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Introduction

Given a group G, a subgroup K of G is called cocyclic (in G ) if the interval �G=K � is
anti-isomorphic to the lattice of subgroups of a cyclic group. Let us denote by CG the
partially ordered set of all cyclic subgroups of G and by Co G the partially ordered set
of all cocyclic subgroups of G. We shall consider groups G, G for which the following
properties hold:

D1: there exists an anti-isomorphism t of Co G onto CG,
D2: every subgroup of G is the intersection of cocyclic subgroups,
D3: if X, Y, Z are cocyclic subgroups of G, then

X XY VZ if and only if X t W hY t;Z ti:

Two groups G;G will be said to be in D-situation (relative to the map t) if the
properties D1, D2, D3 hold. Also a group G will be said to admit a D-situation if there
exist a group G and a map t such that G and G are in D-situation. In [12] it was
shown that a ®nite soluble group admits a D-situation if and only if G has an auto-
duality. The aim of this paper is to prove the following result.

Theorem. A ®nite simple group G admits a D-situation if and only if G is abelian.

Section 1 contains several preliminary results and technicalities. Section 2 deals with
the alternating groups and the simple Chevalley groups, Section 3 with the twisted
simple groups of Lie type, and ®nally in Section 4 we consider the sporadic simple
groups. Our terminology and notation are quite standard (see for example [10] and
[11]). When discussing simple groups, we follow mainly [1], [2] and [6]. We denote by
Cm the cyclic group of order m and by Sn the symmetric group of degree n. For each
prime p, Gp denotes a Sylow p-subgroup of the group G, Z�G� is the center of G, and
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o�G� is the set of prime divisors of the order of G. The quaternion group of order 8
is denoted by Q8 and the four-group by V. Thus V GC2 � C2. We denote by �CG�2
the set of all subgroups of G that can be generated by at most two cyclic subgroups.
Dually, �Co G�2 denotes the set of all subgroups of G that are the intersection of at
most two cocyclic subgroups. We write X <�G when X is a maximal subgroup of G.
Also A < B means that A is a proper subgroup of B, and A dB means that AtB,
but A0B. A Zassenhaus group is a group with all Sylow subgroups cyclic. If P is
a parabolic subgroup of a group of Lie type of characteristic p, then the unipotent

radical of P is its maximal normal p-subgroup, denoted by UP. All groups considered
here are ®nite.

1 Preliminary results

Let G and G be two groups in D-situation via the map t. Then the maps

d : L�G� ! L�G�; H 7! hX t jX A Co�G=H�i
d : L�G� ! L�G�; H 7! 7

XACH

X tÿ1

8<: �1�

are inclusion-reversing, with dd � 1. Moreover, by [12],

dj�Co G�2 is an anti-isomorphism of �Co G�2 onto �CG�2
whose inverse is dj�CG�2. (2)

The map d is a duality if and only if G is projective to G, in which case G is soluble
and projective to an abelian group (see [15] and [17]).

Assume now that G is a ®nite simple group of Lie type and consider a maximal
unipotent subgroup U of G. Let B �N�U� be the Borel subgroup above U, let H be
a complement of U in B, as de®ned in [1], and let N WN�H� be such that N=H is
the Weyl group. Then it is known that

if U WM <�G then BWM: �3�

(see for example [3]). If one considers the map d : G ! G, then since �G=B� is a
Boolean lattice, B � B d is a cyclic group of square-free order and, by �3�, it is
generated by the set of minimal subgroups of U � U d. It follows that the minimal
subgroups of U are all normal in U , and the Sylow subgroups are either cyclic or
generalized quaternion.

Assume that the Sylow 2-subgroup of U is a generalized quaternion group Q and
set T � QBWU . By [8], L�T� � �CT�2, so there exists T A �B=U �G �H=1� such that

T � T d and, by �2�, dj�B=T � is an anti-isomorphism of �B=T � onto T=BGQ=Z�Q�.
So Q=Z�Q� is a modular group, since H is abelian, and therefore it is the four-group.
Hence Q � hx; yi is the quaternion group.

Now assume that U non-soluble. By [13, Theorem A], we have a Hall factorization

U=hx2i � �L=hx2i� � �hZ; x2i=hx2i�
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with L=hx2iGPSL2�p� and Z a Zassenhaus group of odd order. Since

hx2iWLVB tLWU ;

we conclude that LVB � hx2i, a contradiction. We have therefore proved

U is a soluble group with all Sylow subgroups cyclic or quaternion. Moreover
L�U� � �CU�2 by [8], and the minimal subgroups of U are normal. (4)

Proposition 1.1. Let G be a simple group of Lie type, with B a Borel subgroup of G, U

its unipotent radical and H a maximal torus of B. Assume that G is in D-situation with

G and d : G ! G is the associated anti-monomorphism of L�G� into L�G�. Then the

following are true.

(i) B is a cyclic group of square-free order generated by the minimal subgroups of U,

and dj�G=U � is an anti-isomorphism of �G=U � onto �U=1�.
(ii) If U 0B, then there is a Hall factorization

U=B � P1 � P2 � � � � � Pt � C:

Here tX 0, C is cyclic, and, for i > 1, Pi is a P-group of order piqi with pi > qi

while either

(a) P1 is a P-group of order p1q1 with p1 > q1, or

(b) P1 is the four-group, and this is the case if and only if U contains a quaternion
subgroup.

(iii) The Sylow subgroups of H are elementary abelian of order p2
i or cyclic.

(iv) U � U1 bU2, where U2 is a Hall subgroup and a Zassenhaus group, and there is

a Hall decomposition

U1 � R1 � R2 � � � � � Rt:

Here, for i > 1, Ri a non-cyclic Zassenhaus group of order p2
i q2

i with center of

order qi. In case (a), R1 is a non-cyclic Zassenhaus group of order p2
1q2

1 with center

of order q1, and in case (b), R1 is the quaternion group. Moreover

B � �BV �R1 � � � � � Rt�� � �BVU2�:

Proof. As already pointed out, dj�G=U � is an anti-isomorphism of �G=U � onto �U=1�.
In particular we have a duality of B=U GH onto U=B, and so, by �4� and [11,
Theorem 8.2.2], (ii) must hold. Then (iii) follows from (ii).

Write B � B1 � B2, with o�B2� � o�B�no�P1 � � � � � Pt�. We have

U=BGU1=B1 �U2=B2;
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for certain subgroups U1, U2, with

U1=B1 GP1 � � � � � Pt; U2=B2 GC:

Then U1 VU2 � B1 VB2 � 1, and hence U � U1U2. Moreover, since F�U1� �
B1 tU , we have U2 tU and U1 � R1 � � � � � Rt, where Ri has the required
structure, while U2 is a Zassenhaus group with U 0

2 WB2 � BVU2.

It will be useful to observe that, in the above situation, the number of maximal
subgroups of G containing U is equal to the number of distinct prime divisors of jU j.

