmetry of the under
D = 10 string theories, with sixteen or thirty-two supercharges. Similarly, in the effe
D = 4 low-energy supergravity theory, this information on moduli dynamics is enc
in the underlyingN � 4 supersymmetry. Thus, the Kähler potential of theN = 1 effec-
tive supergravity follows from the scalar sigma-model induced byN = 4 auxiliary field
and gauge-fixing equations. And theN = 1 superpotential for the moduli and matt
fields is directly related to theN = 4 supergravity[2–4] gauging[5], which in turn cor-
responds to a specific flux structure of the underlying ten-dimensional string theo
eleven-dimensional M-theory.

The generation of a scalar potential for the moduli fields is a crucial ingredient i
persymmetry breaking and in the determination of a stableD = 4 background geometry
if any. It is also essential to reduce the number of massless scalars and/or undete
parameters in the low-energy effective theory. Besides the curvature of the interna
itself, there are several well-known sources for a scalar potential in the compactifie
dimensional (or eleven-dimensional) theory.

A first source is the Scherk–Schwarz mechanism[6], and its generalization to su
perstrings via freely acting orbifolds[7]. The relevant fluxes are the geometrical on
associated with the internal spin connectionω3. Some of the corresponding effective th
ories are no-scale supergravity models[8], with broken supersymmetry in a flatD = 4
background. However, the gravitino and the other masses generated in this way a
portional (modulo quantized charges) to the inverse length scale of the compactified
m ∝ R−1. Therefore, to have supersymmetry breaking and/or preserving TeV scale m
we need a very large internal dimension,R ∼ 1015lP , wherelP is the (four-dimensional
Planck length.

A second source is nonzero “fluxes” of antisymmetric tensor fields, as first iden
long ago for the three-formH3 of the heterotic theory[9]. There is an extensive rece
literature[10] on orientifolds of the IIB theory in the presence of three-form fluxes.
instance, simultaneous and suitably aligned NS–NS (NS= Neveu–Schwarz) and R–
(R = Ramond) 3-form fluxes,H3 and F3, can lead to no-scale supergravities, but n
m ∝ l2P R−3: as a result, TeV scale supersymmetry breaking and/or preserving mass
be obtained forR ∼ 105lP . The richer flux content of the IIA theory has been studied
lesser extent[11,12].

Both sources, geometric and antisymmetric tensor fluxes, can be combined, as or
examined in the heterotic theory by Kaloper and Myers[13].
3 For an introduction, see, e.g.,[1].
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In this paper, we use the method of supergravity gaugings to describe in g
terms the generation of moduli superpotentials in a specific compactification schem
fined as follows. We consider compactifications of superstring theories on the or
T 6/(Z2 × Z2), combined for type-II strings with a compatible orientifold projection
reduce supersymmetry to four supercharges. The moduli spectrum includes then
chiral multiplets from the closed string sector, and the orbifold has a natural permu
symmetry in the three two-tori(T 2) defined by the action ofZ2 × Z2 on the six-torus
T 6. We then construct the gaugings associated to general flux structures respect
“plane-interchange” permutation symmetry (this assumption could be eventually re
leading to a wider spectrum of possibilities). We include the fluxes generated by a
tisymmetric tensor fields (NS–NS and R–R), and also geometrical fluxes associa
components of the internal spin connection, as in Scherk–Schwarz compactificatio
analyze here in detail the case of IIA strings (with D6-branes), since it offers the bro
choice of fluxes and breaking patterns. We establish the dictionary relating fluxes, g
structure constants and superpotential terms, and the consistency conditions appl
gauging and flux coefficients. This general formulation allows us to study examples
selected phenomenological properties. We find in particular that gaugings and fluxe
in IIA compactifications, such that all seven moduli are stabilized in a vacuum withN = 1,
D = 4 anti-de Sitter(AdS4) supersymmetry. Other superstring theories and more ge
compactification schemes will be considered in a longer, companion paper[14].

This paper is organized as follows. The general method for obtainingN = 1 superpo-
tentials fromN = 4 gaugings, already anticipated in[15,16], is studied and applied to ou
specific compactification scheme in Section2. The familiar example of the heterotic theo
is then used to define the relation between fluxes and superpotentials, and the con
conditions for a gauging (Section3). We then turn to the general study of fluxes in ty
IIA compactifications (Section4) and to the study of some selected examples (Sectio5).
We conclude in Section6.

2. N = 1 superpotentials from N = 4 gaugings

The Lagrangian density describing the coupling of vector multiplets toN = 4, D = 4
supergravity[5] depends on two sets of numbers. Thestructure constantsfST

R define the
gauge algebra, and theduality phasesδR specify the duality-covariant coupling of ea
gauge field to the supergravity dilatonS. With n vector multiplets, the gauge group is
(6+ n)-dimensional subgroup of the naturalSO(6, n) symmetry, inherited from the supe
conformal origin of the Abelian theory. The structure constants must leave theSO(6, n)

metric ηRS invariant, a condition which implies antisymmetry offST R ≡ fST
UηUR .

Notice that ηRU is not in general the Cartan metric of the gauge group.4 With the
SU(1,1)/U(1) Kähler potential

(1)K(S, S̄) = − ln(S + S̄),
4 TheSO(6, n) metric has six eigenvalues−1 andn eigenvalues+1.
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(2)Lgauge= −1

4

∑
R,S

ηRSSδR
FR−

µν FµνS− + h.c.+ · · · ,

whereFR±
µν = FR

µν ± iF̃ R
µν , and

(3)SδR
= cosδRS − i sinδR

−i sinδRS + cosδR

.

Further gauge kinetic terms, depending on the scalars in the vector multiplets, aris
the elimination of superconformal auxiliary fields[5]. They also depend on the duali
phases through the sameSδR

. The duality phasesδR must respect the structure of the gau
algebra and discretization of theSU(1,1) S-duality group implies that only two choices
phases are allowed

(4)δR = 0 ↔ SδR
= S, and δR = π/2 ↔ SδR

= 1/S,

commonly associated with perturbative and nonperturbative sectors, respectively.
Then vector multiplets contain scalars in the representation6 of theR-symmetry group

SU(4). They live[3,4] on the cosetSO(6, n)/[SO(6) × SO(n)]:

φR
ij = −φR

ji = 1

2
εijklφ

klR, φijR = (
φR

ij

)∗

(5)(i, j, . . . = 1, . . . ,4, R = 1, . . . ,6+ n).

