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Abstract. We give conditions on a strongly continuous semigroup T and an unbounded per-
turbation B in the class of Miyadera-Voigt such that the perturbed semigroup S inherits
asymptotic properties of T as boundedness, asymptotic almost periodicity, uniform ergodicity
and total uniform ergodicity. A systematic application of the abstract result to partial di¨er-
ential equations with delay is made.
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1 Introduction

According to a classical result proved by R. S. Phillips [15] in 1953, if A generates a
strongly continuous semigroup T of bounded linear operators on a Banach space X,
then so is A� B, when B is any bounded linear operator on X. This result has been
generalized into various directions. On one hand, the hypotheses have been weak-
ened, admitting B to be an unbounded operator. On the other hand, the question
whether some properties of T persist under such perturbations has been studied by
several authors.

R. S. Phillips made the start by cataloguing stable und unstable properties under
bounded perturbations. He proved, in particular, that immediate norm continuity
and immediate compactness of T are inherited by the perturbed semigroup S, gen-
erated by A� B. This is not the case for eventual norm continuity, eventual com-
pactness and, as shown only in 1995 by M. Renardy [16], for immediate di¨er-
entiability. Nevertheless, M. G. Crandall and A. Pazy [6, 14] exhibited growth
conditions on the norm of AT�t� as t! 0�, under which the perturbed semigroup is
immediately di¨erentiable. More recently, R. Nagel and the second author of this
paper found in [12] other conditions guaranteeing the permanence of these regularity
properties under bounded perturbations. Their method, based on the representation
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of S through the Dyson-Phillips series, can be also applied to study the asymptotic
behaviour of S. This is the main purpose of this paper, where we consider, however,
the more general case of unbounded perturbations. In particular, the operator B, by
which we perturb the in®nitesimal generator A, belongs to a class, which was in-
troduced for the ®rst time by Miyadera and Voigt (see, e.g., [9] and [18]).

We consider a semigroup T such that every orbit t 7! T�t�x, x A X , belongs to a
closed, translation invariant subspace E of the space Cub�R�;X � of all uniformly
continuous and bounded functions from R� to X (see Section 3 for de®nitions). For
example, T could be strongly asymptotically almost periodic (even in the sense of
Eberlein) or uniformly ergodic or such that t 7! T�t�x vanishes at in®nity for all
x A X . In all these cases, the semigroup T is uniformly bounded, as a consequence of
the uniform boundedness principle. Thus, if S inherits the same property, S is uni-
formly bounded as well. This means that, ®rst of all, one has to ®nd conditions under
which a bounded perturbation preserves the uniform boundedness of T. We obtain
such a result in Corollary 2.2 (see also the results of J. Voigt in [18]). In the case of a
positive (or positive dominated) C0-group on a Banach lattice and a positive (or
positive dominated) perturbation, this was done by M. Mokhtar Kharroubi in [10]
and [11].

The second step consists in proving the permanence of certain asymptotic properties
under a perturbation B. We use that S can be obtained as

S � Py
n�0

�V nT�;

where V is an abstract ``Volterra-type'' operator and the series converges in a su½-
ciently strong topology. Then the permanence problem can be rewritten as follows: if
T is such that t 7! T�t�x belongs to the space E for all x A X , under which conditions
does the map t 7! �V nT��t�x belong to E?

Some recent results of C. J. K. Batty and R. Chill [5] on the convolution product
between a bounded strongly continuous map from R� to L�X� and a function be-
longing to L1�R;X � yield an answer to this question. Bounded convolutions were
also considered by B. Basit [3]. In particular, he found conditions on the Laplace
transform f̂ of a measurable function f on R�, such that T � f is bounded, when T
is a uniformly bounded, holomorphic semigroup. However, using the results of [5],
we do not need any spectral assumption on f̂ or s�A�. We investigate the particular
case of bounded perturbations as well, and then discuss some examples using opera-
tor matrices.

Finally, in Section 4 we present an application of our results to partial di¨erential
equations with delay. We consider a delay equation of the form

�DE�
u 0�t� � Au�t� �Fut; tV 0,

u�0� � x;

u0 � f ;

8<:

V. Casarino, S. Piazzera92



where �A;D�A�� is the in®nitesimal generator of a strongly continuous semigroup
�T�t��tV0 on X, x A X , f A Lp��ÿ1; 0�;X �, 1U p <y and F is a bounded linear
operator from W 1;p��ÿ1; 0�;X� to X. We prove, in particular, that the knowledge of
the asymptotic behaviour of �T�t��tV0 yields full information about the asymptotic
behaviour of the solution of (DE).