Lemma 1.2. Let G be a group in D-situation with G. If H <�X A Co G, then X d <�H d.

Proof. This is clear if H A Co G. Otherwise we have H � X VY for some Y A Co G
and, by �2�, H d � hX d;Y di. Let X d <�T WH d; then T A �CG�2, so by �2� there
exists a (unique) subgroup T WG such that T � T d. It follows that H WT < X .
Hence H � T , and X d <�H d.

Proposition 1.3. Let K be a maximal subgroup of the group L and suppose that K is a

cyclic p-group. Then either L is metacyclic or L � QcK , where Q is an elementary

abelian Sylow subgroup of L of order qa with a > 1 on which K acts irreducibly.

Proof. Assume that L is not metacyclic. Then K is a Sylow p-subgroup of L with
N�K� � K , so that L � QcK for some subgroup Q of L. But K <�L implies that
Q is an elementary abelian q-group on which K must act irreducibly.

Corollary 1.4. Let G be a group in D-situation with G and let K A Co G be such that

�G=K � is a chain. If H <�K , then H d has the structure of the group L in 1:3, and

dj�G=H � is an anti-isomorphism onto �H d=1� when H d is metacyclic.

Proof. By Lemma 1:2 we have K d <�H d, and the result follows by Proposition 1:3
and �2�.

Proposition 1.5. Let G be a simple non-abelian group in D-situation with G and

let S be a minimal subgroup of G such that �G=S � is a chain of length n. Then G is a

Frobenius group, with S � S d a cyclic subgroup of order pn ( for some prime p) and

with Frobenius kernel Q an elementary abelian group of order qa for some a > 1. The

number N of maximal subgroups of G is given by N � 1� q� � � � � qa.

Proof. Clearly S is cyclic of order pn for some prime p. If G is metacyclic, then the
simple non-abelian group G is dual to G, by �2�. According to [15], this is a contra-
diction. Thus, by Proposition 1:3, G �Qc S and Q is an elementary abelian q-group
of order qa, for some a > 1, on which S acts irreducibly.

Clearly if n � 1, then G is a Frobenius group. Thus suppose that n > 1 and let
S < M <�G. Since N�M� �M, for x A GnM we have M x 0M and �G=S x� is also
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a chain of length n, with S x < M x <�G. Therefore S x is a cyclic group of order pn,
since n > 1, and S VS x � 1 since M VM x � 1. But then also S V S y � 1 for any
10 y A Q, that is, G is a Frobenius group.

Finally N equals the number of minimal subgroups of G, which is 1� q� � � � � qa.
The result follows.

For future use and as a complementary statement to Proposition 1.1, we prove

Lemma 1.6. Let G be a group with subgroups R;S;B;P such that R dP, P=RGS3,
R < S dP, R < B < P and �G=B� is a Boolean lattice. Assume also that every maximal
subgroup of G containing S also contains P. If G is in D-situation with a group G, then

R is a Zassenhaus group and the minimal subgroups of R generate the square-free cyclic

group B.

Proof. Note that, by our assumption, we have P0G. It is clear that the square-free
cyclic group P � P d is generated by the minimal subgroups of S and, since P d� S by
Lemma 1.2, S is a Zassenhaus group with just one Sylow subgroup of order r2, where
jS : Pj � r. We have

jBj � rp1 . . . pt pt�1; jPj � rp1 . . . pt; jSj � r2p1 . . . pt;

for some tX 0. Since R<�B and P d�B, we have

P t hB; Si � R A �CG�2:

By Proposition 1.3, either R=P is a P-group of order pq with pX q, or R=P is
a Frobenius group F of order pqa with a > 1 and elementary abelian Frobenius
kernel Fq.

Suppose that we have the second case. Whenever P<�X < R, it follows that X

is 2-generated. Therefore there exists a unique X satisfying R < X <�P such that
X � X d. Then we have a contradiction, since �P=R� has only 4 maximal sub-
groups. Therefore R=P is a P-group of order pq with pX q. But jS : Pj � r and
jB : Pj � pt�1, so that p0 q. Again every X A �R=P� is 2-generated, and hence
dj�P=R� is a duality onto �R=P�, so that R=PGS3.

Suppose that jR : Bj � 3. Then jB : Pj � 2 and hence 2a jPj. Thus jS : Pj � 3 and
so R3 GC9 and B2 acts non-trivially on R3. But then B2 acts non-trivially on B3, a
contradiction since B is abelian. Thus we are left with the case when jR : Bj � 2.
Then B tR, �R�3 has order 3 and jS : Pj � 2. Hence r � 2, the Sylow 2-subgroups
of R are cyclic of order 4, and pt�1 � 3. So the Zassenhaus group R has order
12p1 . . . pt and the involution in B is central. Therefore the minimal subgroups of R

are in B.

Proposition 1.7. Let G be an indecomposable Zassenhaus group, p a prime divisor of

jG 0j and j a projectivity of G. If G is not a P-group of order pq with p > q, then j is

regular at p.
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Proof. Let S be a Sylow p-subgroup of G 0. If j is singular at p, then S WZ�G�, by
[11, Lemmas 4.2.2 and 4.2.3]. This is a contradiction.

2 Alternating groups and simple Chevalley groups

In this section we deal with alternating groups and simple Chevalley groups in
D-situation.

Proposition 2.1. The alternating group G � An admits a D-situation if and only if

nW 3.

Proof. We suppose that nX 5. We denote by Gi the stabilizer of i for each i W n, and
by Gi; j the intersection Gi VGj for i0 j. Since G is �nÿ 2�-transitive, we have
Gi; j <�Gi <�G.

We show that if Gi; j WM <�G, then M is not transitive. We may assume M dif-
ferent from Gi. Since Gi; j has index n�nÿ 1�, if M were transitive, then jM : Mij � n,
and Mi �M VGi � Gi; j. Hence jG : Mj � nÿ 1 < n, which is a contradiction. From
the classi®cation of the maximal non-transitive subgroups of G (see [7]), it follows
that in �G=Gi; j � there are only three maximal subgroups: Gi, Gj and Wi; j, where
Wi; j is the stabilizer of the subset fi; jg. Moreover, since jWi; j : Gi; j j � 2, we have
Gi; j <�Wi; j. Hence �G=Gi; j� is the lattice of subgroups of the four-group. By Corol-
lary 1.4, Gi; j is a four-group. In particular �Gi;Gj� � 1.

Now let i, j, k be distinct. If Gi; j;k � Gi VGj VGk, then Gi; j;k � Gi � Gj � Gk.
On the other hand, Gi; j;k �Wi; j VWi;k, so that Gi; j;k �Wi; j �Wi;k, which is a
contradiction. The general conclusion follows from [12].