The structure of the sigma-model is dictated by the field equation of an auxiliary s
which leads to the constraint

(6)ηRSφR
ijφ

klS = 1

12

(
δk
i δ

l
j − δl

iδ
k
j

)
ηRSφR

mnφ
mnS,

and by the Poincaré gauge-fixing condition

(7)ηRSφR
ijφ

ijS ≡ φR
ijφ

ij
R = −6.

These two conditions eliminate twenty-one scalar fields, and the localSU(4) symmetry
can be used to eliminate another fifteen. The remaining 6n physical scalars live on th
announced coset.

As usual, gauging supergravity also generates a scalar potential, and gravitino
terms−(1/2)M3/2

ij ψ̄µiσ
µνψνj + h.c., with5

(8)M3/2
ij = −4

3
ϕ∗

(R)fRST φikRφS
klφ

ljT ,

and

(9)ϕ∗
(R) =

√
2

S + S̄
(cosδR − iS sinδR).

5 For N = 4, D = 4 supergravity, we mostly follow the conventions of[17], unless otherwise stated, and s

theD = 4 Planck mass equal to one.
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To reduce supersymmetry toN = 1, we use aZ2 × Z2 truncation, as in string orbifold
with the same discrete point group. This truncation leads to a moduli sector with
chiral multipletsS,TA,UA (A = 1,2,3), for all string compactifications and compatib
orientifolds and D-brane systems. We can also include an arbitrary number of matte
tiplets, generically denoted byZI

A (I = 1, . . . , nA). TheN = 4 sigma-model reduces to th
Kähler manifold

(10)MZ2×Z2 = SU(1,1)

U(1)
×

3∏
A=1

SO(2,2+ nA)

SO(2) × SO(2+ nA)
.

Since

(11)
SO(2,2)

SO(2) × SO(2)
= SU(1,1)

U(1)
× SU(1,1)

U(1)
,

in the absence of furtherZI
A fields each complex modulus is associated to anSU(1,1)/

U(1) structure. In the Lagrangian, the truncation is performed by first rewriting the fi
in anSU(3) basis,

(12)φRA ≡ φRA4, φR
A = (

φRA
)∗ = 1

2
εABCφRBC.

The threeSU(3) nonsinglet gravitino multiplets are then truncated, and the remainingN =
1 gravitino mass term reads

(13)m3/2 = −4

3
ϕ∗

(R)fRST εABCφRAφSBφT C.

This simple formula still depends on the constrainedN = 4 scalar fieldsφRA. However,
once written in terms of the unconstrained fields, the expression of the gravitino mas
will considerably change (see below). These constrained states are truncated toN = 1
multiplets according to theZ2 × Z2 action on theSU(3) andSO(6, n) indicesA andR,
as in the sigma model truncation(10). Since our goal is to work with a fixed set of we
defined moduli and matter fields(TA,UA,ZI

A), and to study various classes of gaugin
of these multiplets, the next step is to solve the truncated constraints(6) and(7). We then
introduce three sets of 4+ nA complex scalars that we denote by

(14)σ 1
A, σ 2

A, ρ1
A, ρ2

A, χI
A, A = 1,2,3, I = 1, . . . , nA.

The truncated,SO(2,2+ nA)-invariant constraints, which forηRS = diag(−16,1n) read∣∣σ 1
A

∣∣2 + ∣∣σ 2
A

∣∣2 − ∣∣ρ1
A

∣∣2 − ∣∣ρ2
A

∣∣2 −
∑
I

∣∣χI
A

∣∣2 = 1/2,

(15)
(
σ 1

A

)2 + (
σ 2

A

)2 − (
ρ1

A

)2 − (
ρ2

A

)2 −
∑
I

(
χI

A

)2 = 0,

are then solved in this basis by:

1 1 1+ TAUA − (ZI
A)2

2 i TA + UA

σA =

2 [Y(TA,UA,ZI
A)]1/2

, σA =
2 [Y(TA,UA,ZI

A)]1/2
,
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ρ1
A = 1

2

1− TAUA + (ZI
A)2

[Y(TA,UA,ZI
A)]1/2

, ρ2
A = i

2

TA − UA

[Y(TA,UA,ZI
A)]1/2

,

(16)χI
A = iZI

A

[Y(TA,UA,ZI
A)]1/2

.

These expressions depend on the real quantity

(17)Y
(
T ,U,ZI

) = (T + T̄ )(U + Ū ) −
∑
I

(
ZI + Z̄I

)2
.

As expected, the constraints eliminate six complex scalar fields.
The above equations allow to rewrite the scalar potential and the gravitino mass t

functions of theN = 1 complex scalars, the structure constants and the duality phase
Kähler potential and the superpotential can then be obtained by separating the holom
part in theN = 1 gravitino mass term, using the relationm3/2 = eK/2W . The resulting
Kähler potential is

(18)K = − ln(S + S̄) −
3∑

A=1

lnY
(
TA,UA,ZI

A

)
,

while the superpotential is simply

W = 4

3

√
2[cosδR − i sinδRS]

[
3∏

A=1

Y
(
TA,UA,ZI

A

)]1/2

(19)× fRST εABCφRAφSBφT C.

It is a holomorphic function of(S,TA,UA,ZI
A), once theN = 4 scalars from the vecto

multiplets have been truncated toN = 1 and replaced by the solutions(16).
In this paper, we discard all matter fieldsZI

A for simplicity. However, many of the
features encountered in the restricted cases studied here remain true with all matte
included. Removing theZI

A fields, the generic superpotential is then a polynomial in
moduli fields with maximal degree seven. In particular, each monomial is of order ze
one in each of the seven moduliS, TA, UA. The superpotential can then have up to 27 = 128
real parameters, which are structure constants and duality phases of the underlyinN =
4 algebra.6 These numbers will be identified with various fluxes of compactified st
theories.