2 The convergence of the Dyson-Phillips series

Let X be a complex Banach space. L�X� denotes the Banach algebra of all bounded
linear operators on X.

Let T � �T�t��tV0 be a strongly continuous semigroup of bounded linear operators
on X with generator �A;D�A��. The symbol X1 will denote the Sobolev space of order
one associated to T, that is the Banach space �D�A�; k � k1� where kxk1 :� kxk�
kAxk for every x A D�A�.
Let Ls�X � denote the space L�X� endowed with the strong operator topology and X
the operator-valued function space Cub�R�;Ls�X�� of all uniformly continuous,
bounded functions from R� to Ls�X �. Then F A X if and only if F�t� A L�X � for
tV 0, t 7! F�t�x is uniformly continuous for every x A X and suptV0 kF�t�k < �y.

The space X is a Banach space for the norm

kFky :� sup
tV0
kF �t�k; F A X �see �7; Proposition A:7��:

Take now a perturbing operator B A L�X1;X�. In analogy with [7, Chapter III], we
de®ne the abstract Volterra operator VB by

�VBF��t�x :�
� t

0

F�s�BT�tÿ s�x ds for every F A X; tV 0; x A D�A�:

Observe that, for every tV 0, �VBF��t� A L�X1;X �. Always in analogy to [7, Chapter
III], we now assume that for every F A X the following conditions are satis®ed

(1) for all t A �0;�y� the map �VBF ��t� : D�A�HX ! X can be extended to a
bounded operator �VBF��t� : X ! X ;

(2) the map t 7! �VBF��t�x is uniformly continuous for every x A X ;

(3) VB de®nes a bounded operator on X satisfying kVBk < 1.

The class of operators satisfying conditions (1), (2), (3) will be denoted by Sy, that is

Sy :� fB A L�X1;X � : VB A L�X� and kVBk < 1g:

In the following we will denote VB by V. It is well known ([7, Theorem III.3.14]) that,
if B belongs to Sy, then �A� B;D�A�� generates a strongly continuous semigroup S
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on X. Moreover, the perturbed semigroup S is given by the abstract Dyson-Phillips
series

�2:1� S�t� � Py
n�0

�V nT��t�; tV 0;

where V is de®ned as above.

It is well known that this series converges uniformly on compact intervals of R�
(see, for example, [7, Corollary III.3.15]). However, in order to deduce asymptotic
properties of S from those of V nT, the uniform convergence on R� of the Dyson-
Phillips series is required. Such a convergence holds only if suitable hypotheses are
made. For example, in [10], [11] this has been proved in the framework of Banach
lattices and for a (not necessarily bounded) one-dimensional perturbation B. We
present the following result.

Theorem 2.1. Let T � �T�t��tV0 be a strongly continuous semigroup of bounded linear

operators on X generated by A : D�A�JX ! X and satisfying

kT�t�kUM for all tV 0 and some M V 1

and let B A L�X1;X �. Assume that there exists a constant 0 < q < 1 such that

�2:2�
� t

0

kBT�s�xk dsU qkxk

for all tV 0 and x A D�A�.
Then B belongs to Sy, and the series (2.1) converges uniformly on R�.

Proof. First of all, we shall prove that B belongs to the perturbation class Sy, by
showing (1), (2) and (3).

Let F A X and tV 0. It follows from (2.2) that

kVF �t�xkU kFky
� t

0

kBT�tÿ s�xk ds

� kFky
� t

0

kBT�s�xk dsU kFky � q � kxk

for every x A D�A�. Since D�A� is dense in X, �VBF��t� can be extended to a bounded

operator �VBF ��t� on X, such that

�2:3� k�VBF��t�kU q � kFky for every tV 0;

so that (1) holds.
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In order to prove (2), we show, ®rst of all, that the map t 7! �VBF��t�x is uniformly
continuous on R� for every x A D�A�. For t A R�, x A D�A� and h > 0, then

