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Introduction

Given a group G, a subgroup K of G is called cocyclic (in G) if the interval [G/K] is
anti-isomorphic to the lattice of subgroups of a cyclic group. Let us denote by CG the
partially ordered set of all cyclic subgroups of G and by Co G the partially ordered set
of all cocyclic subgroups of G. We shall consider groups G, G for which the following
properties hold:

D there exists an anti-isomorphism 7z of Co G onto CG,
D»: every subgroup of G is the intersection of cocyclic subgroups,
Ds: if X, Y, Z are cocyclic subgroups of G, then

X>YNZ ifandonlyif X' <Y, Z).

Two groups G, G will be said to be in D-situation (relative to the map 7) if the
properties D1, D,, D3 hold. Also a group G will be said to admit a D-situation if there
exist a group G and a map t such that G and G are in D-situation. In [12] it was
shown that a finite soluble group admits a D-situation if and only if G has an auto-
duality. The aim of this paper is to prove the following result.

Theorem. A finite simple group G admits a D-situation if and only if G is abelian.

Section 1 contains several preliminary results and technicalities. Section 2 deals with
the alternating groups and the simple Chevalley groups, Section 3 with the twisted
simple groups of Lie type, and finally in Section 4 we consider the sporadic simple
groups. Our terminology and notation are quite standard (see for example [10] and
[11]). When discussing simple groups, we follow mainly [1], [2] and [6]. We denote by
C,, the cyclic group of order m and by S, the symmetric group of degree n. For each
prime p, G, denotes a Sylow p-subgroup of the group G, Z(G) is the center of G, and
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o(G) is the set of prime divisors of the order of G. The quaternion group of order 8
is denoted by Qg and the four-group by V. Thus V' = C, x C,. We denote by (CG),
the set of all subgroups of G that can be generated by at most two cyclic subgroups.
Dually, (Co G), denotes the set of all subgroups of G that are the intersection of at
most two cocyclic subgroups. We write X' <- G when X is a maximal subgroup of G.
Also A4 < B means that A4 is a proper subgroup of B, and 4 <« B means that 4 <2 B,
but 4 # B. A Zassenhaus group is a group with all Sylow subgroups cyclic. If P is
a parabolic subgroup of a group of Lie type of characteristic p, then the unipotent
radical of P is its maximal normal p-subgroup, denoted by Up. All groups considered
here are finite.

1 Preliminary results

Let G and G be two groups in D-situation via the map 7. Then the maps

0:L(G) — L(G), Hr (X*|X e Co[G/H]>

6:L(G)—L(G), H— () X*' (1)
XeCH

are inclusion-reversing, with 50 = 1. Moreover, by [12],

d|(Co G), is an anti-isomorphism of (Co G), onto (CG),
whose inverse is 0|(CG),. (2)

The map ¢ is a duality if and only if G is projective to G, in which case G is soluble
and projective to an abelian group (see [15] and [17]).

Assume now that G is a finite simple group of Lie type and consider a maximal
unipotent subgroup U of G. Let B = A"(U) be the Borel subgroup above U, let H be
a complement of U in B, as defined in [1], and let N < A"(H) be such that N/H is
the Weyl group. Then it is known that

if U< M<- G then B< M. (3)

(see for example [3]). If one considers the map J : G — G, then since [G/B] is a
Boolean lattice, B = B’ is a cyclic group of square-free order and, by (3), it is
generated by the set of minimal subgroups of U = U?. It follows that the minimal
subgroups of U are all normal in U, and the Sylow subgroups are either cyclic or
generalized quaternion.

Assume that the Sylow 2-subgroup of U is a generalized quaternion group O and
set T = QB < U. By [8], L(T) = (CT),, so there exists T € [B/U] = [H /1] such that
T = T? and, by (2), §|[B/T] is an anti-isomorphism of [B/T] onto T/B = Q/Z(0).
So Q/Z(Q) is a modular group, since H is abelian, and therefore it is the four-group.
Hence Q = (&, ) is the quaternion group.

Now assume that U non-soluble. By [13, Theorem A], we have a Hall factorization

U/(X?y = (L/KE) x (KZ,%7)/{xX*))
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with L/{x?> =~ PSL;(p) and Z a Zassenhaus group of odd order. Since
(><ILNB=L<U,

we conclude that LN B = (x?), a contradiction. We have therefore proved

U is a soluble group with all Sylow subgroups cyclic or quaternion. Moreover
L(U) = (CU), by [8], and the minimal subgroups of U are normal. 4)

Proposition 1.1. Let G be a simple group of Lie type, with B a Borel subgroup of G, U
its unipotent radical and H a maximal torus of B. Assume that G is in D-situation with
G and § : G — G is the associated anti-monomorphism of L(G) into L(G). Then the
following are true.

() Bis a cyclic group of square-free order generated by the minimal subgroups of U,
and 6|[G/ U] is an anti-isomorphism of G/ U] onto [U/1].

(i) If U # B, then there is a Hall factorization
U/B=P  xPyx--x P, xC.
Here t = 0, C is cyclic, and, for i > 1, P; is a P-group of order p,q; with p; > ¢;
while either
(a) Py is a P-group of order p,qi with p; > q1, or

(b) Py is the four-group, and this is the case if and only if U contains a quaternion
subgroup.

(iii) The Sylow subgroups of H are elementary abelian of order p? or cyclic.

(iv) U = U, % Uy, where U, is a Hall subgroup and a Zassenhaus group, and there is
a Hall decomposition

UIZRle_er-HXR,.

Here, for i > 1, R; a non-cyclic Zassenhaus group of order p>q? with center of
order q;. In case (a), Ry is a non-cyclic Zassenhaus group of order p?q} with center
of order qi, and in case (b), Ry is the quaternion group. Moreover

Proof. As already pointed out, §|[G/U] is an anti-isomorphism of [G/U] onto [U/1].
In particular we have a duality of B/U =~ H onto U/B, and so, by (4) and [11,
Theorem 8.2.2], (ii) must hold. Then (iii) follows from (ii).

Write B = B x By, with w(B;) = w(B)\w(P; x --- x P,). We have

U/E; U]/Bl X Uz/gz,
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for certain subgroups U;, U,, with
Ul/BlgPlx---xP,, Uz/Bz%C.

Then _171 NU, = El_ﬂ B =1, and hence U= l7|£72. Moreover, since o(U,)) =
B =U, we ha\ie U,<U and U; = R; x X Ry, whe_re R; has the required
structure, while U, is a Zassenhaus group with U} < B, = BN U,.