The structure constantsfRS
T gauge a subalgebra ofSO(6,6), with dimension equal o

less than twelve and compatible with theZ2 × Z2 truncation. They verify Jacobi iden
tities. The gauging structure constants with lower indicesfRST = fRS

QηQT are fully
antisymmetric for consistency of the gauging. The truncation toN = 1 provides further
information. The residual Poincaré gauge fixing conditions solved byTA andUA are in-
variant underSO(3) rotations of the plane indexA andSO(2,2) rotations inside each plan

6 TheN = 1 truncation of the scalar fieldsφRA associates to each fixed value ofA = 1,2,3 only four values
of the indexR, the four directions in each of the threeSO(2,2). HencefRST includes 43 = 64 real numbers.
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This means that structure constants can be classified using theSO(2,2) × SO(3) subgroup
of SO(6,6) with embedding12 = (4,3). One can rewrite the gauge algebra in this emb
ding by defining generatorsTAa (A = 1,2,3, a = 1, . . . ,4), and commutation relations

(20)[TAa,TBb] = fAaBb
CcTCc.

The antisymmetric gauging structure constants are then

(21)fAaBbCc = fAaBb
Cdηcd,

whereηcd is the SO(2,2) metric. TheZ2 × Z2 orbifold projection7 leads naturally to
define a “plane-interchange symmetry” in the moduli sector. Our purpose here is to
a particular class of gaugings which respect this plane-interchange symmetry. Re[14]
will analyse more general gauging structures. The structure constants for these pa
gaugings read

fAa1Bb2Cc3 = Λa1b2c3εABC (a1, b2, c3 = 1, . . . ,4),

(22)fAa1Bb2
Cc3 = Λa1b2

c3εABC, Λa1b2
c3 = ηc3d3Λa1b2d3.

Each indexa1, b2, c3 is an SO(2,2) index, and there are in principle 43 = 64 possible
combinations, as for the number of possible superpotential terms constructed withUA and
TA and the rule that each term is either linear or independent of each modulus(26 = 64).
EachSO(2,2) index refers to a specific complex plane of theN = 1 truncation:a1 to
the first plane,b2 to the second,c3 to the third. Antisymmetry of the gauging structu
constantsfRST implies full symmetry ofΛa1b2c3: this reduces the number of independ
structure constants to 20, which is also the number of combinations of superpotentia
left invariant by any permutation of the plane index. The Jacobi identities verified b
structure constantsfAaBb

Cc translate into a simple cyclicity property:

(23)ηdf ΛabdΛcf e = ηdf ΛbcdΛaf e = ηdf ΛcadΛbf e, ∀a, b, c, e.

Eq.(23)and symmetry ofΛabc are the conditions applying to anN = 4 gauging respectin
the plane-interchange symmetry.

There are two commonly used bases forSO(6,6). Firstly, the natural basis in which th
Cartan metric is diagonal, as in Eq.(15). Secondly, the S/A basis defined by

ds2 =
6∑

i=1

[
dxi+ dxi+ − dxi− dxi−] =

6∑
i=1

(
dxi+ + dxi−)(

dxi+ − dxi−)

(24)≡
6∑

i=1

dxis dxia.

The Cartan metric in the S/A basis is off-diagonal,

(25)η = 1

2

(
06 I6
I6 06

)
.

7 And theSO(3) invariance of the constraints.
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The analysis of the consistency conditions(23) is much simpler in the S/A basis, especia
in view of the solutions(16) of the Poincaré constraints. The procedure to analyse a g
ing and obtain the correspondingN = 1 superpotential is as follows. To begin with, sel
a symmetric set of constantsΛa1b2c3 that solve the cyclicity equations(23)in the S/A basis
Then, compute the resultingN = 1 superpotential, in two steps. Firstly, use the follow
correspondence between the indices(a1, b2, c3) and the twelve directions inSO(6,6):

a1 = (1,2,3,4) ↔ (5S,6S,5A,6A),

b2 = (1,2,3,4) ↔ (7S,8S,7A,8A),

(26)c3 = (1,2,3,4) ↔ (9S,10S,9A,10A).

Secondly, use the solution of the Poincaré constraints, in the form

(5S,7S,9S) → 1/

√
(TA + T̄A)(UA + ŪA), A = 1,2,3,

(6S,8S,10S) → iTA/

√
(TA + T̄A)(UA + ŪA), A = 1,2,3,

(5A,7A,9A) → TAUA/

√
(TA + T̄A)(UA + ŪA), A = 1,2,3,

(27)(6A,8A,10A) → iUA/

√
(TA + T̄A)(UA + ŪA), A = 1,2,3.

For each compactified string theory, the allowed fluxes will determine the set of all
Λa1b2c3 and the cyclicity equations(23)will impose the consistency relations between v
ious fluxes. This method can be used to generate all superpotentials from fluxes ve
plane-interchange symmetry. Without invoking this symmetry, the analysis of a ga
would be similar, but with a set of nonzero gauging structure constants submitted to
complicated Jacobi identities, instead of the simple relations(23).

With our seven moduli fields, Kähler potential(18) and superpotential(19), theN = 1
supergravity scalar potential simplifies to

(28)e−KV =
7∑

i=1

∣∣W − Wi(zi + z̄i )
∣∣2 − 3|W |2,

wherezi = S,TA,UA andWi = (∂W)/(∂zi). Each quantity[W − Wi(zi + z̄i )] is simply
the superpotentialW with the corresponding fieldzi replaced by−z̄i .

3. Heterotic fluxes

Before moving to the discussion of the IIA theory, we recall some known result
N = 1 compactifications of the heterotic theory on theT 6/(Z2 × Z2) orbifold. This will
be useful to establish some notation and to illustrate our general method in a familia

We begin with the identification of the seven main moduli. Conventionally, we
the space–time indices asM = [µ = 0,1,2,3; i = 5,6,7,8,9,10], and we take oneZ2
acting on the coordinatesx5,6,7,8, the otherZ2 on the coordinatesx7,8,9,10. This naturally
defines three complex planesA = 1,2,3: i1 = 5,6, i2 = 7,8, i3 = 9,10. We follow the

conventions of[1] unless otherwise stated.
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If we neglect theE8 × E8 or SO(32) gauge bosons (which would generate multipl
of ZI

A type in theD = 4 theory, and would allow for additional fluxes associated with
internal components of their two-form field strengths), the bosonic fields of theD = 10
heterotic theory are just the universal ones of the NS–NS sector: the string-frame
gMN , the dilatonΦ and the two-form potentialBMN . TheirZ2 ×Z2 invariant component
can be decomposed as

(29)e−2Φ = s(t1t2t3)
−1, gµν = s−1g̃µν,

(30)giAjA
= tA

uA

(
u2

A + ν2
A νA

νA 1

)
(A = 1,2,3),

(31)Bµν ↔ σ, B56 = τ1, B78 = τ2, B910= τ3,

where g̃µν is the metric in theD = 4 Einstein frame, and the symbol↔ indicates the
four-dimensional duality transformation relating a two-form potential with an axi
pseudoscalar. Neglecting the dependence of the fields on the internal coordinates,
ing an integration constant in theD = 4 Planck mass, conventionally set to unity, a
making the identifications

(32)S = s + iσ, TA = tA + iτA, UA = uA + iνA (A = 1,2,3),

we obtainD = 4 kinetic terms described precisely by the Kähler potential of Eq.(18), for
the caseZI

A = 0 we have chosen to study

(33)K = − ln(S + S̄) −
3∑

A=1

ln(TA + T̄A) −
3∑

A=1

ln(UA + ŪA).