kVF �t� h�xÿ VF �t�xk

�




 �t�h

0

F �s�BT�t� hÿ s�x dsÿ �t
0

F �s�BT�tÿ s�x ds






U




 �t�h

0

F�s�BT�t� hÿ s�x dsÿ �t
0

F �s�BT�t� hÿ s�x ds






�




�t

0

F�s�BT�t� hÿ s�x dsÿ �t
0

F �s�BT�tÿ s�x ds






�




 �t�h

t

F �s�BT�t� hÿ s�x ds





� 



�t
0

F�s�B�T�t� hÿ s� ÿ T�tÿ s��x ds






U kFky

�h
0

kBT�s�xk ds� kFky �
�t
0

kBT�tÿ s��T�h�xÿ x�k ds

U kFkykBkL�X1;X�
�h
0

�kT�s�xk� kAT�s�xk� ds�kFky � q � kT�h�xÿ xk:

This last expression converges to zero as h! 0�, uniformly with respect to t.

Take now x A X . Then there exists a sequence fxjgHD�A� such that xj ! x, and we
have

sup
tV0
k�VBF ��t�xÿ �VBF ��t�xjk � sup

tV0
k�VBF ��t��xÿ xj�kU q � kFkykxÿ xjk

and hence the sequence �VB�F �t�xj�j converges uniformly on R� to �VBF ��t�x. This

shows that the function t 7! �VBF ��t�x is uniformly continuous on R�. Finally, from
(2.3) it follows that

kVkU q < 1

and hence the spectral radius r�V� is strictly smaller than 1 and 1 A r�V�.
Since T belongs to X and I ÿ V is bijective on X, there exists a unique S A X such
that

�I ÿ V�S �T:
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Moreover, the resolvent R�1;V� exists and is given by the Neumann series

R�1;V� � P�y
n�0

V n:

Thus S � R�1;V�T � Py
n�0

V nT, the series being convergent in the norm of X, and

sup
tV0
kS�t�kUP�y

n�0

sup
tV0
k�V nT��t�kUP�y

n�0

qn �M � M

1ÿ q
: r

Since one knows that S is the semigroup generated by A� B, we obtain the follow-
ing result (see also [18, Theorem 1]).

Corollary 2.2. Under the assumptions of Theorem 2.1, the strongly continuous semi-

group S � �S�t��tV0 generated by �A� B;D�A�� is uniformly bounded.

Remark 2.3

1. Condition (2.2) was introduced for the ®rst time in the Perturbation Theorem of
Miyadera and Voigt (see [9], [18] and [7, Chapter III.3.c]).

2. Suppose that �A;D�A�� is the in®nitesimal generator of a strongly continuous,
uniformly bounded group �T�t��t AR on X and that B belongs to L�X1;X�. If there
exists a constant 0 < q < 1 such that� t

ÿt

kBT�s�xk dsU q � kxk

for all t A R and x A D�A�, then it is easy to verify that �A� B;D�A�� is the in®nite-
simal generator of a strongly continuous, uniformly bounded group �S�t��t AR. An
analogous remark was made by J. Voigt in [18].

3. If the operator B A L�X� satis®es condition (2.2) and commutes with every
T�t�; tV 0, then

� t

0

kBT�s�xk ds �
� t

0

kT�s�Bxk ds

for all x A X and t > 0. In particular, if B is surjective, then�y
0

kT�s�xk ds <y

for all x A X and therefore, in view of the Theorem of Datko and Pazy (see e.g. [7,
Theorem V.1.8] or [13, Theorem 3.1.8]), T is uniformly exponentially stable.
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Examples 2.4

Two examples will now be presented in the case in which B is bounded. The ®rst
investigates when uniformly exponentially stable semigroups ful®ll condition (2.2);
the second one shows that, when the semigroup T is expressed by a matrix, it may
happen that the behaviour and the growth of only one entry is essential in order to
verify condition (2.2).

1. Let T be a uniformly exponentially stable semigroup, i.e. kT�t�kUMeÿot for all
tV 0, some M V 1 and o > 0. Let �A;D�A�� be the in®nitesimal generator of T.

If B A L�X�, condition (2.2) is satis®ed if B satis®es the estimate kBkM=o < 1.

2. Let X1 and X2 be complex Banach spaces, T1 � �T1�t��tV0 and T2 � �T2�t��tV0

be strongly continuous semigroups on X1 and X2, respectively, with generator
�A1;D�A1�� and �A2;D�A2��. Suppose that kT1�t�kUM1 and kT2�t�kUM2eÿot for
every tV 0 and some M1;M2 V 1 and o > 0.