We deal next with Chevalley groups. Let G �L�K� be a simple Chevalley group
associated with the Lie algebra L of rank l, where K is a ®eld of q � pa elements with
p a prime. If G is in D-situation with G, then by Proposition 1.1 we know that H has
to be 2-generated. On the other hand

H G �K � � � � � � K �

l

�=T ;|��������������{z��������������}
where K � is cyclic of order qÿ 1 and T is a cyclic group of known order or the four-
group (see [1, p. 122]). One concludes that for jK j0 2, G has to belong to one of the
families

Al ;Bl ;Cl with l W 3; G2 or D4�3�: �5�

We consider each of these possibilities, assuming that jKj0 2.
Suppose that G has type Al . Here T is cyclic of order d � �l � 1; qÿ 1�.
Consider ®rst the case when l � 3. So d � 2 or 4. If d � 2, then for H to be

2-generated, we must have qÿ 1 � 2, i.e. G � A3�3�. We shall deal with this case
later. If d � 4, then for H to be 2-generated, we must have qÿ 1 � 4. But then H is
of exponent 4 and not cyclic, in contradiction to Proposition 1.1 (iii).
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Now suppose that l � 2. So d � 1 or 3. We have two maximal parabolic sub-
groups P1, P2 and a graph automorphism g of G of order 2 such that P

g
1 � P2,

U g � U and fr; sg � o�U�. We see that d � 1 if and only if 3a qÿ 1. Here H G
K � � K �, and since Hr has to be elementary abelian of order r2, U=B is a P-group
or a four-group. In the former case, U=B has order rs with r > s. Then U is a
Zassenhaus group of order r2s2. Since dj�G=U � is a duality onto U (by Proposition
1.1), dgdjU is singular, in contradiction to Proposition 1.7. If U=B is the four-group,
then U � Q8 bCr (with r an odd prime), by Proposition 1.1, and dgd cannot have a
2-singularity on U . Suppose that d � 3. If qÿ 1 � 3, then H is cyclic of order 3, so
jU j � r2t and dgdjU cannot exist. If qÿ 10 3, then H3 is cyclic, so U=B is iso-
morphic to the direct product V � C of the four-group V and a cyclic group C, and
we conclude the argument as before.

We are left with the case when l � 1. Here G � PSL2�q�, with q0 2; 3, H GK �=Cd

and d � �2; qÿ 1�. The Borel subgroups are maximal in G and so U=B, U g=Bg are
cyclic, where BVBg � H. It follows that U , U g and H are cyclic of prime-power
order. Since PSL2�5�GA5 and PSL2�9�GA6, we may assume q0 2; 3; 5; 9. But
then we have either H <�N�H�<�G or H <�B<�G (by [14, Example 7 on p. 417])
and �G=H � contains either three atoms or three coatoms. Hence H is the four-group,
by Corollary 1.4. Therefore U GU g GC2 a with aX 2, and since hU ;Bgi � G �
hU g;Bi, we conclude that G GC2 a � C2, in contradiction to �2� and the simplicity
of G.

Suppose that G has type G2. Here d � 1, H GK � � K � and there are two maximal
parabolic subgroups P1, P2 above B. Hence U=B is either a P-group of order rt, with
r > t, or a four-group. Thus qÿ 1 � r or 2. We distinguish two cases. Let q � 3.
Then by Proposition 1.1, U � Q8 bCt and G � G2�3�. There exists a graph auto-
morphism g of order 2 such that P

g
1 � P2 and U g � U . But dgd cannot exist on U .

Now suppose that q > 3. Then G � G2�2a�, with a > 1, since q � 1� r where r is
an odd prime. Here U is a non-cyclic Zassenhaus group of order r2t2, with r > t,
while H is elementary abelian of order r2. Let P � fr1; r2g be a fundamental system
for G, Li � HhXri

;Xÿri
i, and let Pi � UPi

Li be the Levi decomposition. Since r, but
not r2, divides jPSL2�2a�j, we have Li > hXri

;Xÿri
iGPSL2�2a�. But H normalizes

every root subgroup, and hence L0i � hXri
;Xÿri

i. We have Pi=UPi
GLi=1; in partic-

ular P 0i � UL0i has index r in Pi. Moreover B0UL0i, since L0i is simple. Let jP1j � r,
jP2j� t. From the duality d : �G=U �!�U=1� we deduce that there are r2 � 1 maximal
subgroups of P2 containing U. But H acts on these maximal subgoups, ®xing at least
two of them, namely B and P 02. Since the orbits have length 1 or r, and r does not
divide r2 ÿ 1, we have at least a third maximal subgroup X of P2 containing U and
®xed by H. But then B � UH WN�X� and P � BX . In particular X tP2, so that
P 02 WX . Hence X � P 02 , which is a contradiction.

Suppose that G has type B2. Let d � 1. If U=B is a non-abelian P-group of order
rt, with r > t, then H is elementary abelian of order r2, qÿ 1 � r and G � B2�2a� with
aX 2. But G has a graph automorphism g of order 2 interchanging the two maximal
parabolic subgroups above B. Then dgd cannot be an autoprojectivity of U , by
Proposition 1.7. On the other hand, if U=B is the four-group, then H is the four-
group and qÿ 1 � 2, contradicting d � 1. Thus suppose that d � 2. In this case we
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have H G �K � � K ��=C2 and since H2 has to be homocyclic, it must be cyclic, i.e. we
have qÿ 1 � 2 and G � B2�3�. We postpone the treatment of this group.

Suppose that G has type B3 or C3. We must have d � 2, since otherwise H G
K � � K � � K �. So H G �K � � K � � K ��=C2 and, by Proposition 1.1, we conclude
that qÿ 1 � 2, i.e. q � 3. We deal with the groups A3�3�, B3�3� and C3�3� simulta-
neously. Now H is the four-group, and hence U GQ8 b �Cs � Ct�. Let P be the
minimal parabolic subgroup associated with the fundamental root r and such that
U=PGQ8. Using the Levi decomposition with L � HhXr;Xÿri we have one of the
following:

hXr;XÿriG
SL2�3�
PSL2�3�

�

where Xr is isomorphic to C3 and is a Sylow 3-subgroup of L, by [1, Section 8.5]. In
both cases, �L=Xr� contains the interval �HXr=Xr� which is isomorphic to �H=1�, and
also the subgroup hXr;Xÿri which is not in �HXr=Xr�. This is a contradiction, since,
by �1�, d induces a duality from �P=U � onto �U=P�G �Q8=1�, while �P=U �G �L=Xr�.

Suppose that G � D4�3�. Since H, and so U=B, is the four-group and jo�U�j � 4,
we have U GQ8 b �Cr � Cs � Ct�. If P is the minimal parabolic subgroup such that
�U=P�G �Q8=1�, then using the same argument as in the previous case, we reach a
contradiction.