In view of what follows, we stress that the kinetic terms of the seven main modu
invariant under bothO(7) rotations andSU(1,1) × [SO(2,2)]3 duality transformations.

We now summarize the different allowed fluxes, and identify the associatedN = 1
superpotentials with the method illustrated in the previous section.

3.1. H̃3 heterotic fluxes

As first recognized in[9], possible fluxes in the heterotic theory are those of the mod
NS–NS three-formH̃3 = dB2 +· · ·, where the dots stand for the gauge and Lorenz Ch
Simons terms. There are eight independent real fluxes, invariant under theZ2×Z2 orbifold
projection:

(34)H̃579, H̃679, H̃589, H̃689, H̃5710, H̃6710, H̃5810, H̃6810.

The corresponding potential for the seven main moduli can be explicitly computed
mensional reduction. Its generic structure isVH3 = eK

∏3
A=1 fA(νA,u2

A +ν2
A), where each

fA is a polynomial of at most degree one in its arguments. This is sufficient to de
similarly to what happens in IIB theories[10], the correspondingN = 1 effective super-
potentialWH3(U), which carries no dependence on theS andT moduli. It is immediate
to check thatH̃3 fluxes correspond toN = 4 gaugings for any choice of the parameters

(34). Leaving aside a systematic discussion, we just observe that, under the assumption of
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plane-interchange symmetry, there are four independent parameters, associated w
different structures inWH3(U):

H̃579≡ Λ111 ↔ 1,

H̃679= H̃589= H̃5710≡ Λ114 ↔ i(U1 + U2 + U3),

H̃689= H̃5810= H̃6710≡ Λ144 ↔ −(U1U2 + U2U3 + U1U3),

(35)H̃6810≡ Λ444 ↔ −iU1U2U3.

3.2. Geometrical heterotic fluxes

The possible fluxes also include some geometrical ones, associated with the i
components of the spin connectionω3, and corresponding to coordinate-dependent c
pactifications[6]. These fluxes are characterized by real constants with one upper c
index and two lower antisymmetric curved indices:

(36)f i
jk = −f i

kj .

These constants must satisfy the Jacobi identities of a Lie group,f i
jkf

k
lm + f i

lkf
k
mj +

f i
mkf

k
jl = 0, and the additional consistency conditionf i

ik = 0. The correspondin
D = 4 potential in the heterotic theory can be easily calculated from the formulae in[6].

In agreement with theZ2 × Z2 orbifold projection, we must assume here that

(37)f iA
iB iC = 0 for A = B or A = C or B = C,

which satisfies automatically the consistency conditionf i
ik = 0. Geometrical fluxes ar

then described by 24 real parameters

(38)CiAiBiC ≡ f iA
iB iC ,

[
(ABC) = (123), (231), (312)

]
,

subject only to the Jacobi identities. Leaving aside a general discussion, we assum
plane-interchange symmetry, to reduce the number of independent parameters. Ins
of the resulting scalar potential singles out six different possible structures in the eff
superpotentialWω(T ,U), always linear in theT moduli and independent ofS:

C679= C895= C1057≡ Λ112 ↔ i (T1 + T2 + T3),

C579= C957= C795≡ Λ113 ↔ (T1U1 + T2U2 + T3U3),

C6810= C8106= C1068≡ Λ244 ↔ −i (T1U2U3 + T2U1U3 + T3U1U2),

C5810= C7106= C968≡ Λ344 ↔ −(T1 + T2 + T3)U1U2U3,

C896= C1067= C689= C1058= C6710= C8105≡ Λ124 ↔
−(T1U2 + T1U3 + T2U1 + T2U3 + T3U1 + T3U2),

C589= C796= C7105= C958= C5710= C967≡ Λ134 ↔
(39)i(T1U1U2 + T2U2U3 + T3U3U1 + T1U1U3 + T2U2U1 + T3U3U2).

In this case the Jacobi identities(23) impose some nontrivial constraints:
Λ112Λ344= Λ124Λ134,
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Λ113Λ344+ Λ244Λ134= Λ344Λ124+ Λ2
134,

(40)Λ112Λ244+ Λ113Λ124= Λ112Λ134+ Λ2
124.

3.3. Combined heterotic fluxes

The combination ofH̃3 andω3 fluxes in theT 6/(Z2 × Z2) orbifold of the heterotic
string is then described, under the assumption of plane-interchange symmetry, by
real parameters of Eqs.(35) and (39). According to Eq.(23), consistency with an unde
lying N = 4 gauging amounts to requiring the Jacobi identities (cyclicity conditions
Eq.(40)and the additional condition

(41)Λ111Λ344+ Λ112Λ444+ Λ113Λ144+ Λ114Λ244= 2Λ144Λ124+ 2Λ114Λ134.

The corresponding effectiveN = 1 superpotential would read

W = Λ111+ iΛ114(U1 + U2 + U3) − Λ144(U1U2 + U2U3 + U1U3)

− iΛ444U1U2U3 + iΛ112(T1 + T2 + T3) + Λ113(T1U1 + T2U2 + T3U3)

− iΛ244(T1U2U3 + T2U1U3 + T3U1U2) − Λ344(T1 + T2 + T3)U1U2U3

− Λ124(T1U2 + T1U3 + T2U1 + T2U3 + T3U1 + T3U2)

(42)
+ iΛ134(T1U1U2 + T1U1U3 + T2U2U1 + T2U2U3 + T3U3U1 + T3U3U2).