It will be useful to observe that, in the above situation, the number of maximal
subgroups of G containing U is equal to the number of distinct prime divisors of |U|.

Lemma 1.2. Let G be a group in D-situation with G. If H <- X € Co G, then X° <- H°.

Proof. This is clear if H € Co G. Otherwise we have H = X N Y for some Y € Co G
and, by (2), H° =<(X° Y%, Let X°<-T < H’; then T € (CG),, so by (2) there
exists a (unique) subgroup T < G such that 7 = T°. It follows that H < T < X.
Hence H = T, and X° <- H°.

Proposition 1.3. Let K be a maximal subgroup of the group L and suppose that K is a
cyclic p-group. Then either L is metacyclic or L = Q X K, where Q is an elementary
abelian Sylow subgroup of L of order ¢* with o > 1 on which K acts irreducibly.

Proof. Assume that L is not metacyclic. Then K is a Sylow p-subgroup of L with
A(K) =K, so that L = Q > K for some subgroup Q of L. But K <- L implies that
Q is an elementary abelian g-group on which K must act irreducibly.

Corollary 1.4. Let G be a group in D-situation with G and let K € Co G be such that
[G/K] is a chain. If H<-K, then H° has the structure of the group L in 1.3, and
0||G/H] is an anti-isomorphism onto [H°/1] when H® is metacyclic.

Proof By Lemma 1.2 we have K° <- H°, and the result follows by Proposition 1.3
and (2).

Proposition 1.5. Let G be a simple non-abelian group in D-situation with G and
let S be a minimal subgroup of G such that [G/S] is a chain of length n. Then G is a
Frobenius group, with S = S° a cyclic subgroup of order p" (for some prime p) and
with Frobenius kernel Q an elementary abelian group of order q* for some oo > 1. The
number N of maximal subgroups of G is given by N =1+¢q+ ---+ ¢*.

Proof. Clearly S is cyclic of order p” for some prime p. If G is metacyclic, then the
simple non-abelian group G is dual to G, by (2). According to [15], this is a contra-
diction. Thus, by Proposition 1.3, G = Q < S and Q is an elementary abelian g-group
of order ¢*, for some o > 1, on which S acts irreducibly.

Clearly if n =1, then G is a Frobenius group. Thus suppose that n > 1 and let
S < M<-G. Since /(M) =M, for x e G\M we have M~ # M and [G/S™] is also
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a chain of length n, with S* < M* <. G. Therefore S~ is a cyclic group of order p”,
since n > 1, and SNS~ =1 since M N M~ = 1. But then also SN S” =1 for any
1 # y e Q, that is, G is a Frobenius group.

Finally N equals the number of minimal subgroups of G, whichis 1 + ¢ + - - - + ¢*.
The result follows.

For future use and as a complementary statement to Proposition 1.1, we prove

Lemma 1.6. Let G be a group with subgroups R, S, B, P such that R<1 P, P/R =~ S3,
R < S<1P, R< B< Pand|G/B] is a Boolean lattice. Assume also that every maximal
subgroup of G containing S also contains P. If G is in D-situation with a group G, then
R is a Zassenhaus group and the minimal subgroups of R generate the square-fiee cyclic
group B.

Proof. Note that, by our assumption, we have P # G. It is clear that the square-free
cyclic group P = P? is generated by the minimal subgroups of S and, since P <1 S by
Lemma 1.2, S'is a Zassenhaus group with just one Sylow subgroup of order r?, where
|S : P| =r. We have

|Bl=rpr...ppis1s |Pl=rpr...p |SI=rpi...p,
for some ¢ > 0. Since R <- B and P <a- B, we have
P =(B,5) = Re (CG),

By Proposition 1.3, either R/P is a P-group of order pq with p > g, or R/P is
a Frobenius group F of order pg* with o > 1 and elementary abelian Frobenius
kernel F,.

Suppose that we have the second case. Whenever P<-X < R, it follows that X
is 2-generated. Therefore there exists a unique X satisfying R < X <- P such that
X = X°. Then we have a contradiction, since [P/R] has only 4 maximal sub-
groups. Therefore R/P is a P-group of order pg with p >¢. But |S: P| =r and
|B: P|=p,, so that p #q. Again every X € [R/P] is 2-generated, and hence
6|[P/R] is a duality onto [R/P], so that R/P = S;.

Suppose that |R B| = 3. Then |B: P| =2 and hence 2 f |P|. Thus |S : P| = 3 and
so R3 > Cy and B, acts non-trivially on R3. But then B, acts non-trivially on Bs, a
contradiction since B is abelian. Thus we are left with the case when |R: B| = 2.
Then B = R, (R); has order 3 and |S : P| = 2. Hence r = 2, the Sylow 2-subgroups
of R are cyclic of order 4, and p,., = 3. So the Zassenhaus group R has order
12p, ... p, and the involution in B is central. Therefore the minimal subgroups of R
are in B.

Proposition 1.7. Let G be an indecomposable Zassenhaus group, p a prime divisor of
|G'| and ¢ a projectivity of G. If G is not a P-group of order pq with p > q, then ¢ is
regular at p.
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Proof. Let S be a Sylow p-subgroup of G'. If ¢ is singular at p, then S < Z(G), by
[11, Lemmas 4.2.2 and 4.2.3]. This is a contradiction.

2 Alternating groups and simple Chevalley groups

In this section we deal with alternating groups and simple Chevalley groups in
D-situation.

Proposition 2.1. The alternating group G = A, admits a D-situation if and only if
n<3.

Proof. We suppose that n > 5. We denote by G; the stabilizer of i for each i < n, and
by G, ; the intersection G;NG; for i # j. Since G is (n— 2)-transitive, we have
G i< Gi<G.

We show that if G; ; < M <- G, then M is not transitive. We may assume M dif-
ferent from G;. Since G; ; has index n(n — 1), if M were transitive, then |M : M;| = n,
and M; = M N G; = G; ;. Hence |G : M| =n — 1 < n, which is a contradiction. From
the classification of the maximal non-transitive subgroups of G (see [7]), it follows
that in [G/G; ;] there are only three maximal subgroups: G;, G; and W; ;, where
W; ; is the stabilizer of the subset {i, j}. Moreover, since |W; ;: G; j| = 2, we have
G; j<-Wi ;. Hence [G/G; ] is the lattice of subgroups of the four-group. By Corol-
lary 1.4, G, ; is a four-group. In particular [G;, Gj] = 1.