Suppose ®nally that G has type B2�3� (� C2�3�). Referring to [2, p. 26], we see
that G has order 26345. Let F� be a positive root system and let P be the
fundamental system contained in F�. We have P � fa1; a2g, and we assume a1 long,
a2 short. Then F��fa1; a2; a1�a2; a1�2a2g, U�Xa1

Xa2
Xa1�a2

Xa1�2a2
, B�HU ,

HGC2 and B 0 � Xa2
Xa1�a2

Xa1�2a2
, by [1, p. 175]. Let P1 � hB;Xÿa1

i, P2 � hB;Xÿa2
i

be the minimal parabolic subgroups above B. By [1, p. 186], we have

hXa1
;Xÿa1

iG SL2�3�; hXa2
;Xÿa2

iGPSL2�3�;

and hence H W hXa1
;Xÿa1

i and H VhXa2
;Xÿa2

i � 1. The unipotent radical UP1
of

P1 is Xa2
Xa1�a2

Xa1�2a2
, and thus it coincides with B 0. Moreover, P1 � UP1

L1, with

L1 � HhXa1
;Xÿa1

i � hXa1
;Xÿa1

iG SL2�3�:

Since SL2�3�0 � Q8, we have

P 01 X hB 0;Q8i � UP1
Q8 and P1=UP1

Q8 GL1=Q8 GC3:

Hence P 01 � UP1
Q8 has index 3 in P1. On the other hand we have P2 � UP2

L2 and
L2 � HhXa2

;Xÿa2
iGS4. In this case P 02 � hU ;Xÿa2

i has index 2 in P2.

Since l � 2 and H GC2, we have jU j � r2 p and B � CrCp. But

�P2=U �G �S4=�S4�3�GCp � Cr;
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so that U � Cr2 � Cp. Moreover it is clear that jP1j � p and jP2j � r, since P 02 > U ,
and P 02 0B.

Suppose that there exists a maximal subgroup M of G containing P 01 but di¨erent
from P1. By index considerations, and from the fact that �P1�2 l �P2�2, we must have
M � P

g
1 for some g B P1. Let X � �P 01�g

ÿ1

. From P 01 < P
g

1 it follows that jP1 : X j � 3
and X 0P 01, since g B P1 �N�P 01�. If X tP1, then X � P 01, a contradiction. Then
P1=XP1

GS3, and there exists Y tP1 of index 2, again a contradiction. It follows
that �G=P 01 � is a chain of length 2.

Now H is the center of L1, and so Y � UP1
H is normal in P1. We have �P1=Y �G

�L2=H�G �A4=1�. Since jP1j � p and P 01 is a chain of length 2, we also have P 01 GCp2 ,
so that P 01 WZ�hP 01 ;Bi� � Z�Y �. Now Y=P1 is generated by the two minimal
subgroups B=P1 and P 01=P1. Also B<�Y . Hence Y=P1 is either cyclic, a P-group of
order pq or a Frobenius group of order pqa in which �P1=Y � dually embeds. Since
�P1=Y �G �A4=1�, we are left with the case when Y=P1 is a Frobenius group. But
d induces a bijection between the set of maximal subgroups of P1=Y and the set of
minimal subgroups of Y=P1. In fact, if X=P1 is a minimal subgroup of Y=P1, then
X is 2-generated, and hence X � X d for a unique X WG. But then X A �P=Y � and
is maximal. On the other hand, if Y < M <�P1, then P1 <�M, by Lemma 1.2.
Finally we deduce that P1=Y has ®ve maximal subgroups. Since there are no sol-
utions to the equation 5 � 1� q� � � � � qa, we have proved that

a ®nite simple Chevalley group admits no D-situation for jK j0 2.

To complete our consideration of ®nite simple Chevalley groups in D-situation, we
are left with the case when the ®eld K has two elements. Here l X 2 and a Borel
subgroup B coincides with its unipotent subgroup U. Let P be a minimal parabolic
subgroup over B and let P � UPL be a Levi decomposition of P. Then LGS3 and
jU : UPj � 2. Set S � UPL3. Since S<�P we have S A �Co G�2 and, by [3], S has the
following property:

if S WM <�G then PWM:

It follows that if G is in D-situation with G, then by Lemma 1.6 the minimal
subgroups of UP generate the cyclic group B of square-free order. We are indebted to
B. Stellmacher for the following argument.

Let ~P be the maximal parabolic subgroup of G such that PV ~P � U , and let x be an
involution of L not contained in ~P. Now UP W ~PV ~Px and x A N� ~PV ~Px�. Moreover
x B ~PV ~Px. Hence �G= ~PV ~Px � contains at least the three distinct elements ~P, ~Px and
hxi� ~PV ~Px�. This is a contradiction to the fact that �G=M VM1� has just 4 elements
for any two distinct maximal subgroups M and M1 above UP.

3 Simple twisted groups of Lie type

We begin with twisted groups G1 obtained from Chevalley groups G �L�K� whose
Dynkin diagram has only single bonds. We denote by K0 the sub®eld of ®xed points
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of K under the corresponding ®eld automorphism. Therefore jK0j � q and jK j � q2

for types 2Al ,
2Dl ,

2E6, and jK j � q3 for 3D4, where q is some prime power.
Suppose that we have G1 � 2Al�q2�GPSUl�1�q2� with l X 2. Here we are using

[1, Theorem 14.5.1]. We consider separately the cases when l � 2; 3; 4; 5 and l X 6.
Let l � 2. Then H 1 GK �=Cd , where d � �3; q� 1�. We have B1 <�G1, H 1 cyclic,

and since H 1 is dual to U 1=B1, it is a p-group. Suppose that q is even. Then q > 2
since otherwise G1 is not simple. For d � 1 we have q2 ÿ 1 � pa, an equation with
no solution. For d�3, we have 3 j �q�1�, and q�1>3 because q>2. But then since
�q2ÿ1�=3 � pa, we must have p j �qÿ 1� and p j �q� 1�, contradicting the fact that q

is even.
Therefore we suppose that q is odd. For d � 1, q2 ÿ 1 � pa implies p � 2, q � 3,

that is, G1 � PSU3�9� and H 1 GC8. For d � 3, �q2 ÿ 1�=3 � pa implies p � 2,
qÿ 1 � 2m and q� 1 � 3:2n, m > 0 and n > 0. If m � 1, then q � 3, and 3a �q� 1�.
Hence n � 1, so that q� 1 � 6 and q � 5. It follows that G1 � PSU3�25� and
H 1 GC8. Thus we have to consider PSU3�9� and PSU3�25�.