Similar superpotentials were considered, motivated byN > 1 gaugings but without as
suming plane interchange symmetry and without establishing the precise connectio
fluxes, in[18]. The connection between Scherk–Schwarz compactifications, geome
fluxes,N = 4 gaugings andN = 1 superpotentials was also discussed in[19], without
assuming plane-interchange symmetry and in a different field basis. More results
N = 4 level were obtained in[20]. A general analysis of combined fluxes in toroidal co
pactifications of the heterotic string was given in[13]: consistentZ2 × Z2 truncations of
their results are in complete agreement with our results.

It is important to recall that, in the heterotic theory,H̃3 andω3 fluxes, correspondin
to perturbativeN = 4 gaugings with trivial duality phases, can never generateN = 1 su-
perpotentials with both constant and linear terms inS. We can then obtain, for exampl
no-scale models as in[7,19], but never reach the full stabilization of all seven main m
uli, including S. From the point of view ofN = 4 supergravity, of course, we could al
consider nonperturbative gaugings with nontrivial duality phases, which would give
to both kinds of allowedS-dependences in the effectiveN = 1 superpotential. We ma
think of these gaugings as associated to possible nonperturbative effects such as
condensation.

4. Fluxes in IIA superstrings

In type IIA and IIB superstring theories compactified onT 6/(Z2 × Z2), to produce

N = 1, D = 4 supersymmetry we must introduce consistently an additionalZ2 orientifold
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projection. We discuss here only the case of the IIA theory, with a specific orien
projection compatible with D6-branes.

The bosonic fields of the IIA theory are the universal ones of the NS–NS sector
those of the R–R sector: a one-formAM and a three-formAMNR . Five-forms and seven
forms are related to the previous ones by ten-dimensional duality, do not carry indep
degrees of freedom and do not need to be included at this stage. Nine-form poten
not carry any propagating degree of freedom inD = 10, even if they can play a role
as we shall see, in the classification of allowed fluxes. We consider here a specZ2

orientifold projection, involving the inversion of three out of the six internal coordin
and associated with D6 branes: it is not restrictive to take the odd coordinates to bex5,7,9.
The independent invariant spin-0 fields from the NS–NS sector are then

(43)gii, Φ, B56, B78, B910,

for which we can temporarily make the heterotic decomposition of Eqs.(29)–(31), setting
νA ≡ 0 and disregarding the off-diagonal components of the internal metric. The ind
dent invariant spin-0 fields from the R–R sector are:

(44)A6810= σ ′, A679= −ν′
1, A589= −ν′

2, A5710= −ν′
3.

Looking at theD = 4 kinetic terms of the fields in(44), we find

(45)LR → −1

4
ẽ4g̃

µν

[
O0(∂µσ ′)(∂νσ

′) +
3∑

A=1

OA(∂µν′
A)(∂νν

′
A)

]
,

where

(46)O0 = u1u2u3

s
, O1 = u1

su2u3
, O2 = u2

su1u3
, O3 = u3

su1u3
.

This immediately suggests[12] the identification of the real parts(s′, u′
1, u

′
2, u

′
3), associ-

ated byN = 1 supersymmetry to the imaginary parts(σ ′, ν′
1, ν

′
2, ν

′
3):

(47)s′ =
√

s

u1u2u3
, u′

1 =
√

su2u3

u1
, u′

2 =
√

su1u3

u2
, u′

3 =
√

su1u2

u3
.

These identifications can be cross-checked by looking at theFµνF
µν andFµνF̃

µν terms in
the effective four-dimensional action for the Yang–Mills vectors, generated by the D
Born–Infeld and Wess–Zumino actions for the D6 branes, aligned along the(6810), (679),
(589), (5710) O6-planes.

The theory under consideration exhibits a rich structure of possible invariant fluxe
in the heterotic case, we first discuss each of them separately, then we look at a
combination. The Jacobi identities ofN = 4 gaugings, Eq.(23), will be automatically
satisfied if there are only NS–NS three-form fluxes, or only fluxes of the R–R forms:
shall see, nontrivial constraints will arise only in the presence of geometrical fluxes

combined fluxes.
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4.1. H3 fluxes in IIA

Only four out of the eight independent fluxes allowed for the NS–NS 3-form in
heterotic case, Eq.(34), are also invariant with respect to the orientifold projection.
terms ofH3 = dB2, they are:

(48)H579, H689, H6710, H5810.

Inspection of the four-dimensional potential obtained from dimensional reduction s
that, after moving to the IIA field basis of Eq.(47), and assuming plane-interchange sy
metry, there are two independent superpotential structures:

H579= Λ′
111 ↔ iS,

(49)−H689= −H6710= −H5810= Λ114 ↔ i(U1 + U2 + U3).

Notice that, in contrast with the heterotic case, two independentSU(1,1) phases are in
volved.

4.2. Geometrical IIA fluxes

Again, the IIA orientifold projection leaves invariant only half of the geometrical flu
(38) that were allowed, modulo Jacobi identities, in the heterotic case:

C5710,C7105,C1057; C679,C796,C967;
(50)C589,C895,C958; C6810,C8106,C1068.

Inspection of the four-dimensional potential obtained from dimensional reduction s
that in this case, after moving to the IIA field basis of Eq.(47), and assuming plane
interchange symmetry, there are three independent superpotential structures:

C679= C895= C1057≡ Λ′
112 ↔ −S(T1 + T2 + T3),

C6810= C8106= C1068≡ Λ113 ↔ (T1U1 + T2U2 + T3U3),

C589= C796= C7105= C958= C5710= C967≡ Λ124 ↔
(51)−(T1U2 + T1U3 + T2U1 + T2U3 + T3U1 + T3U2).

Notice that also for geometrical fluxes two differentSU(1,1) phases appear, in contra
with the heterotic case. From Eq.(23) we can easily derive the Jacobi identities requi
for a consistentN = 4 gauging with geometrical fluxes only:

(52)Λ124(Λ124− Λ113) = 0.

4.3. F0 flux

The mass parameter of massive IIA supergravity[21] can be regarded as a te
dimensional zero-form fluxF0, dual to the ten-form field strength associated with a n
form potential, which does not carry any propagating degree of freedom. InspectingF0

contribution to the potential via dimensional reduction, and moving to IIA variables, we
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can identify the associated structure in the effective superpotentialW :

(53)F0 = Λ222 ↔ −i(T1T2T3).