Now let i, j, k be distinct. If G; ; x = G;NG; N Gy, then G,,k—G X G x Gy.
On the other hand, G; ;= W, ;N Wy, so that G, k= Wi x Wiy, Wthh 1S a
contradiction. The general conclusion follows from [12].

We deal next with Chevalley groups. Let G = £ (#") be a simple Cheleley group
associated with the Lie algebra & of rank /, where K is a field of ¢ = p* elements with
p a prime. If G is in D-situation with G, then by Proposition 1.1 we know that H has
to be 2-generated. On the other hand

H>~(K*x---xK")/T,
—_—,——
I

where K* is cyclic of order ¢ — 1 and T is a cyclic group of known order or the four-
group (see [1, p. 122]). One concludes that for |K| # 2, G has to belong to one of the
families

A, B, C; withl <3, G, or D4(3). (5)

We consider each of these possibilities, assuming that |K| # 2.

Suppose that G has type A;. Here T is cyclic of orderd = (I + 1,4 — 1).

Consider first the case when / =3. So d =2 or 4. If d =2, then for H to be
2-generated, we must have ¢ — 1 =2, i.e. G = A3(3). We shall deal with this case
later. If d = 4, then for H to be 2-generated, we must have ¢ — 1 = 4. But then H is
of exponent 4 and not cyclic, in contradiction to Proposition 1.1 (iii).
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Now suppose that / =2. So d =1 or 3. We have two maximal parabolic sub-
groups P;, P> and a graph automorphism y of G of order 2 such that P/ = P,,
U’ =U and {r,s} = w(U). We see that d =1 if and only if 3 f¢g— 1. Here H =~
K* x K*, and since H, has to be elementary abelian of order 7>, U/B is a P-group
or a four-group. In the former case, U/B has order rs with r >s. Then U is a
Zassenhaus group of order r2s?. Since §|[G/U] is a duality onto U (by Proposition
L.1), 5y5| U is singular, in contradlctlon to Proposition 1.7. If U/B is the four-group,
then U = Qg X C, (with r an odd prime), by Proposition 1.1, and 6yJ cannot have a
2-singularity on U. Suppose that d = 3. If ¢ — 1 = 3, then H is cyclic of order 3, so
|U| = r*t and 6y6|U cannot exist. If ¢ — 1 # 3, then Hj; is cyclic, so U/B is iso-
morphic to the direct product V' x C of the four-group V" and a cyclic group C, and
we conclude the argument as before.

We are left with the case when / = 1. Here G = PSL1(g), withg # 2,3, H  K*/C,
and d = (2,q — 1). The Borel subgroups are maximal in G and so U/B, U9/BY are
cyclic, where BN BY = H. It follows that U, UY and H are cyclic of prime-power
order. Since PSL,(5) =~ As and PSL,(9) =~ A4, we may assume ¢ # 2,3,5,9. But
then we have either H <-4 (H) <- G or H <- B<-G (by [14, Example 7 on p. 417])
and [G/H| contains either three atoms or three coatoms. Hence H is the four-group,
by Corollary 1.4. Therefore U =~ U9 =~ C,. with « > 2, and since <U,B9> =G =
(U9, B, we conclude that G =~ C»: x C,, in contradiction to (2) and the simplicity
of G.

Suppose that G has type G,. Here d = 1, H = K* x K* and there are two maximal
parabolic subgroups Py, P, above B. Hence U/ B is either a P-group of order r¢, with
r>t, or a four-group. Thus ¢ — 1 =r or 2. We distinguish two cases. Let g = 3.
Then by Proposition 1.1, U = Qg X C, and G = G»(3). There exists a graph auto-
morphism y of order 2 such that P/ = P, and U” = U. But 0yd cannot exist on U.

Now suppose that ¢ > 3. Then G G>(2%), with o > 1, since ¢ = 1 4 r where r is
an odd prime. Here U is a non-cyclic Zassenhaus group of order %z, with r > ¢,
while H is elementary abelian of order r2. Let IT = {r;,r,} be a fundamental system
for G, L; = H{X,,, X_,,>, and let P; = Up,L; be the Levi decomposition. Since r, but
not 12, divides |PSL(2%)|, we have L; > <{X,,, X_,,> = PSL,(2%). But H normalizes
every root subgroup, and hence L, = <X,,, X_,,>. We have P;/Up, = L;/1; in partic-
ular P] = UL, has index r in P;. Moreover B # UL, since L} is simple. Let |P;| = r,
|P,| =t. From the duality 6 : [G/U]— [U/1] we deduce that there are r* + 1 maximal
subgroups of P, containing U. But H acts on these maximal subgoups, fixing at least
two of them, namely B and P,. Since the orbits have length 1 or r, and r does not
divide 7> — 1, we have at least a third maximal subgroup X of P, containing U and
fixed by H. But then B= UH < A'(X) and P = BX. In particular X <2 P», so that
P; < X. Hence X = Pj, which is a contradiction.

Suppose that G has type B,. Let d = 1. If U/B is a non-abelian P-group of order
rt, with r > ¢, then H is elementary abelian of order 2, ¢ — 1 = r and G = B,(2%) with
o = 2. But G has a graph automorphism y of order 2 interchanging the two maximal
parabolic subgroups above B. Then 675 cannot be an autoprojectivity of U, by
Proposition 1.7. On the other hand, if U/B is the four-group, then H is the four-
group and ¢ — 1 = 2, contradicting d = 1. Thus suppose that d = 2. In this case we
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have H =~ (K* x K*)/C, and since H, has to be homocyclic, it must be cyclic, i.e. we
have ¢ — 1 =2 and G = B;(3). We postpone the treatment of this group.

Suppose that G has type B; or C3. We must have d = 2, since otherwise H =
K*x K*x K*. So H=~ (K* x K* x K*)/C, and, by Proposition 1.1, we conclude
that ¢ — 1 = 2, i.e. ¢ = 3. We deal with the groups 43(3), B3(3) and C3(3) simulta-
neously. Now H is the four-group, and hence U =~ Qg < (Cs x C;). Let P be the
minimal parabolic subgroup associated with the fundamental root r and such that
U/P = Qs. Using the Levi decomposition with L = H{X,, X_,» we have one of the
following:

- [ SL2(3)
X Xor) = {PSL2(3)
where X, is isomorphic to C; and is a Sylow 3-subgroup of L, by [1, Section 8.5]. In
both cases, [L/X,] contains the interval [HX,/X,] which is isomorphic to [H/1], and
also the subgroup <X,, X_,> which is not in [HX,/X,]. This is a contradiction, since,
by (1), § induces a duality from [P/U] onto [U/P] = [Qs/1], while [P/U] = [L/X,].