Let G1 � PSU3�9�. We refer to [2, p. 14]. Set S � �G1�7. There exists only one
maximal subgroup above S, namely M GPSL2�7�. We have S<�N�S� � B<�M,
and �G1=S � is a chain of length 3. By Proposition 1.5, G1 is a Frobenius group of
order p3qa, where a > 1. Now G1 has N � 190 maximal subgroups, and so we have
N ÿ 1 � 33:7. If q is a prime divisor of N ÿ 1, then N � 1� q� � � � � qa has no
solution.

Now let G1 � PSU3�25�, so that jG1j � 24:32:53:7. Set S � �G1�2. There exist four
maximal subgroups Mi containing S, and one checks that NMi

�S� � S for each i, and
S<�Mi for one i, say i � 1. By Corollary 1.4, since S has only four minimal sub-
groups, we have jSj � 32:22, with S3 cyclic acting irreducibly on the four-group S2.
Hence we have a duality between �G1=S � and �S=1�, by �2�. Since M1 VM2 � S and
M1 UM2 < S, we have a contradiction.

Now let l � 3. Then H 1 G �K � � K �0 �=Cd , where d � �4; q� 1�. Here G1 has two
classes of maximal parabolic subgroups. Again we distinguish cases according to the
parity of q. Suppose that q � 2n. In this case d � �4; q� 1� � 1 and H 1 is cyclic
if and only if q � 2. But then PSU3�4�GB2�3�, which has already been excluded
in Section 2. We are left with n > 1. But by Proposition 1.1, U 1=B1 is a P-group of
order pq, with p > q, since jH 1j is odd. Hence �qÿ 1�2�q� 1� � p2, a contradiction.

Now suppose that q is odd. Consider ®rst the case when d � 2. Then
�H 1�2 X �C8 � C4�=C2 since 4a �q� 1�. Hence �H 1�2 is neither cyclic nor elemen-
tary abelian, and this is a contradiction by Proposition 1.1. Therefore we are left with
d � 4. Suppose that q > 3. Then there exists an odd prime p such that p j �qÿ 1�.
Also �H 1�p is elementary abelian of order p2 by Proposition 1.1. But then U 1=B1 is a
P-group, in contradiction to H 1

2 0 1. We are therefore left with q � 3, that is, with
the group G1 � PSU4�9�.

Let P be a maximal parabolic subgroup isomorphic to 31�4
� :2S4 (see [2,

p. 52]). Hence �P=UP�G 2S4, so that �P=U 1�G �2S4=�2S4�3�, where �2S4�3 GC3 and
�2S4�2 GQ16. But now in the interval �2S4=�2S4�3� there is a unique minimal sub-
group R, and �2S4=R� is a diamond, by which we mean the Hasse diagram labelled
B4 in [11, p. 5]. Since �2S4=�2S4�3� is dual to �U 1=P�, the group U 1=P has only one
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maximal subgroup, but it is not cyclic. This contradiction completes the case when
l � 3.

Suppose that l � 4. Then H 1 G �K � � K ��=Cd , where d � �5; q� 1�. Here G1 has
two classes of maximal parabolic subgroups. If q is odd, then �H 1�2 is neither cyclic
nor the four-group and we have a contradiction. Therefore we may assume that q

is even. Since there are only two minimal parabolic subgroups above B1 and jH 1j is
odd, H 1 must be either cyclic, or isomorphic to Cp � Cp, with p odd. Hence we are
left with q � 2, and G1 � U5�2� (see [2, p. 72]).

Set S � �G1�11. Then there is a unique maximal subgroup M containing S with
M GPSL2�11�. It follows that �G1=S � is the chain

S<�B �N�S�<�M <�G1

and G1 is a Frobenius group of order p3qa, with a > 1, by Proposition 1.5. Now
the number of maximal subgroups of G1 is N � 26 302, and N ÿ 1 � 3:11:797. If q

is a prime divisor of N ÿ 1, then the equation N � 1� q� � � � � qa has no solution,
and we have a contradiction.

Now suppose that l � 5. Here H 1 G �K � � K � � K �0 �=Cd , where d � �6; q� 1�. If
q is odd, then �H 1�2 is neither cyclic nor the four-group and this is a contradiction.
Thus we suppose that q is even. Suppose that q > 2. Then there is a prime p dividing
qÿ 1. Hence H 1 contains a subgroup isomorphic to Cp � Cp � Cp, and this is also a
contradiction. We are left with q � 2, that is with G1 � U6�2�. We postpone the
treatment of this case.

Finally suppose that l X 6. Then H 1 GR=Cd , where RXK � � K � � K � and
d � �l � 1; q� 1�. If q is odd, then �H 1�2 is neither cyclic nor the four-group and this
is a contradiction. Therefore we suppose that q is even. If q > 2, then there is a prime
p dividing qÿ 1. Hence H 1 contains a subgroup isomorphic to Cp � Cp � Cp, which
is a contradiction. We are left with q � 2. Then H 1 contains a subgroup isomorphic
to C3 � C3 � C3, which again is a contradiction.

Suppose that G1 � 2Dl�K�. Then

H 1 G �K � � K �0 � � � � � K �0
lÿ2

�=N;|��������������{z��������������}
where N � 1, C2 or C2 � C2, and jNj � �4; ql � 1�. If q is odd, then �H 1�2 is non-
trivial and is neither cyclic nor the four-group. This is a contradiction, so assume that
q is even. Then N � 1, and H 1 is 2-generated if and only if q � 2, that is, G � 2Dl�4�.
We shall deal with this case later.

Suppose that G1 � 3D4�q3�. Then H 1 GK � � K �0 . We consider ®rst the case when
q is odd. If 4j�qÿ 1�, then �H 1�2 is neither cyclic nor elementary abelian, which is a
contradiction. Hence qÿ 1 � 2m, where m is odd. Since G1 has two minimal para-
bolic subgroups, we have

B1 GC2 � Cr; U 1=B1 GV � C;

where V is the four-group and C is cyclic of odd order ra with aX 0. Hence either
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H 1 GV or H 1 GV � C, where C is a cyclic group of odd order. But then qÿ 1 � 2,
since otherwise C is not cyclic. Therefore we are left with q � 3, that is, G1 � 3D4�33�.
In this case, U1 � Q8Cr. Consider B1 <�P<�G1 such that P d � Cr. Then �P=U 1� is
dual to �Q8=1�, but B1=U 1 GV � C13, which is a contradiction.

We now consider the case when q is even. If q > 2, then a prime p divides qÿ 1.
Thus H 1 XCp � Cp, so that jU 1=B1j � pr, with p > r. But then H 1 � Cp � Cp, and
we have a contradiction on considering the order of H 1. Therefore we may assume
that q � 2, that is, G1 � 3D4�8� (see [2, p. 89]). Set S � G13. There exists a unique
maximal subgroup M containing S, namely M �N�S� � S cC4. Hence �G=S � is a
chain of length 3 and G1 is a Frobenius group of order p3qa, with a > 1. Now the
number of maximal subgroups of G1 is N � 5 565 964, and N ÿ 1 � 3:13:43:3319. If
q is a prime divisor of N ÿ 1, the equation N � 1� q� � � � � qa has no solution, and
we have a contradiction, by Proposition 1.5.