Let �U�t��tV0 be the strongly continuous semigroup on X1 � X2 given by

U�t� :� T1�t� 0

0 T2�t�
� �

with generator A :� A1 0

0 A2

� �
:

Take a linear operator B : X2 ! X1 and the operator matrix

B :� 0 B

0 0

� �
A L�X1 � X2�:

Then

A�B � A1 B

0 A2

� �
with domain D�A1� �D�A2�

generates a strongly continuous semigroup S � �S�t��tV0 on X1 � X2. Since

BU�t� � 0 BT2�t�
0 0

� �

and T2 is uniformly exponentially stable, condition (2.2) is satis®ed, independently
on �T1�t��tV0, provided that M2kBk=o < 1. By choosing B with su½ciently small
norm, the perturbed semigroup �S�t��tV0 is then bounded.

3 Permanence of asymptotic properties

Suppose now that certain asymptotic properties of the strongly continuous semigroup
T are known. Is it possible to deduce informations about the asymptotic behaviour
of the perturbed semigroup S ?
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We ®rst consider the stability of asymptotic almost periodicity under bounded per-
turbations. We need some de®nitions. If f : R� ! X , H� f � is the set of all translates
f f �� � o� : o A R�g. Let Cb�R�;X � be the Banach space of all bounded continuous
functions from R� to X, endowed with the uniform norm.

A function f A Cb�R�;X� is called asymptotically almost periodic (abbreviated as
a.a.p.) if H� f � is relatively compact in Cb�R�;X �.
We need the following decomposition theorem, due, in the general case, to W. M.
Ruess and to W. H. Summers.

Theorem 3.1 [17]. A function f A Cb�R�;X� is asymptotically almost periodic if and
only if one of the following two equivalent conditions is satis®ed:

(1) there exist a unique almost periodic function g A Cb�R;X� and a unique h A
Cb�R�;X�, vanishing at in®nity, such that f � h� gjR� ;

(2) for every e > 0 there exist L > 0 and K V 0 such that every interval of lenght L
contains some t for which the inequality

k f �t� t� ÿ f �t�kU e

holds whenever t; t� tVK .

The functions g and h are called, respectively, the principal term and the correction

term of f. We recall that Cb�R;X � is the space of all bounded continuous functions
from R to X and that a function g A Cb�R;X� is said to be almost periodic if the set
fg�� � o� : o A Rg is relatively compact in Cb�R;X�.
A strongly continuous semigroup is called strongly asymptotically almost periodic if
the function t 7! T�t�x, from R� to X, is a.a.p. for every x A X .

A ®rst simple result about asymptotic almost periodicity follows by the following,
well-known proposition (see, for example, [1]).

Proposition 3.2. Let �A;D�A�� be the in®nitesimal generator of a strongly continuous,

uniformly bounded semigroup T. If A has compact resolvent, then T is strongly

asymptotically almost periodic.

Since R�l;A� B� remains compact if R�l;A� is compact and B is bounded, then the
following result can be stated.

Proposition 3.3. Let �A;D�A�� be the in®nitesimal generator of a strongly continuous,
uniformly bounded semigroup T and let B A L�X �. Suppose that R�l;A� is compact

for some l A r�A�.
If condition (2.2) of Theorem 2.1 holds, then the semigroup �S�t��tV0, generated by

�A� B;D�A��, is strongly asymptotically almost periodic.
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Indeed, recent results of C. J. K. Batty and R. Chill [5] yield much more information
on the asymptotic behaviour of the perturbed semigroup. In particular, this method
yields information on the asymptotic behaviour of �S�t��tV0 independently on the
special class of functions considered.

We recall that a closed subspace E of Cub�R�;X � is said to be translation invariant

if

E � f f A Cub�R�;X� : f �� � t� A Eg for all tV 0:

A closed subspace E of Cub�R�;X � is said to be operator invariant if M � f A E for
every f A E and M A L�X�, where M � f is de®ned by �M � f ��t� �M� f �t��, tV 0.

As remarked by Batty and Chill [5], the following classes of X-valued functions are
closed, translation invariant and operator invariant subspaces of Cub�R�;X �:. the space C0�R�;X� of all continuous functions vanishing at in®nity;. the class of all asymptotically almost periodic functions from R� to X;. the class of all weakly asymptotically almost periodic functions in the sense of

Eberlein;. the class of uniformly ergodic functions from R� to X;. the class of totally (uniformly) ergodic functions from R� to X.