Suppose that G = Dy4(3). Since H, and so U/B, is the four-group and |w(U)| = 4,
we have U = Qg X (C, x Cy x C,). If P is the minimal parabolic subgroup such that
[U/P] = [Qg/1], then using the same argument as in the previous case, we reach a
contradiction.

Suppose finally that G has type B»>(3) (= C»2(3)). Referring to [2, p. 26], we see
that G has order 235, Let @' be a positive root system and let IT be the
fundamental system contained in ®*. We have IT = {a;, %}, and we assume o; long,
ay short. Then ®F={oy, 00,0402, 01 +202}, U=Xy X0 Xy 10Xy 1200, B=HU,
H=~Cyand B' = X,, X, 44, X, 4205, by [1, p. 175]. Let Py = (B, X_, >, Py = {B, X_,,>
be the minimal parabolic subgroups above B. By [1, p. 186], we have

<Xat17X*9!1> = SL2(3)a <X12>X70c2> = PSL2(3)7

and hence H < (X,,,X_,, > and H N<{X,,, X_,,» = 1. The unipotent radical Up, of
Py is Xy, Xy, 2, Xuy +24,> and thus it coincides with B’. Moreover, P; = Up, L;, with

Ly = H{ Xy, X0, ) = {Xyy, Xy ) = SL(3).
Since SL,(3)" = Qs, we have
P{ > (B, Qs)=Up Qs and Pi/Up Qs =Li/Qs=Cs.
Hence P/ = Up, Qs has index 3 in P;. On the other hand we have P, = Up,L, and
L, = H(X,,, X_4,) = S4. In this case P, = (U, X_,,) has index 2 in P,.

Since / =2 and H =~ C», we have |U| = r?p and B = C,C,. But

[P2/ U] = [S4/(S4)s] = Cp x G,
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so that U = C,. x C,. Moreover it is clear that |P;| = p and |P,| = r, since P} > U,
and P, # B.

Suppose that there exists a maximal subgroup M of G containing P/ but different
from P;. By index considerations, and frglm the fact that (P;); 2 (P2)2, we must have
M = P/ forsome g ¢ P;. Let X = (P/)? . From P/ < P/ it follows that | P, : X| =3
and X # P/, since g ¢ Py = A'(P/). If X 2 Py, then X = P/, a contradiction. Then
P,/Xp, = S3, and there exists ¥ <2 P; of index 2, again a contradiction. It follows
that [G/P/] is a chain of length 2.

Now H is the center of L, and so Y = Up H is normal in P;. We have [P/Y] =
[Lo/H] = [A4/1]. Since |P;| = p and P/ is a chain of length 2, we also have P/ = C,,.,
so that P/ < Z({P{,B)) =Z(Y). Now Y/P; is generated by the two minimal
subgroups B/P; and P{/P;. Also B<-Y. Hence Y /P; is either cyclic, a P-group of
order pq or a Frobemus group of order pg® in which [P;/Y] dually embeds. Since
[P1/Y] = [A4/1], we are left with the case when Y /P is a Frobenius group. But
o0 induces a bijection between the set of maximal subgroups of P;/Y and the set of
minimal subgroups of Y /Py. In fact, if X/P; is a minimal subgroup of Y /P, then
X is 2-generated, and hence X = X ) for a unique X’ < G. But then X € [P/Y] and
is maximal. On the other hand, if ¥ < M <- Py, then P; <-M, by Lemma 1.2.
Finally we deduce that P;/Y has five maximal subgroups. Since there are no sol-
utions to the equation 5 =1+ ¢ + --- + g%, we have proved that

a finite simple Chevalley group admits no D-situation for |K| # 2.

To complete our consideration of finite simple Chevalley groups in D-situation, we
are left with the case when the field K has two elements. Here / > 2 and a Borel
subgroup B coincides with its unipotent subgroup U. Let P be a minimal parabolic
subgroup over B and let P = UpL be a Levi decomposition of P. Then L =~ S3 and
|U : Up| =2.Set S = UpLs3. Since S <- P we have S € (Co G), and, by (3], S has the
following property:

if S<M< - Gthen P< M.

It follows that if G is in D-situation with G, then by Lemma 1.6 the minimal
subgroups of Up generate the cyclic group B of square-free order. We are indebted to
B. Stellmacher for the following argument.

Let P be the maximal parabolic subgroup of G such that PN P = U, and let x be an
involution of L not contained in P. Now Up < PN P* and x € ./"(PN P*). Moreover
x ¢ PN P~. Hence [G/PN P*] contains at least the three distinct elements P, P* and
{x)(PN P¥). This is a contradiction to the fact that [G/M N M| has just 4 elements
for any two distinct maximal subgroups M and M| above Up.

3 Simple twisted groups of Lie type

We begin with twisted groups G' obtained from Chevalley groups G = % (#") whose
Dynkin diagram has only single bonds. We denote by K the subfield of fixed points
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of K under the corresponding field automorphism. Therefore |Ko| = ¢ and |K| = ¢?
for types 2A;, 2Dy, >Eg, and |K| = ¢° for 3Dy, where ¢ is some prime power.

Suppose that we have G' = 24,(¢*) =~ PSU,,1(¢?) with / > 2. Here we are using
[1, Theorem 14.5.1]. We consider separately the cases when / =2,3,4,5 and / > 6.

Let / =2. Then H! =~ K*/C,, where d = (3,q + 1). We have B' <- G!, H! cyclic,
and since H'! is dual to U!/B!, it is a p-group. Suppose that ¢ is even. Then ¢ > 2
since otherwise G! is not simple. For d = 1 we have ¢> — 1 = p“, an equation with
no solution. For d =3, we have 3| (¢+1), and ¢g+1>3 because ¢> 2. But then since
(¢>*—1)/3 = p“, we must have p| (¢ — 1) and p| (g + 1), contradicting the fact that ¢
is even.

Therefore we suppose that ¢ is odd. For d =1, ¢> — 1 = p* implies p =2, ¢ = 3,
that is, G; = PSU3(9) and H! =~ C;. For d =3, (¢*> —1)/3 = p* implies p =2,
g—1=2"andg+1=32"m>0andn>0.1fm=1,theng=3,and 3y (¢ + 1).
Hence n=1, so that ¢+ 1 =6 and ¢ =35. It follows that G' = PSU;(25) and
H' =~ Cg. Thus we have to consider PSU3(9) and PSU;(25).