Suppose that G1� 2E6�q2�. Now H 1G�K � �K � �K �0 �K �0 �=Cd and d � �3; q�1�.
If q is odd, then �H 1�2 is neither cyclic nor the four-group, which is a contradiction.
Thus assume that q is even. If q > 2, then there is a prime p dividing qÿ 1. Hence H 1

contains a subgroup isomorphic to Cp � Cp � Cp, which again is a contradiction. We
are left with q � 2, that is, G1 � 2E6�4�.

We postpone consideration of this group until later and continue with the Suzuki
and Ree groups.

Suppose that G1 � 2B2�22m�1� with mX 1. We refer to [5, x7]. Here the interval
�G1=H 1� contains only three maximal subgroups, namely B1, N�H 1� � N 1 and
B1

op. Moreover jN 1 : H 1j � 2, so that, by Corollary 1.4, H 1 is a four-group dual to

�G1=H 1�. This is a contradiction, since H 1 is not maximal in B1.
Suppose that G1 � 2G2�32m�1�. This group is simple for mX 1 (see [1, Theorem

14.4.1]). Also H 1 �GK �� is cyclic of order 32m�1 ÿ 1, and B1 <�G1, by [5, p. 292].
So U1 is a cyclic p-group of order pa�1. Therefore 32m�1 ÿ 1 � ra for some prime r,
so that r � 2, which implies a � 1 and m � 0. This is a contradiction.

Suppose that G1� 2F4�22n�1�. This group is simple for nX1 (see [1, p. 268]). In this
case, G1 has two classes of parabolic subgroups and H 1 GK � � K �. Hence U 1=B1 is
a P-group and U 1 � Cp2 Ct2 , p � 22n�1 ÿ 1 and Z � Z�U 1� � Ct. Let P1, P2 be the
minimal parabolic subgroups above B1. Then, by [9], we have �P1=U 1�G �P2=U 1�.
This is a contradiction, since �U 1=Ct�l �U 1=Cp�.

To conclude our consideration of the twisted groups, we deal with the cases which
were excluded above, namely 2A5�4�GU6�2�, 2Dl�4� and 2E6�4�. We need a lemma
similar to the result used in the case of Chevalley groups over a ®eld of two elements.
For this purpose we introduce some notation.

Let G be a simple Chevalley group over K with jK j � 4. Let F be the set of roots,
F� a set of positive roots and P the corresponding fundamental system. Let U be the
maximal unipotent subgroup corresponding to P, and B the corresponding Borel
subgroup. For every root a, the root subgroup Xa is isomorphic to K. The subgroups
B1, N 1 form a �B;N�-pair of the twisted group G1, by [1, Theorem 13.5.4]. Let F1

be the corresponding root system of G1. Fix r A P such that rr � r, where r is the
symmetry of the Dynkin diagram we are considering. By [1, Proposition 13.6.3], we
have X 1

r GK0. In particular it follows that
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hX 1
r ;X

1
ÿriG SL2�2�GS3:

Put P � hB1;X 1
ÿri. Then P is a minimal parabolic subgroup containing B1, UP �

hX 1
s j s A �F1��nfrgi is its unipotent radical and P � UPL, with L � H 1hX 1

r ;X
1
ÿri,

is a Levi decomposition of P. Since hX 1
r ;X

1
ÿriGS3 and �H 1;X 1

Gr� � 1, we must
have H 1 tL and L=H 1 GS3. Then H 1UP tP, and P=H 1UP GS3. Moreover, P
contains S � UPL3 as a subgroup of index 2, and S VB1 � H 1UP.

Lemma 3.1. Every maximal subgroup of G1 containing S also contains P.

Proof. We use the corresponding argument in [3], replacing U by B1.

Now, in order to exclude the remaining cases, we may proceed as we did for the
simple Chevalley groups over the ®eld of two elements, replacing U with B1 and UP

by H 1UP. Therefore we have proved the following statement:

no ®nite simple twisted group of Lie type admits a D-situation.

Finally in this section we consider the simple Tits group. Let G1 � �2F4�2��0.
We refer to [2, p. 74]. There exists a maximal parabolic subgroup P such that B �
U <�P � UPL, where P=UP GLGS3. Set S � UPL3. Then P is the unique maximal
subgroup containing S. By Lemma 1.6, S is cyclic of order r2, and UP is an irre-
ducible Zassenhaus group of order 12, since UP=P is isomorphic to S3. Let ~P be the
other parabolic subgroup above B, and let x be an involution of L not contained in
~P. Now UP W ~PV ~Px and x A N� ~PV ~Px�. Moreover x B ~PV ~Px. Hence �G= ~PV ~Px�
contains at least the three distinct elements ~P, ~Px and hxi� ~PV ~Px�. This is a con-
tradiction to the fact that �G=M VM1� has just four elements for any two distinct
maximal subgroups M and M1 above UP.

4 The sporadic groups

This section is devoted to showing that no sporadic simple group admits a
D-situation. We consider all 26 of these groups in turn. In each case we include
the Atlas reference.

1. G �M11 ([2, p. 18]). Set S � G11. Then

S<�
5
N�S�<�M GL2�11�<�G;

and �G=S � is a chain of length 3. Here the integer below the inclusion sign denotes
index. Now the number of maximal subgroups of G is N � 309 and N ÿ 1 �
22:7:11. If q is a prime divisor of N ÿ 1, then the equation N � 1� q� � � � � qa

has no solution and we have a contradiction, by Proposition 1.5.

2. G �M12 ([2, p. 31]). Again set S � G11. There exist three conjugacy classes of
maximal subgroups containing S, represented by

M1 �M11; M2 � ~M11; M3 GL2�11�:
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Moreover N�S� � S cC5 and the maximal subgroups containing it are exactly
those indicated above. Since N �N�S� is maximal in M3, but is not maximal in
M11, the group N cannot be metacyclic. Hence it is a Frobenius group of order pqa

with a > 1, by Proposition 1.3, and this is a contradiction, since N contains more
than three minimal subgroups.

3. G �M22 ([2, p. 39]). Again set S � G11. Then

S<�
5
N�S�<�M GL2�11�<�G;

and �G=S � is a chain of length 3. Now the number of maximal subgroups of G is
N � 2300 and N ÿ 1 � 112:19. If q is a prime divisor of N ÿ 1, then the equation
N � 1� q� � � � � qa has no solution, and we have a contradiction by Proposition 1.5.