For the sake of completeness we recall the de®nitions.

A continuous bounded function f : R� ! X is called weakly asymptotically almost

periodic in the sense of Eberlein if H� f � is weakly relatively compact in Cb�R�;X �.
A function f A Cub�R�;X � is said to be uniformly ergodic if the limit

�3:1� lim
a!0�

a

�y
0

eÿas f �� � s� ds

exists and de®nes an element of Cub�R�;X�.
A function f A Cub�R�;X � is said to be totally (uniformly) ergodic if the function
eiy� f ��� is uniformly ergodic for all y A R. Since f is uniformly bounded, this is also
equivalent to the existence of the CesaÁro limit

lim
t!�y

1

t

� t

0

eiys f �� � s� ds

in Cub�R�;X �, as remarked in [2].

The following lemma will be used.
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Lemma 3.4 [5]. Let L : R� !L�X� be a bounded strongly continuous function. Let E
be a closed, translation invariant, operator invariant subspace of Cub�R�;X �, such that
the functions R� C t 7! L�t�x A X belong to E for every x A X .

If g A L1�R;X�, then �L � g�jR� A E.

Here, the convolution between L and g is de®ned as

�L � g��t� �
��y

0

L�s�g�tÿ s� ds �
� t

ÿy
L�tÿ s�g�s� ds; tV 0:

We can now prove the main result of this paper.

Theorem 3.5. Let T � �T�t��tV0 be a strongly continuous semigroup on X, generated

by �A;D�A�� and let B A L�X1;X� satisfy condition (2.2) in Theorem 2.1. Let

�S�t��tV0 be the strongly continuous semigroup generated by �A� B;D�A��.
If E is a translation invariant and operator invariant closed subspace of Cub�R�;X �
and if t 7! T�t�x belongs to E for every x A X , then t 7! S�t�x belongs to E for every

x A X .

Proof. Let V be the extension of the ``Volterra-type'' operator introduced in Section
2. We ®rst observe that, as a consequence of the uniform boundedness principle,
the semigroup T is uniformly bounded. Therefore, we can apply Theorem 2.1 and
obtain that the semigroup S � �S�t��tV0 is uniformly bounded and is given by

S � P�y
n�0

V nT;

the convergence being in the norm of X � Cub�R�;Ls�X�� (observe that the opera-
tor V nT belongs to X for every n A N, since we proved in Theorem 2.1 that V maps
X into X).

We now show that the functions

t 7! �V nT��t�x

belong to E for every n A N and x A X .

We consider ®rst the case n � 1. Take x A D�A� and de®ne

g�t� :� BT�t�x if tV 0

0 if t < 0.

�
Since
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��y
ÿy
kg�t�k dt �

��y
0

kBT�t�xk dtU q � kxk < kxk;

q belongs to L1�R;X�. Since T is bounded, strongly continuous and, by hypothesis,
t 7! T�t�x belongs to E for every x A X , Lemma 3.4 entails that �T � g�jR� A E.

Observe now that

�T � g�jR��t� �
� t

ÿy
T�tÿ s�g�s� ds �

� t

0

T�tÿ s�BT�s�x ds:

Since x A D�A�

�VT��t�x � �VBT��t�x �
� t

0

T�tÿ s�BT�s�x ds;

so that t 7! �VT��t�x belong to E for every x A D�A�.
Take now x A X . Thus there exists a sequence fxjgHD�A�, such that xj 7! x.

Since VT belongs to X, f�VT��t� : tV 0g is uniformly bounded on R�, and there-
fore the sequence f�VT��t�xj : j A Ng converges uniformly on R� to �VT��t�x.
Since E is a closed subspace of Cub�R�;X�, we conclude that the limit function
belongs to E as well, proving the assertion.

Suppose now that the maps t 7! �V nÿ1T��t�x belong to E for all x A X .

Then, if x A D�A� and t A R�,

�V nT��t�x � V�V nÿ1T��t�x � VB�V nÿ1T��t�x

�
� t

0

�V nÿ1T��tÿ s�BT�s�x ds:

Since V nÿ1T belongs to X, the operator-valued function V nÿ1T : R� !L�X� is
strongly continuous. Moreover, by hypothesis, �V nÿ1T����x belongs to E for all
x A X .