Let G! = PSU;(9). We refer to [2, p. 14]. Set S = (G'),. There exists only one
maximal subgroup above S, namely M = PSL;,(7). We have S<- A/(S) =B<-M,
and [G'/S] is a chain of length 3. By Proposition 1.5, G' is a Frobenius group of
order p3g*, where o > 1. Now G' has N = 190 maximal subgroups, and so we have
N —1=337.1f ¢ is a prime divisor of N — 1, then N =1+ ¢+ ---+ ¢* has no
solution.

Now let G! = PSU3(25), so that |G!| = 24.32.5%.7. Set S = (G'),. There exist four
maximal subgroups M; containing S, and one checks that .44, (S) = S for each 7, and
S <- M; for one i, say i = 1. By Corollary 1.4, since S has only four minimal sub-
groups, we have | S| = 32.22, with S3 cyclic acting irreducibly on the four-group S,.
Hence we have a duality between [G'/S] and [S/1], by (2). Since M, N M, = S and
MU M, < S, we have a contradiction.

Now let / = 3. Then H'! =~ (K* x K)/Cq4, where d = (4,q + 1). Here G has two
classes of maximal parabolic subgroups. Again we distinguish cases according to the
parity of ¢. Suppose that ¢ =2". In this case d = (4,¢+1) =1 and H! is cyclic
if and only if ¢ = 2. But then PSU3(4) =~ B,(3), which has already been excluded
in Section 2. We are left with n > 1. But by Proposition 1.1, U'/B!' is a P-group of
order pg, with p > ¢, since |H!| is odd. Hence (¢ — 1)*(¢ + 1) = p?, a contradiction.

Now suppose that ¢ is odd. Consider first the case when d =2. Then
(H'), > (Cs x C4)/C; since 4} (¢ + 1). Hence (H'), is neither cyclic nor elemen-
tary abelian, and this is a contradiction by Proposition 1.1. Therefore we are left with
d = 4. Suppose that ¢ > 3. Then there exists an odd prime p such that p|(g —1).
Also (H'), is elementary abelian of order p* by Proposition 1.1. But then U'/B' is a
P-group, in contradiction to H) # 1. We are therefore left with ¢ = 3, that is, with
the group G' = PSU,(9).

Let P be a maximal parabolic subgroup isomorphic to 31++4.2S4 (see [2,
p. 52]). Hence [P/ Up| = 284, so that [P/ U] = [2S4/(2S4),], where (254); =~ C; and
(284), = Q16. But now in the interval [254/(2S54),] there is a unique minimal sub-
group R, and [2S4/R] is a diamond, by which we mean the Hasse diagram labelled
By in [11, p. 5]. Since [2S4/(2S4);] is dual to [U!/P], the group U'/P has only one
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maximal subgroup, but it is not cyclic. This contradiction completes the case when
[=3.

Suppose that / = 4. Then H' = (K* x K*)/C,, where d = (5,q + 1). Here G' has
two classes of maximal parabolic subgroups. If ¢ is odd, then (H!), is neither cyclic
nor the four-group and we have a contradiction. Therefore we may assume that ¢
is even. Since there are only two minimal parabolic subgroups above B! and |H!| is
odd, H' must be either cyclic, or isomorphic to C, x C,, with p odd. Hence we are
left with ¢ = 2, and G' = Us(2) (see [2, p. 72)).

Set S = (G'),;. Then there is a unique maximal subgroup M containing S with
M =~ PSL;(11). It follows that [G'/S] is the chain

S<-B=AN(S)<-M<-G!

and G! is a Frobenius group of order p3¢* with o > 1, by Proposition 1.5. Now
the number of maximal subgroups of G! is N = 26302, and N — 1 = 3.11.797. If ¢
is a prime divisor of N — 1, then the equation N =1 + ¢ + - - - + ¢* has no solution,
and we have a contradiction.

Now suppose that / = 5. Here H'! =~ (K* x K* x K;)/Cq, where d = (6,q +1). If
q is odd, then (H'), is neither cyclic nor the four-group and this is a contradiction.
Thus we suppose that g is even. Suppose that ¢ > 2. Then there is a prime p dividing
g — 1. Hence H'! contains a subgroup isomorphic to C, x C, x C,, and this is also a
contradiction. We are left with ¢ = 2, that is with G' = Us(2). We postpone the
treatment of this case.

Finally suppose that /> 6. Then H'~ R/C,, where R> K* x K* x K* and
d=(I+1,g+1).1f ¢ is odd, then (H'), is neither cyclic nor the four-group and this
is a contradiction. Therefore we suppose that ¢ is even. If ¢ > 2, then there is a prime
p dividing ¢ — 1. Hence H! contains a subgroup isomorphic to C, x C, x C,, which
is a contradiction. We are left with ¢ = 2. Then H! contains a subgroup isomorphic
to C3 x C3 x C3, which again is a contradiction.

Suppose that G' = 2D;(K). Then

H'~ (K* x Kj x---x K;)/N,
S ——

-2

where N =1, C; or C; x Cy, and |N| = (4,¢' + 1). If ¢ is odd, then (H'), is non-
trivial and is neither cyclic nor the four-group. This is a contradiction, so assume that
giseven. Then N = 1, and H'! is 2-generated if and only if ¢ = 2, that is, G = 2D;(4).
We shall deal with this case later.

Suppose that G! = 3D4(¢?). Then H' =~ K* x K. We consider first the case when
¢ is odd. If 4|(q¢ — 1), then (H'), is neither cyclic nor elementary abelian, which is a
contradiction. Hence ¢ — 1 = 2m, where m is odd. Since G' has two minimal para-
bolic subgroups, we have

Bl~Cyx ¢, U'/B'2V xC,

where V is the four-group and C is cyclic of odd order * with « > 0. Hence either
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H'>~VorH' >~V x C, where Cis a cyclic group of odd order. But then ¢ — 1 = 2,
since otherw1se C is not cyclic. Therefore we are left with ¢ = 3, thatis, G' = 3D4(3?).
In this case, U; = QgC,. Consider B' <- P<-G' such that Po— C,. Then [P/U"] is
dual to [Qg/1], but B!/U' = V' x Cy3, which is a contradiction.

We now consider the case when ¢ is even. If ¢ > 2, then a prime p divides ¢ — 1.
Thus H! > C, x C,, so that |U!/B!| = pr, with p > r. But then H! = C, x C,, and
we have a contradiction on considering the order of H'. Therefore we may assume
that ¢ = 2, that is, G' = 3Dy(8) (see [2, p. 89]). Set S = G3. There exists a unique
maximal subgroup M containing S, namely M = A7(S) = S X C4. Hence [G/S] is a
chain of length 3 and G! is a Frobenius group of order p3¢?* with o > 1. Now the
number of maximal subgroups of G' is N = 5565964, and N — 1 = 3.13.43.3319. If
q is a prime divisor of N — 1, the equation N =1 + ¢ + - - - 4+ ¢* has no solution, and
we have a contradiction, by Proposition 1.5.