4. G �M23 ([2, p. 71]). Now set S � G23. Then

S<�
11

N�S�<�G;

and �G=S � is a chain of length 2. Now the number of maximal subgroups of G is
N � 44 413 and N ÿ 1 � 22:3:3701. If q is a prime divisor of N ÿ 1, the equation
N � 1� q� � � � � qa has no solution, and we have a contradiction, again by Propo-
sition 1.5.

5. G �M24 ([2, p. 96]). Again set S � G23. There exist two maximal subgroups
from di¨erent conjugacy classes containing S, namely M1 GM23 and M2 GL2�23�.
Both contain N�S� and we have

�G=S � � S<�N�S�<�M23;L2�23�<�G:

Hence S is not the intersection of cocyclic subgroups, and this is a contradiction.

6. G � J1 ([2, p. 36]). Now set S � G19. Then there exists a unique maximal sub-
group M above S, namely M �N�S�GS cC6. Therefore S has a unique minimal
subgroup and is not cyclic. Hence S is a quaternion group, which has three maximal
subgroups, which is again a contradiction.

7. G � J2 ([2, p. 42] and [4, p. 486]). Set S � G7. There exist two maximal subgroups
from di¨erent conjugacy classes containing S, namely M GU3�3� and LGPGL2�7�.
In fact there are exactly three maximal subgroups above S, namely M, M1 and L,
where M1 is a conjugate of M. We have

M VL �M1 VL � F GL2�7� and jL : F j � 2:

Let N �N�S� and B �M VN. Then N WL and jN : Bj � 2. The interval �L=B� is
a diamond. In particular it follows that N is cocyclic and B is maximal in N. By
Lemma 1.2 and Proposition 1.3, we obtain information on the structure of B.
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Suppose that B is a p-group. We have F <�B and N <�B, and hence

L � F VN tB:

But �B=L� is a diamond and this is a contradiction. Suppose that B is metacyclic.
Then jBj � p2q, with jNj � p2. But F has order pq and has three minimal subgroups,
so that p � q � 2, and this is a contradiction. Thus we are left with B � NQ, a group
of order p2qa where a > 1, with Q elementary abelian of order qa. But then B has at
least four minimal subgroups, which is a contradiction.

8. G � J3 ([2, p. 82]). Set S � G19. There exist two maximal subgroups M1, M2

containing S from di¨erent conjugacy classes, both isomorphic to L2�19�. We have

�G=S � � S<�N�S�<�M1;M2 <�G:

Hence S is not the intersection of cocyclic subgroups.

9. G � HS ([2, p. 80]). This time set S � G5. There are two maximal subgroups
M1, M2 containing S from di¨erent conjugacy classes, namely

M1 GU3�5� : 2; M2 GU3�5� : 2:

We have M1 VM2 � N �N�S�. Let Ui be the subgroup of Mi isomorphic to U3�5�
for i � 1; 2. Then U1 VN � U2 VN � X has index 2 in N. Since X is maximal in the
cocyclic subgroup N, we have N <�X . Moreover N tX , since N is the subgroup
generated by the minimal subgroups of X . Since X has only two minimal subgroups,
we have jX j � paqb, with aX 2 and b X 2 since both U1 and U2 are cyclic. On the
other hand we have jX : Nj � r for some prime r and jNj � pq. Hence jX j � pqr,
which is a contradiction.

10. G �McL ([2, p. 100]). Now set S � G11. There exist three maximal subgroups
Mi containing S from di¨erent conjugacy classes. Here M1 GM22, M2 GM11,
M3 GM22. In each Mi there exists a unique maximal subgroup containing S and
also N�S� (each isomorphic to L2�11�). It follows that S is not the intersection of
cocyclic subgroups.

11. G � Suz ([2, p. 131]). Here set S � G13. There exist four maximal subgroups Mi

containing S from di¨erent conjugacy classes:

M1 GG2�4�; M2 GL3�3� : 2; M3 GL3�3� : 2; M4 GL2�25�:

Let B �NM2
�S�. We have the following inclusions:

B<�LGL2�13�<�M1 <�G; B<�M2 <�G;
B < T GU3�4� : 2<�M1 <�G:
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In particular L and T are cocyclic and LVT � B. It follows that B � hL;Ti and
M2 <�B. Now B is not metacyclic, since the Dedekind chain condition is not sat-
is®ed, and hence it is a Frobenius group of order pqa, where a > 1, with an elemen-
tary abelian Sylow q-subgroup, by Proposition 1.3. We have jM2j � p and jM1j � q

since M1 is not maximal in B. It follows that L and T are both contained in Bq,
which is a contradiction, since B � hL;Ti.

12. G � He ([2, p. 104]). Set S � G17. There exists a unique maximal subgroup
M containing S, namely M � H : 2, with H GS4�4�. In H there are exactly two
maximal subgroups L and L� containing S and both are isomorphic to L2�16� : 2.
Let N1 �NH�S�. Then we have

N1 <�L; N1 <�L�; N1 � LVL�:

Since N1 has a unique minimal subgroup it follows that it is a generalized quaternion
group. Now we have

L<�N1; L�<�N1; M <�H � LVL� tN1;

so that N1=H is a four-group, and this is a contradiction because N1=H has only
two minimal subgroups, L=H and L�=H.

13. G � Ru ([2, p. 126]). Now set S � G29. There exists a unique maximal subgroup
MGL2�29� containing S as well as N �N�S�GScC14. We conclude the argument
as for G � J1.

14. G � Co1 ([2, p. 180] and [6, p. 304]). Here set S � G13. There exist two maximal
subgroups Mi containing S from di¨erent conjugacy classes, namely

M1 G �3: Suz�cC2; M2 G �A4 � G2�4��cC2:

We have N�S�WM2 and N�S�G ��S cC6� � A4�cC2. Let H � S � V4 WN�S�
(V4 WA4). We claim that H GM1. In fact we know that jNSuz�S� : Sj � 6 and
D26 WNSuz�S�. Hence no involution in 3: Suz centralizes S. Therefore V4 GM1,
since V4 centralizes S. It follows that M2 is the unique maximal subgroup of G above
H. Hence H, having a unique minimal subgroup, is a cyclic p-group or a generalized
quaternion group. But �G=H � is not a chain, since ��S cC6� � V4�=H GC6. On
the other hand, if H is generalized quaternion, then all its subgroups are 2-generated,
and dj�G=H � is a duality onto H. But H has three maximal subgroups, which is a
contradiction, since in �G=H � there are only two minimal subgroups.