4.4. F2 fluxes

The independentF2 fluxes invariant under the orbifold and orientifold projections a

(54)F56, F78, F910.

Looking at their contributions to the potential via dimensional reduction, moving to
IIA field basis of Eq.(47), and assuming plane-interchange symmetry, we find tha
corresponding structure in the effective superpotentialW is

(55)F56 = F78 = F910= Λ122 ↔ −(T1T2 + T1T3 + T2T3).

4.5. F4 fluxes

The four-form fluxes with internal indices, invariant under the orbifold and orienti
projections, are:

(56)F5678, F78910, F91056.

Looking at their contribution to the potential via dimensional reduction, moving to
IIA field basis of Eq.(47), and assuming plane-interchange symmetry, we can identif
corresponding structure in the effective superpotential:

(57)F5678= F78910= F56910= Λ112 ↔ i(T1 + T2 + T3).

4.6. F6 flux

Among the components of the R–R four-form field strength, invariant under bot
orbifold and the orientifold projections, there is alsoFµνρσ , which is not associated wit
anyD = 4 propagating degree of freedom, and can be related by ten-dimensional d
to a ten-dimensional six-form fluxF6. A similar flux was considered in[22] to address the
cosmological constant problem. Looking at the corresponding potential terms gen
by dimensional reduction, and moving to the IIA variables of Eq.(47), we can identify the
corresponding structure in the effective superpotential:

(58)F6 = Λ111 ↔ 1.

Notice that the above flux generates a constant superpotential, not a constant pote
the four-dimensional effective theory.

4.7. Combined IIA fluxes

Switching on simultaneously all the independent fluxes identified so far correspo

having, as nonvanishing coefficients:
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• (Λ′
111,Λ

′
112) with SU(1,1) phase factoriS;

• (Λ111,Λ112,Λ122,Λ222,Λ113,Λ114,Λ124) with SU(1,1) phase 1.

Under our simplifying assumption of plane-interchange symmetry, the Jacobi ide
constraining such combined fluxes read

(59)Λ222Λ114+ Λ113Λ122= 2Λ122Λ124, Λ113Λ124= Λ2
124.

Any combination of fluxes satisfying the above Jacobi identities corresponds to aN = 4
gauging, and can be easily translated into an effectiveN = 1 superpotential:

W = Λ111+ iΛ′
111S + iΛ112(T1 + T2 + T3) − Λ′

112S(T1 + T2 + T3)

+ iΛ114(U1 + U2 + U3) + Λ113(T1U1 + T2U2 + T3U3)

− Λ122(T1T2 + T1T3 + T2T3)

(60)
− Λ124(T1U2 + T1U3 + T2U1 + T2U3 + T3U1 + T3U2) − iΛ222T1T2T3.

The results of Eqs.(59) and (60)provide a powerful and practical tool for analyzing,
rectly in theN = 1, D = 4 effective theory, the different vacuum structures associ
with the different allowed combinations of fluxes, in the chosen orbifold and orient
of the IIA theory. The study of a large number of examples of flux configurations[14], in
heterotic and type II strings, actually shows that the effective supergravity approach
uponN = 4 gaugings can accurately reproduce the conditions imposed by the ful
equations of the ten-dimensional theories. This of course requires to include all nec
brane and orientifold plane contributions to these equations. For the combinations of
leading to stable vacua of ourN = 1, D = 4 effective theory, it would be interesting to e
plicitly examine the corresponding combinations of D6-branes and O6-planes requ
satisfy theD = 10 equations and Bianchi identities, and the associated tadpole cance
conditions. This analysis goes beyond the scope of the present paper.

5. Some selected IIA examples

We present now some selected examples of admissible IIA fluxes that corresp
N = 4 gaugings with non-trivialSU(1,1) phases and give rise to physically different si
ations.

5.1. Flat gaugings, no-scale models: stabilization of four moduli

Switching on a system of(ω3,H3,F0,F2) fluxes, with nonzero parameters(B,D > 0)

Λ′
112= −A, Λ122= −AB,

(61)Λ′
111= C, Λ222= −CD,

the Jacobi identities(59) are automatically satisfied, and the following effectiveN = 1
superpotential is generated:[ ]
(62)W = A S(T1 + T2 + T3) + B(T1T2 + T2T3 + T1T3) + iC[S + DT1T2T3].
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It is immediate to see that this corresponds to a no-scale model. SinceW does not depen
on (U1,U2,U3), the scalar potential is a sum of positive semi-definite terms

(63)e−KV = ∣∣W − (S + S̄)WS

∣∣2 +
3∑

A=1

∣∣W − (TA + T̄A)WTA

∣∣2,
and stabilization of theS andTA moduli occurs at

(64)〈S〉 = BT, 〈T1〉 = 〈T2〉 = 〈T3〉 = T , T =
√

B

D
,

with 〈V 〉 = 0. TheUA moduli remain as complex flat directions and supersymmet
broken in theUA sector, since the stabilization conditions lead to〈W 〉 �= 0, with a gravitino
mass

(65)
〈
m2

3/2

〉 ∝ |9A2B + C2D|
u1u2u3

.

To identify the gauging associated with the above fluxes and superpotential, it is c
nient to rescale the fields according to

(66)S → B3/2D−1/2S, TA → B1/2D−1/2TA.

The stabilization of the rescaled fields occurs at〈S〉 = 〈TA〉 = 1, with a superpotential a
in (62) with B = D = 1. The resulting group isE3 × E3 [14], whereE3 is the three-
dimensional Euclidean group, i.e., theSO(3)-invariant contraction ofSO(4) or SO(3,1).

This kind of rescalings can be applied in general, to shift the values at which the
are stabilized. For simplicity, and without losing the full generality of the combinatio
fluxes, we choose that moduli are stabilized at value one in most of the following exam

As a side remark, we notice here that the same phenomenology of the above e
can be obtained without respecting the plane-interchange symmetry. As an exam
can consider as before a system of fluxes(ω3,H3,F0,F2), but this time corresponding t
a superpotential:

(67)W = A(ST1 + T2T3) + iB(S + T1T2T3), with
〈
m2

3/2

〉 ∝ A2 + B2

u1u2u3
.