Suppose that G! =2Eq(¢?). Now H' =~ (K* x K* x K x K;)/Cq and d = (3,q+1).
If ¢ is odd, then (H!), is neither cyclic nor the four-group, which is a contradiction.
Thus assume that ¢ is even. If ¢ > 2, then there is a prime p dividing ¢ — 1. Hence H'
contains a subgroup isomorphic to C, x C, x C,, which again is a contradiction. We
are left with ¢ = 2, that is, G! = 2E¢(4).

We postpone consideration of this group until later and continue with the Suzuki
and Ree groups.

Suppose that G' = 2B, (2¥"*+!) with m > 1. We refer to [5, §7]. Here the interval
[G'/H'] contains only three maximal subgroups, namely B!, 4" (H') = N'! and
B, Moreover [N': H'| = 2, so that, by Corollary 1.4, H' is a four-group dual to
[G'/H!]. This is a contradiction, since H' is not maximal in B'.

Suppose that G! = 2G,(3>"+1). This group is simple for m > 1 (see [1, Theorem
14.4.1]). Also H' (=K*) is cyclic of order 3*"*! — 1, and B' <-G!, by [5, p. 292].
So U, is a cyclic p-group of order p**!. Therefore 3%"+! — 1 = r* for some prime r,
so that r = 2, which implies « = 1 and m = 0. This is a contradiction.

Suppose that G' =2F,(22"*1). This group is simple for n > 1 (see [1, p. 268]). In this
case, G' has two classes of parabolic subgroups and H' =~ K* x K*. Hence U'/B' is
a P-group and U' = C2Cp, p=2"""" — 1 and Z = Z(U') = C,. Let Pl, P, be the
minimal parabolic subgroups above B'. Then, by [9], we have [P;/U'] = [P,/ U"].
This is a contradiction, since [U!/C,] ¢ [U'/C,).

To conclude our consideration of the twisted groups, we deal with the cases which
were excluded above, namely %45(4) =~ Us(2), 2D;(4) and 2Es(4). We need a lemma
similar to the result used in the case of Chevalley groups over a field of two elements.
For this purpose we introduce some notation.

Let G be a simple Chevalley group over K with |K| = 4. Let ®@ be the set of roots,
@™ a set of positive roots and IT the corresponding fundamental system. Let U be the
maximal unipotent subgroup corresponding to Il, and B the corresponding Borel
subgroup. For every root «, the root subgroup X, is isomorphic to K. The subgroups
B', N' form a (B, N)-pair of the twisted group G', by [1, Theorem 13.5.4]. Let ®'
be the corresponding root system of G'. Fix r e IT such that rp = r, where p is the
symmetry of the Dynkin diagram we are considering. By [1, Proposition 13.6.3], we
have X,! =~ K. In particular it follows that



Recognising dualities in finite simple groups 387

X1 X!y =SLy(2) = S;.

Put P=(B', X! > Then P is a minimal parabolic subgroup containing B!, Up =
(X! se (®)"\{r}) is its unipotent radical and P = UpL, with L = H'<X!, X' >,
is a Levi decomposition of P. Since (X!, X' >~ S; and [H', X! ] =1, we must
have H' <L and L/H' ~ S;. Then H'Up = P, and P/H'Up =~ S;. Moreover, P
contains S = UpL; as a subgroup of index 2, and SN B' = H'Up.

Lemma 3.1. Every maximal subgroup of G' containing S also contains P.
Proof. We use the corresponding argument in [3], replacing U by B'.

Now, in order to exclude the remaining cases, we may proceed as we did for the
simple Chevalley groups over the field of two elements, replacing U with B! and Up
by H'Up. Therefore we have proved the following statement:

no finite simple twisted group of Lie type admits a D-situation.

Finally in this section we consider the simple Tits group. Let G' = (?F4(2))".
We refer to [2, p. 74]. There exists a maximal parabolic subgroup P such that B =
U<-P=UpL,where P/Up =~ L =~ S5. Set S = UpL3. Then P is the unique maximal
subgroup containing S. By Lemma 1.6, S is cyclic of order r?, and Up is an irre-
ducible Zassenhaus group of order 12, since Up/P is isomorphic to Si. Let P be the
other parabolic subgroup above B, and let x be an involution of L not contained in
P. Now Up < PN P~ and x € A" (PN P¥). Moreover x ¢ PN P*. Hence [G/PN P*]
contains at least the three distinct elements P, P~ and <x>(13ﬂi’x). This is a con-
tradiction to the fact that [G/M N M;] has just four elements for any two distinct
maximal subgroups M and M, above Up.

4 The sporadic groups

This section is devoted to showing that no sporadic simple group admits a
D-situation. We consider all 26 of these groups in turn. In each case we include
the Atlas reference.

1. G= M ([2, p. 18]). Set S = Gy;. Then
S<5~JV(S)<~M§L2(11)<~G,

and [G/S] is a chain of length 3. Here the integer below the inclusion sign denotes
index. Now the number of maximal subgroups of G is N =309 and N — 1=
22.7.11. If ¢ is a prime divisor of N — 1, then the equation N =14 ¢+ --- + ¢*
has no solution and we have a contradiction, by Proposition 1.5.

2. G= M, (|2, p. 31]). Again set S = Gy;. There exist three conjugacy classes of
maximal subgroups containing S, represented by

My =My, M,=M,, Ms=L(11).
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Moreover A°(S) =S X Cs and the maximal subgroups containing it are exactly
those indicated above. Since N = 47(S) is maximal in M3, but is not maximal in
M1, the group N cannot be metacyclic. Hence it is a Frobenius group of order pg*
with « > 1, by Proposition 1.3, and this is a contradiction, since N contains more
than three minimal subgroups.

3. G= My (]2, p. 39]). Again set S = G;. Then

S<5-:A/(S) <M =L)(11)<- G,

and [G/S] is a chain of length 3. Now the number of maximal subgroups of G is
N =2300 and N — 1 = 11%.19. If ¢ is a prime divisor of N — 1, then the equation
N =1+4¢+ -+ ¢* has no solution, and we have a contradiction by Proposition 1.5.