15. G � Co2 ([2, p. 154]). Set S � G23. There exists a unique maximal subgroup
M GM23 containing S, and �G=S � is the chain

S<�N�S�<�M <�G;

where N�S�GS cC11. Hence G is a Frobenius group of order p3qa, with a > 1.
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Now G has N � 3 581 796 533 maximal subgroups, and N ÿ 1 � 22:23:101:385471. If
q is a prime divisor of N ÿ 1, one checks that N � 1� q� � � � � qa has no solution.

16. G � Co3 ([2, p. 134]). Again set S � G23. There exists a unique maximal sub-
group M above S and it is isomorphic to M23. Also �G=S � is the chain

S<�N�S�<�M <�G;
where N�S�GS cC11. So G is a Frobenius group of order p3qa, with a > 1. Now
G has N � 424 818 005 maximal subgroups, and N ÿ 1 � 22:132:23:89:307. If q is a
prime divisor of N ÿ 1, then N � 1� q� � � � � qa has no solution.

17. G � Fi22 ([2, p. 156]). Here set S � G11. There are three maximal subgroups
containing S from di¨erent conjugacy classes, namely

M1 G 2:U6�2�; M2 G 210:M22; M3 GM12:

We have jNMi
�S�j � 5:11 for i � 2; 3 and NM1

�S� �N�S� has order 2.5.11. Now
�G=N�S�� has only one maximal subgroup M1, and M1 has at least ®ve maximal
subgroups above T �N�S�, namely

2 �M12; 2 � �S3 �U4�2��; 2 �U5�2�; 2 �M22; 2 �M22:

Since T is a generalized quaternion group, it has only three groups covering M1, and
this is a contradiction.

18. G � Fi23 ([2, p. 177] and [6, p. 304]). Now set S � G23. There are two maximal
subgroups containing S from di¨erent conjugacy classes, namely M1 G 211 �M23 and
M2 GL2�23�. Let B �NM2

�S�. Then we know that B � S cC11, and S<�B<�M2.
On the other hand, let N tM1 be such that N G 211 and M1=N GM23. Then
SN=N is a Sylow 23-subgroup of M1=N, and we know that NM1=N�SN=N�GSC11.
Replacing M1 and M2 by conjugates if necessary, it follows that we may assume
that N�S�WM1. In particular M1 is the unique maximal subgroup conjugate to M1

containing S.
Since B<�M2 <�G, by Proposition 1.3, B is either metacyclic or it is a Frobenius

group. But we have B < NB<�M1 <�G, so that B is not metacyclic. Therefore B is a
Frobenius group of order pqa with aX 2. It follows that NB is elementary abelian of
order q b with b X 2, since NB is not cyclic. Let M be a maximal subgroup containing
NB. Then M is conjugate either to M1 or to M2. By order considerations, it must be
conjugate to M1, and therefore M �M1. This is a contradiction, since NB has more
than one minimal subgroup.

19. G � Fi 024 ([2, p. 200] and [6, p. 304]). Set S � G29. There exists a unique maximal
subgroup M of G containing S, namely M �N�S� � S cC28. Hence S is a gener-
alized quaternion group, and we have a contradiction.

20. G � O 0N ([2, p. 132]). Set S � G31. There are two maximal subgroups Mi con-
taining S. Both are isomorphic to L2�31� and contain N �N�S�. We have

N � S cC15; N <�M1; N <�M2; M1 VM2 � N:
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Let X A �N=S � be the subgroup of index 5 in N. Then X is not the intersection of
cocyclic subgroups, since �M1=X � and �M2=X � are chains and X is not cocyclic.

21. G � Ly ([2, p. 174]). This time set S � G67. There exists a unique maximal
subgroup M containing S, namely M �N�S� � S cC22, and we have the usual
contradiction.

22. G � J4 ([2, p. 190] and [6, p. 304]). Here set S � G43. There exists a unique
maximal subgroup M containing S, namely M �N�S� � S cC14, and we conclude
the argument as before.

23. G � HN ([2, p. 164]). Now set S � G19. There exists a unique maximal sub-
group M containing S, namely M GU3�8� : 3. Let N2 �N�S�, H be the normal
subgroup of M isomorphic to U3�8� and N1 �NH�S�. Then N1 dN2 <�M. Suppose
that N1 < X < M with H 0X 0N2. Then H VX � N1 tX , so that N1 t hX ;N2i
�M. Hence N1 tH, which is a contradiction, since H is simple. But then N1 has
a unique minimal subgroup but it is neither cyclic nor a quaternion group, and this
is a contradiction.

24. G � Th ([2, p. 176] and [6, p. 304]). Set S � G31. There are two maximal sub-
groups containing S from di¨erent conjugacy classes, namely

M1 �N�S�GS cC15; M2 G 25 � L5�2�:

Also M2 has a minimal normal subgroup N with M2=N GL5�2�. Set T �NM2
�S�.

Then jT : Sj � 5 and jM1 : T j � 3. Consider the subgroup NT of M2. Thus T <
NT < M2. Since T <�M1, the Dedekind chain condition does not hold in T and T

is a Frobenius group of order pqa with a > 1 and jM1j � p. But there are only four
maximal subgroups of G containing T, namely M1 and 3 subgroups conjugate to M2.
This is a contradiction, since T has at least seven minimal subgroups.

25. G � B ([16]). Set S � G47. There exists a unique maximal subgroup containing
S, namely M �N�S� � S cC23. It follows that �G=S � is a chain of length 2. Hence,
by Proposition 1.5, G is a Frobenius group of order p2qa with a > 1. There exists in G

a maximal subgroup M1 of order 25:3:5:31. Hence M VM1�1, so that G �hM;M1i,
which is a contradiction, since hM;M1i is contained in a subgroup of order pqa of G.

26. G �M ([2, p. 220] and [6, p. 305]). Here

jGj � 246:320:59:76:112:133:17:19:23:29:31:47:59:71:

We set S � G59. There exists a maximal subgroup M �N�S� � S cC29. Assume
there exists another maximal subgroup M1 containing S. Then M1 and M are
not conjugate. It follows that NM1

�S� � S and, by a theorem of Burnside, there
exists a normal complement K of S in M1. For each prime p dividing jK j, S

normalizes a Sylow p-subgroup of M1 and acts faithfully on it since C�S� � S.
Therefore p0 17; 19; 23; 29; 31; 47; 71. Let P be one of these Sylow p-subgroups,
so that p A f2; 3; 5; 7; 11; 13g. Consider the chief factors of SP below P. Then the
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smallest values of n for which GF�pn� has a 59th root of 1 are 29 and 58, and n � 58
for p � 2. Therefore S cannot act faithfully, and we have a contradiction. Hence M is
the unique maximal subgroup containing S.

There exists a maximal subgroup M1 �N�G71�GG71 cC35, and clearly we have
M VM1 � 1. Then we may conclude the argument as for G � B.

We have completed the examination of all sporadic groups. Taking into account
the results from the previous sections we have therefore proved our Theorem.
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