The complex flat directions are(U1,U2,U3), as in the first example.
We finally notice that, in the type-IIA theory, purely geometrical fluxesω3 are not

sufficient to stabilize all moduli explicitly appearing in the corresponding superpote
W , because the latter is always quadratic in the fields. As an example to illustra
point, based on the two-dimensional Euclidean groupE2 (theSO(2)-invariant contraction
of SO(3) or SO(2,1)) and breaking the plane-interchange symmetry, we consider th
perpotential

(68)W = A(T1U2 + T2U1), with
〈
m2

3/2

〉 ∝ A2

st3u3
.

This corresponds to aZ2 freely acting orbifold (generalized Scherk–Schwarz mechan

in string theory), with complex flat directions(S,T3,U3). However, there are additional
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flat directions, because the auxiliary fields associated with(T1,U1, T2,U2) are all set to
zero by requiringτ1 = τ2 = ν1 = ν2 = 0 andt1u2 = t2u1. In this case the spectrum h
4 massive and 3 massless “axions”, 1 massive and 6 massless “dilatons”.

5.2. Gaugings withV > 0, cosmological models

Examples can be easily found, in which less than four moduli are stabilized an
potential is always strictly positive-definite, leading to runaway solutions (in time).

Superpotentials with a single monomial are of course examples where no modulu
stabilized. For instance, we can choose the fluxesΛ111 = F6, Λ222 = F0 or Λ′

111 = H3,
corresponding to

(69)W = F6, W = −iF0T1T2T3 or W = iH3S.

This leads toV = 4eK |W |2, with |W | > 0 and a gravitino mass term of the form

(70)m2
3/2 = 1

27st1t2t3u1u2u3
× {|F6|2, |F0T1T2T3|2 or |H3S|2},

respectively.
An example where three moduli are stabilized is obtained by switching on a syst

R–R fluxes(F0,F2,F4,F6), with parameters

(71)Λ111= −Λ122= A, Λ112= −Λ222= B.

The Jacobi identities(59) are automatically satisfied, and the following effectiveN = 1
superpotential is generated:

(72)W = A(1+ T1T2 + T2T3 + T3T1) + iB(T1 + T2 + T3 + T1T2T3).

This choice of fluxes and superpotential is actually a gauging ofSO(1,3). It is immediate
to see that, since the superpotential does not depend on four of the seven main mod
T -moduli are stabilized at one), supersymmetry is broken and a positive-definite run
D = 4 scalar potential is generated:

(73)〈V 〉 = 〈
m2

3/2

〉
, with

〈
m2

3/2

〉 = A2 + B2

8su1u2u3
,

possibly leading to time-dependent vacua of cosmological interest.

5.3. Gaugings withV < 0, stabilization of all moduli

We now look at situations where more than four moduli are stabilized, leadin
negative-definite potentials once the stabilized moduli are set to their appropriate va

We begin with a gauging ofE3 with fluxesΛ113 = −ω3 (geometric) andΛ111 = F6
(R–R six-form), withω3, F6 > 0. The R–R six-form corresponds to theSO(3) directions
in E3 while ω3 corresponds to the translations. The superpotential reads
(74)W = −ω3(T1U1 + T2U2 + T3U3) + F6.
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The six equations for the nontrivial supergravity auxiliary fields are solved at〈τA〉 =
〈νA〉 = 0 and 〈t1u1〉 = 〈t2u2〉 = 〈t3u3〉 = F6/ω3. At these values,W = −2F6, and the
s-dependent scalar potential and gravitino mass term read

(75)V = −2eK |W |2 = − ω3
3

16F6s
, m2

3/2 = −1

2
V.

At the string level, this is the well-known NS five-brane solution plus linear dilaton
the near-horizon limit. The original gauging isSU(2), combined with translations, whic
emerge as free actions at the level of the world-sheet conformal field theory. It is re
able that thisE3 algebra remains visible at the supergravity level. It is also interesting
if we allow extra fluxes, induced by the presence of fundamental-string sources, w
reachAdS3 background solutions with stabilization of the dilaton. All moduli are there
stabilized. This has been studied recently at the string level[23].

Using all fluxes admissible in IIA,Z2 × Z2 strings, we can obtain the stabilization
all moduli in AdS4 space–time geometry. Switching on all fluxes (ω3,H3,F0,F2,F4,F6),
with parameters

(76)−1

9
Λ111= −1

2
Λ′

112= 1

6
Λ113= Λ122= A,

(77)
1

2
Λ′

111= −1

3
Λ112= 1

2
Λ114= −1

5
Λ222= B,

the Jacobi identities(59)are satisfied for

(78)6A2 = 10B2,

and the following effectiveN = 1 superpotential is generated:

W = A
[
2S(T1 + T2 + T3) − (T1T2 + T2T3 + T3T1) + 6(T1U1 + T2U2 + T3U3) − 9

]
(79)+ iB

[
2S + 5T1T2T3 + 2(U1 + U2 + U3) − 3(T1 + T2 + T3)

]
.

Notice that condition(78) relates the terms with even and odd powers of the field
the superpotential, thus its sign ambiguity is irrelevant. The superpotential(79) leads to a
supersymmetric vacuum at〈S〉 = 〈TA〉 = 〈UA〉 = 1 (A = 1,2,3). Since at this point〈W 〉 =
4(3A + iB) �= 0, implying 〈V 〉 = −3m2

3/2 < 0, this vacuum has a stableAdS4 geometry
with all seven main moduli frozen.

The educated reader might feel uncomfortable with condition(78), which seems to im
ply noninteger flux numbers. This is a consequence of our choice for presenting the
with S = TA = UA = 1 at the minimum. One can recover integer flux numbers by resc
appropriately the moduli. A possible choice (among many others) is the following:

(80)(S,TA,UA) → b(S,TA,UA), b = B

A
=

√
3

5
.