4. G = My ([2, p. 71]). Now set S = G3. Then

Si~,/1/(S)<-G,

and [G/S] is a chain of length 2. Now the number of maximal subgroups of G is
N =44413 and N — 1 =22.3.3701. If ¢ is a prime divisor of N — 1, the equation
N =1+4¢g+ -+ ¢* has no solution, and we have a contradiction, again by Propo-
sition 1.5.

5. G= My (2, p. 96]). Again set S = G,3. There exist two maximal subgroups
from different conjugacy classes containing S, namely M| =~ M»; and M, =~ L,(23).
Both contain ./°(S) and we have

[G/S] =S< /V(S) <- M23,L2(23) < G.

Hence S is not the intersection of cocyclic subgroups, and this is a contradiction.

6. G=J, ([2, p- 36]). Now set S = Gy9. Then there exists a unique maximal sub-
group M above S, namely M = ./(S) = § > Cg. Therefore S has a unique minimal

subgroup and is not cyclic. Hence S is a quaternion group, which has three maximal
subgroups, which is again a contradiction.

7. G=J, (2, p. 42] and [4, p. 486]). Set S = G7. There exist two maximal subgroups
from different conjugacy classes containing S, namely M =~ Us(3) and L =~ PGL(7).
In fact there are exactly three maximal subgroups above S, namely M, M; and L,
where M| is a conjugate of M. We have

MNL=MNL=F=Ly7) and |L:F|=2.
Let N=A4(S)and B= MNN. Then N < L and |N : B| = 2. The interval [L/B] is

a diamond. In particular it follows that N is cocyclic and B is maximal in N. By
Lemma 1.2 and Proposition 1.3, we obtain information on the structure of B.
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Suppose that B is a p-group. We have F <- B and N <- B, and hence

L=FNN =B

But [B/L] is a diamond and this is a contradiction. Suppose that B is metacyclic.
Then |B| = p?q, with |N| = p%. But F has order pg and has three minimal subgroups,
so that p = ¢ = 2, and this is a contradiction. Thus we are left with B = NQ, a group
of order p?q* where o > 1, with Q elementary abelian of order ¢*. But then B has at
least four minimal subgroups, which is a contradiction.

8. G=1J; ([2, p- 82]). Set S = Gy9. There exist two maximal subgroups M;, M,
containing S from different conjugacy classes, both isomorphic to L,(19). We have

[G/S] = S<- N(S) <My, M <-G.

Hence S is not the intersection of cocyclic subgroups.

9. G =HS (]2, p. 80]). This time set S = Gs. There are two maximal subgroups
M, M, containing S from different conjugacy classes, namely

M, = U3(5) :2, M, = U3(5) : 2.

We have M1 N M, = N = A°(S). Let U; be the subgroup of M; isomorphic to Us(5)
fori=1,2. Then UyNN = U, NN = X has index 2 in N. Since X is maximal in the
cocyclic subgroup N, we have N <-X. Moreover N < X, since N is the subgroup
generated by the minimal subgroups of X. Since X has only two minimal subgroups,
we have |X| = p*q”, with o > 2 and f > 2 since both U; and U, are cyclic. On the
other hand we have |X : N| = r for some prime r and |N| = pq. Hence |X| = pqr,
which is a contradiction.

10. G =McL ([2, p. 100]). Now set S = Gy;. There exist three maximal subgroups
M; containing S from different conjugacy classes. Here M| =~ My, M, = M,
M3 = M>,. In each M; there exists a unique maximal subgroup containing S and
also A4'(S) (each isomorphic to Ly(11)). It follows that S is not the intersection of
cocyclic subgroups.

11. G = Suz ([2, p. 131]). Here set S = G3. There exist four maximal subgroups M;
containing S from different conjugacy classes:

M, §G2(4), M2§L3(3) :2, M; %’L3(3) :2, M4§L2(25).
Let B = A4}, (S). We have the following inclusions:

B<-L=L,(13)<- M <-G, B< M;<-G,
B<T=x= U3(4) :2<- My <-G.
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In particular L and T are cocyclic and LN T = B. It follows that B = (L, T) and
M, <- B. Now B is not metacyclic, since the Dedekind chain condition is not sat-
isfied, and hence it is a Frobenius group of order pg*, where « > 1, with an elemen-
tary abelian Sylow g-subgroup, by Proposition 1.3. We have |M,| = p and |M,| = ¢
since M is not maximal in B. It follows that L and T are both contained in By,
which is a contradiction, since B = (L, T).

12. G=He ([2, p. 104]). Set S = G;;. There exists a unique maximal subgroup
M containing S, namely M = H : 2, with H = S4(4). In H there are exactly two
maximal subgroups L and L* containing S and both are isomorphic to L,(16) : 2.
Let Ny = Ay(S). Then we have

Ny<-L, Ny<-L*, N;=LNL".

Since N has a unique minimal subgroup it follows that it is a generalized quaternion
group. Now we have

L<-N;, L*< Ny, M<-H=LNL*=Nj,

so that Ny/H is a four-group, and this is a contradiction because N,/H has only
two minimal subgroups, L/H and L*/H.

13. G =Ru ([2, p. 126]). Now set S = Gy9. There exists a unique maximal subgroup
M = L,(29) containing S as well as N = /"(S) = S > Cj4. We conclude the argument
as for G = J;.

14. G = Co; ([2, p. 180] and [6, p. 304]). Here set S = G3. There exist two maximal
subgroups M, containing S from different conjugacy classes, namely

My = (3.8uz) X Gy, M = (A4 x G2(4)) X Ca.

We have A7 (S) < My and A(S) = ((S X Cg) x Ag) X Co. Let H =S x V3 < A(S)
(Vy < Ag). We claim that H £ M,. In fact we know that |45, (S): S| =6 and
Dy < Nsy,(S). Hence no involution in 3.Suz centralizes S. Therefore V; & M,
since V, centralizes S. It follows that M> is the unique maximal subgroup of G above
H. Hence H, having a unique minimal subgroup, is a cyclic p-group or a generalized
quaternion group. But [G/H] is not a chain, since ((S > C¢) x V4)/H = Cs. On
the other hand, if H is generalized quaternion, then all its subgroups are 2-generated,
and 6|[G/H] is a duality onto H. But H has three maximal subgroups, which is a
contradiction, since in [G/H | there are only two minimal subgroups.

15. G=Co; ([2, p. 154]). Set S = G3. There exists a unique maximal subgroup
M =~ M>; containing S, and [G/S] is the chain

S<- NM(S)<- M<-G,

where A(S) = S > Cj;. Hence G is a Frobenius group of order p3¢®, with o > 1.
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Now G has N = 3581 796 533 maximal subgroups, and N — 1 = 22.23.101.385471. If
q is a prime divisor of N — 1, one checks that N =1+ ¢ + - - - + ¢* has no solution.