Thus, we can apply Lemma 3.4, taking as L the operator V nÿ1T and choosing g as
above. Then

t 7! �L � g�jR��t� �
� t

0

�V nÿ1T��tÿ s�BT�s�x ds

belongs to E for every x A D�A�.
Therefore, every function t 7! �V nT��t�x belongs to E for all x A D�A�.
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As in the case n � 1 we conclude that �V nT����x belongs to E for all x A X .

We can now conclude the proof. Every term of the series

S�t�x � P�y
n�0

�V nT��t�x; x A X ; tV 0;

belongs to E. Since E is closed in Cub�R�;X � and the above series converges in the
norm of X, every map t 7! S�t�x belongs to E. r

Example 3.6. De®ne, as in Example 2.4.2, the semigroup

U�t� :� T1�t� 0

0 T2�t�
� �

;

where �T1�t��tV0 is such that for every x A X1 the map t 7! T1�t�x is the restriction of
an almost periodic function and �T2�t��tV0 is such that kT2�t�kUMeÿot for every
tV 0, for some M V 1 and o > 0.

Then �U�t��tV0 is strongly asymptotically almost periodic.

Take a linear operator B : X2 ! X1 with
MkBk

o
< 1, and de®ne the operator matrix

B as in Example 2.4.2. Then A�B is again the in®nitesimal generator of a strongly
asymptotically almost periodic semigroup which is given by

T1�t�
� t

0 T1�tÿ s�BT2�s� ds

0 T2�t�

� �
tV0

:

4 Application to partial di¨erential equations with delay

Let �A;D�A�� be the generator of a strongly continuous semigroup �T�t��tV0 on a
Banach space X. On E :� X � Lp��ÿ1; 0�;X�, 1U p <y, we consider the operator

A :�
A 0

0
d

ds

 !

with domain

D�A� :� x

f

� �
A D�A� �W 1;p��ÿ1; 0�;X� : f �0� � x

� �
:

This operator generates the strongly continuous semigroup �T�t��tV0 given by

T�t� :� T�t� 0

Tt T0�t�
� �

;
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where �T0�t��tV0 is the nilpotent left shift semigroup on Lp��ÿ1; 0�;X � and Tt : X !
Lp��ÿ1; 0�;X � is de®ned as

�Ttx��s� :� T�t� s�x; sVÿt;

0; otherwise.

�
Since the semigroup �T�t��tV0 is essentially given by �T�t��tV0, it is reasonable to
hope that �T�t��tV0 has the same asymptotic behaviour as �T�t��tV0. Indeed this
depends on the type of asymptotic behaviour.

Lemma 4.1. Assume that for every x A X the map R� C t 7! T�t�x A X is

(1) continuous and vanishing at in®nity, or

(2) asymptotically almost periodic, or

(3) uniformly ergodic, or

(4) totally uniformly ergodic.

Then the map R� C t 7!T�t� x

f

� �
A E has the same property for all

x

f

� �
A E.

Proof. Since all these classes are translation invariant, it su½ces to show the asser-
tions for the map

R� C t 7!T�t� 1� x

f

� �
� T�t� 1� 0

Tt�1 0

� �
x

f

� �
� T�t� 1�x

Tt�1x

� �
A E:

Let x A X .

(1) If �t 7! T�t�x� A C0�R�;X�, then for every e > 0 there exists a T > 0 such that
kT�t�xk < e for all t > T . Then, for t > T , we have

kTt�1xkp < e;

hence 



T�t� 1� x

f

� �



 < 2e

for all t > T .

(2) Since t 7! T�t�x is asymptotically almost periodic, it follows from Theorem 3.1
that for every e > 0 there exist L > 0 and K V 0 such that every interval of lenght L
contains some t for which

kT�t� t�xÿ T�t�xkU e
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holds whenever t; t� tVK . Hence� 0

ÿ1

k�Tt�1�tx��s� ÿ �Tt�1x��s�kp ds

�
�0

ÿ1

kT�t� 1� t� s�xÿ T�t� 1� s�xkp ds

�
�1

0

kT�t� t� s�xÿ T�t� s�xkp
dsU ep

whenever t; t� tVK , showing that the map t 7! Tt�1x from R� to Lp��ÿ1; 0�;X� is
asymptotically almost periodic for every x A X .