With that choice
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W = N
[
2S(T1 + T2 + T3) − (T1T2 + T2T3 + T3T1)

+ 6(T1U1 + T2U2 + T3U3) − 15
]

(81)+ iN
[
2S + 3T1T2T3 + 2(U1 + U2 + U3) − 3(T1 + T2 + T3)

]
,

whereN = (3/5)A.
We should emphasize here that this is theonly known example of a complete stab

lization of the moduli, reached in IIA by switching on fundamental fluxes (NS or R).
should also stress that this cannot happen in the heterotic string, because of the
of S-dependence in the general flux-induced superpotential. Such a dependenc
however be introduced under the assumption of gaugino condensation. In type IIB
D3-branes, the orientifold projection that accompanies theZ2 × Z2 orbifold projection
eliminates theω3 fluxes, thus theT moduli are not present in the superpotential and can
be stabilized by fluxes. The case of D9-branes (open string) is similar to the heteroti
whereas the D7-brane set-up is not captured by theZ2 × Z2 orbifold projection used here
The heterotic approach à la Horava–Witten is under investigation[14], whereas F-theor
on Calabi–Yau four-folds can introduce exponential dependences in the superpotent[24]
and stabilize theT moduli.

6. Conclusions and outlook

In this paper we proposed a novel, bottom-up approach for studying the infrared p
of superstring compactifications that preserve an exact or spontaneously brokenN = 1 su-
persymmetry. The approach is in principle applicable to all ten-dimensional super
theories and M-theory, and is based on the powerful constraints of the gaugedN = 4 su-
pergravity underlying all these compactifications. Since inN = 4, D = 4 supergravity the
manifold of the scalar fields is unique, once the number of vector fields is given, ou
proach allows to identify unambiguously the Kähler potential of theN = 1,D = 4 effective
theory. The various systems of fluxes allowed in the different superstring theories ar
used to determine, without solving the ten-dimensional equations of motion and B
identities, the structure constants and duality phases that specify the gauging of theN = 4
theory. This in turn can be used to identify the superpotential of the resultingN = 1 the-
ory. The search for the possible vacuum structures corresponding to the different s
of fluxes can then be performed in a very powerful and elegant formalism, by look
the potential and auxiliary fields of the effectiveN = 1, D = 4 theory.

To be specific, we applied our strategy to situations where the reduction fromN = 4
to N = 1 is achieved by aZ2 × Z2 orbifold projection. In the present work, we kept f
clarity the sixN = 4 vector-multiplet geometrical moduli. Thus, the moduli sector of
resultingN = 1 theory (after the projection) contained seven distinguished chiral m
plets:S,TA,UA (A = 1,2,3). In the heterotic theory, theZ2 × Z2 projection is enough to
reduce the initial(N = 4)) supersymmetry toN = 1. For describing type-II theories, an
in particular the type-IIA compactifications on which we focused for this paper, an
Z2 orientifold projection is needed: we chose the one acting as a parity on three of t
internal coordinates, associated withN = 1 compactifications of the IIA theory with D6
branes and O6-planes. Type IIB can be treated similarly, by introducing aZ2 orientifold

projection associated with either D3- or D9-branes.
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A major geometrical difference exists, however, which makes the type IIA comp
fications far more interesting. In type IIB, the Calabi–Yau smooth manifold resolutio
the orbifold holds even in the presence ofH3 andF3 fluxes[10]. This explains why mos
of the literature deals with this kind of type IIB constructions. However, even in this
theω3 geometrical fluxes are incompatible with theZ2 × Z2 orbifold projection (and its
smooth Calabi–Yau resolution). The situation for type IIA is even more exotic, sinc
well-defined mathematical framework has yet been unraveled for understanding th
formed Calabi–Yau” geometry.

Nevertheless, this is by no means an obstruction to us, when the situation is cons
from the conformal field theory perspective of string theory. Many examples exis
demonstrate this: asymmetric orbifolds, fermionic constructions, twisted Gepner con
tions, supersymmetric compactifications on manifolds with torsion, etc. Furthermore
exact models, as well as the whole procedure we have developed so far for dealin
fluxes, point towards the existence of a generalized mirror symmetry, despite the a
of a Calabi–Yau geometrical interpretation for type IIA. A manifestation of that sym
try emerges, for instance, when a nontrivialω3 flux is switched on. In the (freely-acting
orbifold limit, a mirror-likeU ↔ T duality relates the type IIA to the type IIB side.

The gauging approach we propose here relies on the rich but constrainedN = 4 struc-
ture. It enables us to bypass the above geometrical difficulties and to organize the flux
systematic way. Indeed, the gauging procedure goes along with a set of structure co
and duality phases, where the former must satisfy Jacobi identities and antisymmet
ditions. These all enter the superpotential, which in turn determines the scalar poten
the above framework, it is possible to list exhaustively the various choices for the str
constants and duality phases. The choice of theZ2 ×Z2 projection plays an important role
since it naturally induces an interchange symmetry among the three planes, and sim
considerably the implementation of the full antisymmetry offRST . Releasing the assum
tion of plane-interchange symmetry, changing the orbifold and/or orientifold projec
preservingN = 1 supersymmetry, moving to type-IIB or type-I superstring theories
goes beyond the scope of the present paper, and is postponed to[14].

For each of the possible choices of the structure constants (this is equivalent to ch
the subgroup ofSO(6,6) that is gauged) and duality phases, one can readily analyz
issue of moduli stabilization. Furthermore, and this is the core of the present pape
can trace back the origin of the structure constants and duality phases in terms of fl
the underlying fundamental theory in ten dimensions. Although our main motivation
the analysis of the yet not unraveled type IIA, we applied our technique to the het
case, where we clarified the case where geometrical and NS–NS three-form flux
combined. Our pattern allows to reproduce systematically the various examples av
in the literature, such as the no-scale models.

As far as type IIA is concerned, more possibilities exist, thanks to the presence
R fluxes, besides the geometric and NS–NS ones:F0, F2, F4 and evenF6. They can be
introduced one by one, or in combination, provided the Jacobi identities are still sat
A specific combination exists, which generates a solution whereall seven moduli are sta
bilized, in anAdS4 geometry. This is typical of type IIA and cannot happen in hetero

where the allowed geometrical and three-form fluxes cannot create anS-dependence in the
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superpotential. More examples can be displayed with partial moduli stabilization: do
wall solutions, runaway solutions, no-scale models. . .

There are various directions that would be worth exploring, besides those alread
tioned above. Among them, the detailed correspondence of the ten-dimensional eq
of motion, Bianchi identities and tadpole cancellation conditions, with the equation
consistency conditions in the effective gauged four-dimensional supergravity theory.
the inclusion in our formalism of the scalar and vector fields associated to brane excit
and the exploration of the new systems of fluxes associated with their field strengths
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