16. G = Cos ([2, p. 134]). Again set S = G,3. There exists a unique maximal sub-
group M above S and it is isomorphic to M»3. Also [G/S] is the chain

S<- N(S)<-M<-G,

where A(S) = S < Cy;. So G is a Frobenius group of order p3¢?*, with « > 1. Now
G has N = 424 818 005 maximal subgroups, and N — 1 = 2%.132.23.89.307. If g is a
prime divisor of N — 1, then N =1 + ¢ + - - - + ¢* has no solution.

17. G =Fixn ([2, p. 156]). Here set S = Gy;. There are three maximal subgroups
containing S from different conjugacy classes, namely

M, =2.Us(2), M;=2"My, M;= M.

We have |A4},(S)| = 5.11 for i = 2,3 and A}, (S) = A(S) has order 2.5.11. Now
[G/A(S)] has only one maximal subgroup M|, and M, has at least five maximal
subgroups above T = A7(S), namely

2-1‘4127 2(53 X U4(2)), 2. US(Z), 2-]‘4227 2-M22.

Since T is a generalized quaternion group, it has only three groups covering M, and
this is a contradiction.

18. G = Fiys ([2, p. 177] and [6, p. 304]). Now set S = G3. There are two maximal
subgroups containing S from different conjugacy classes, namely M; =~ 2!' . M>3 and
M, =~ Ly(23). Let B = A}, (S). Then we know that B =S X Cj, and S <- B<- M>.
On the other hand, let N < M; be such that N ~2!'' and M|/N =~ My;. Then
SN/N is a Sylow 23-subgroup of M;/N, and we know that A}, /n(SN/N) = SCi;.
Replacing M, and M, by conjugates if necessary, it follows that we may assume
that A(S) < M. In particular M, is the unique maximal subgroup conjugate to M,
containing S.

Since B<- M, <- G, by Proposition 1.3, B is either metacyclic or it is a Frobenius
group. But we have B < NB<- M| <- G, so that B is not metacyclic. Therefore B is a
Frobenius group of order pg* with o > 2. It follows that NB is elementary abelian of
order ¢# with § > 2, since NB is not cyclic. Let M be a maximal subgroup containing
NB. Then M is conjugate either to M or to M,. By order considerations, it must be
conjugate to M, and therefore M = M;. This is a contradiction, since NB has more
than one minimal subgroup.

19. G = Fiy, (2, p. 200] and [6, p. 304]). Set S = G19. There exists a unique maximal
subgroup M of G containing S, namely M = A"(S) =S > Cys. Hence S is a gener-
alized quaternion group, and we have a contradiction.

20. G =0'N ([2, p. 132]). Set S = G3;. There are two maximal subgroups M, con-
taining S. Both are isomorphic to L,(31) and contain N = A(S). We have

N=S>xCs N< M, N< M, M NM,=N.
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Let X € [N/S] be the subgroup of index 5 in N. Then X is not the intersection of
cocyclic subgroups, since [M;/X | and [M,/X ] are chains and X is not cocyclic.

21. G=1Ly (2, p. 174]). This time set S = Gg;. There exists a unique maximal
subgroup M containing S, namely M = A7(S) = S X Cy, and we have the usual
contradiction.

22. G=Js ([2, p. 190] and [6, p. 304]). Here set S = Gg3. There exists a unique
maximal subgroup M containing S, namely M = A7(S) = S X Cj4, and we conclude
the argument as before.

23. G =HN ([2, p. 164]). Now set S = Gj9. There exists a unique maximal sub-
group M containing S, namely M =~ Us(8) : 3. Let N, = A7(S), H be the normal
subgroup of M isomorphic to Us(8) and N} = A (S). Then Ny <« N, <- M. Suppose
that Ny < X < M with H # X # N,. Then HNX = N; == X, so that N; 2<{X,N,)
= M. Hence Ny <= H, which is a contradiction, since H is simple. But then N; has
a unique minimal subgroup but it is neither cyclic nor a quaternion group, and this
is a contradiction.

24. G =Th ([2, p. 176] and [6, p. 304]). Set S = G3;. There are two maximal sub-
groups containing S from different conjugacy classes, namely

My = A (S) =S Ci5, My=2°Ls2).

Also M; has a minimal normal subgroup N with M,/N = Ls(2). Set T = ), (S).
Then |T:S| =5 and |M, : T| = 3. Consider the subgroup NT of M,. Thus T <
NT < M,. Since T <- M, the Dedekind chain condition does not hold in T and T
is a Frobenius group of order pg* with « > 1 and | M| = p. But there are only four
maximal subgroups of G containing 7', namely M and 3 subgroups conjugate to M.
This is a contradiction, since T has at least seven minimal subgroups.

25. G = B ([16]). Set S = Gy;. There exists a unique maximal subgroup containing
S, namely M = A(S) =S > Cy. It follows that [G/S] is a chain of length 2. Hence,
by Proposition 1.5, G is a Frobenius group of order p*q* with o« > 1. There exists in G
a maximal subgroup M; of order 2°.3.5.31. Hence M N M =1, so that G =<{M, M),
which is a contradiction, since (M, M) is contained in a subgroup of order pg* of G.

26. G =M (2, p. 220] and [6, p. 305]). Here
|G| = 2%.3%0.5.7.112.13%.17.19.23.29.31.47.59.71.

We set S = Gsy. There exists a maximal subgroup M = A(S) = § X Cy. Assume
there exists another maximal subgroup M; containing S. Then M; and M are
not conjugate. It follows that .4}, (S) =S and, by a theorem of Burnside, there
exists a normal complement K of S in M;. For each prime p dividing |K]|, S
normalizes a Sylow p-subgroup of M; and acts faithfully on it since %(S)=S.
Therefore p # 17,19,23,29,31,47,71. Let P be one of these Sylow p-subgroups,
so that p e {2,3,5,7,11,13}. Consider the chief factors of SP below P. Then the
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smallest values of n for which GF(p") has a 59th root of 1 are 29 and 58, and n = 58
for p = 2. Therefore S cannot act faithfully, and we have a contradiction. Hence M is
the unique maximal subgroup containing S.

There exists a maximal subgroup M| = A"(G7;) = G7; X C3s, and clearly we have
M N My = 1. Then we may conclude the argument as for G = B.

We have completed the examination of all sporadic groups. Taking into account
the results from the previous sections we have therefore proved our Theorem.
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