(3) The limit

F��� :� lim
a&0

a

�y
0

eÿatT�� � t�x dt

exists in Cub�R�;X�. For sV 0 we de®ne Fs�1 : �ÿ1; 0� ! X by Fs�1�s� :�
F �s� 1� s�. It is easy to see that the map R� C s 7! Fs�1 belongs to
Cub�R�;Lp��ÿ1; 0�;X ��. Then

lim
a&0

sup
s AR�





 a
�y
0

eÿatT��1�tx dt

 !
�s� ÿ Fs�1





p

p

� lim
a&0

sup
s AR�

�0

ÿ1





a
�y
0

eÿatT�s� 1� t� s�x dtÿ F�s� 1� s�




p

ds

� 0;

since ka �y0 eÿatT�s� 1� t� s�x dtÿ F �s� 1� s�k ! 0 as a& 0, uniformly for
s A R�.

(4) The proof is analogous to that of (3). r

We now de®ne an operator B on E by

B :� 0 F

0 0

� �
; D�B� :� D�A�;

where F is a bounded linear operator from W 1;p��ÿ1; 0�;X � to X. We then have� t

0





BT�s� x

f

� �



 ds �
� t

0

kF�Tsx� T0�s� f �k ds

for all tV 0 and can state the following theorem.
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Theorem 4.2. Assume that for every x A X the map R� C t 7! T�t�x belongs to one

of the classes (1)±(4) of Lemma 4.1. Moreover assume that there exists a constant
0 < q < 1 such that

� t

0

kF�Tsx� T0�s� f �k dsU q





 x

f

� �




for all tV 0 and all

x

f

� �
A D�A�.

Then �A�B;D�A�� generates a strongly continuous semigroup �S�t��tV0 and for all

x

f

� �
A E the map t 7!S�t� x

f

� �
belongs to the same class of the map t 7! T�t�x.

Proof. From Lemma 4.1 we know that t 7!T�t� x

f

� �
is in the same class as t 7!

T�t�x for all
x

f

� �
A E. Moreover �T�t��tV0 and B satisfy assumption (2.2) of

Theorem 2.1. So by Theorem 3.5 we have that �A�B;D�A�� generates a strongly

continuous semigroup �S�t��tV0 on E and t 7!S�t� x

f

� �
is in the same class as

t 7!T�t� x

f

� �
for all

x

f

� �
A E. r

The above operators model abstract linear partial di¨erential equations with delay,
i.e., equations of the form

�DE�
u 0�t� � Au�t� �Fut; tV 0,

u�0� � x;

u0 � f ;

8<:
where x A X and f A Lp��ÿ1; 0�;X �.
In fact, equation (DE) is ``well-posed'' if and only if the operator �A�B;D�A��
generates a strongly continuous semigroup �S�t��tV0 on E. Moreover, if this is the
case, the solutions of equation (DE) are given by

u�t�
ut

� �
�S�t� x

f

� �
; tV 0:

Therefore, the asymptotic behaviour of the semigroup �S�t��tV0 yields the asymp-
totic behaviour of the solutions of equation (DE). For more details about this semi-
group approach to partial di¨erential delay equation we refer to [4] and [8].
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Example 4.3. Let p > 1 and F f :� Cf �ÿ1�, where C A L�X � with kCk < 1. More-
over, assume that there exists 0 < c < 1 such that� t

0

kCT�s�xk dsU ckxk

for all tV 0 and x A D�A� (this is true, for example, if �T�t��tV0 is as in Example
2.4.2).

Then � t

0

kF�Tsx� T0�s� f �k ds

�

�t
0

kC f �sÿ 1�k ds; 0UtU1;

�1
0

kC f �sÿ 1�k ds� �t
1

kCT�sÿ 1�xk ds; t > 1:

8>>>><>>>>:
For t A �0; 1� we have� t

0

kF�Tsx� T0�s� f �k dsU kCkt1=p 0 k f kp

for
1

p
� 1

p 0
� 1.

If for every x A X the map t 7! T�t�x is in one of the classes (1)±(4) in Lemma 4.1,
then the assumptions of Theorem 4.2 are satis®ed, and the solutions of the delay
equation

u 0�t� � Au�t� � Cu�tÿ 1�; tV 0,

u�0� � x;

u0 � f ;

8<:
are in the same class as t 7! T�t�x for every

x

f

� �
A E.
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