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On Dwork cohomology for singular

hypersurfaces

Francesco Baldassarri and Pierre Berthelot ∗

Abstract. Let Z be a projective hypersurface over a finite field. With no smoothness
assumption, we relate the p-adic cohomology spaces constructed by Dwork in his study
of the zeta function of Z (cf. [29], [30], [31]), to the rigid homology spaces of Z. The
key result is a general theorem based on the Fourier transform for D†

X , Q-modules [40],
which extends to the rigid context results proved in the algebraic one by Adolphson and
Sperber [3], and Dimca, Maaref, Sabbah and Saito [27]. If V, V ′ are dual vector bundles
over a smooth p-adic formal scheme X , u : X → V ′ a section, Z the zero locus of its
reduction mod p, this theorem gives an identification between the overconvergent local
cohomology of OX , Q with supports in Z and the relative rigid cohomology of V with
coefficients in the Dwork isocrystal associated to u. Thanks to this result, we also give
an interpretation of a canonical filtration on the Dwork complexes in terms of the rigid
homology spaces of the intersections of Z with intersections of coordinate hyperplanes.
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Introduction

Following his proof of the rationality of the zeta function of an algebraic variety
over a finite field [28], Dwork wrote, between 1962 and 1969, a series of papers
([29], [30], [31], [32]) in which he developed a cohomological theory in order to
express the zeta function of a projective hypersurface as an alternating product of
characteristic polynomials for a suitable Frobenius action, as predicted by the Weil
conjectures. Since Dwork’s theory was based on the study of complexes of differ-
ential operators, it is natural to ask for the relations between his theory and other
cohomological theories based on differential calculus. For non-singular hypersur-
faces, this question was answered by Katz’s thesis [41], which gave interpretations
of Dwork’s algebraic and analytic cohomologies in terms of algebraic de Rham
cohomology and Monsky-Washnitzer cohomology.

In this article, we revisit this problem and give similar relations without the
non-singularity assumption. For algebraic Dwork cohomology, the method we use
here was introduced by Adolphson and Sperber in [3], where they generalize Katz’s
result to the case of smooth complete intersections in a smooth affine variety. It
was then generalized to the case of singular subvarieties by Dimca, Maaref, Sabbah
and Saito [27] using the techniques of algebraic D-module theory. In particular,
they made explicit the role played by the Fourier transform in the Adolphson-
Sperber isomorphism. They also introduced and studied a vector bundle V (m)

which allowed them to relate algebraic de Rham cohomology spaces with sup-
ports in a projective hypersurface Z of degree m with certain algebraic Dwork
cohomology groups.

Our main observation is that, thanks to the Fourier transform for D†X ,Q-
modules developed by Huyghe ([36], [38]), [40]), the methods of [27] can be ex-
tended to give comparison theorems between rigid cohomology groups with sup-
ports in Z and Dwork’s analytic cohomology. We also prove that the comparison
isomorphisms are compatible with Frobenius actions. This allows us to give a
cohomological interpretation of some formulas of Dwork relating Fredholm deter-
minants and zeta functions [29], and, more generally, to complete Dwork’s program
by proving that the constructions developed in [29] and [30] to treat the smooth
case yield the expected cohomology groups in the singular case as well. We note
that our methods can also be used to obtain comparison theorems between Dwork’s
dual theory, used in [31] to deal with the singular case, and de Rham and rigid
cohomologies with compact supports. However, in order to keep this article to a
reasonable size, we do not include these results here, and we hope to develop them
subsequently.

Let us indicate now more precisely the content of the various sections. The
first section is devoted to general results underlying the relation between Dwork’s
algebraic and analytic theories. We explain the construction of the specialization
morphisms relating algebraic de Rham cohomology and rigid cohomology, both
for ordinary cohomology and cohomology with compact supports. In the case
of varieties over number fields, we prove that these specialization morphisms are
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isomorphisms outside a finite set of primes, as in Dwork’s theory in the case of
hypersurfaces in a projective space.

In the second section, we recall some general definitions and results about the
Fourier transform for coherent D†V,Q-modules on a p-adic formal vector bundle
V, with dual V ′. Our main result here is theorem 2.14, which is the analogue of
[27, th. 0.2] in our context. As in the algebraic case, the core of the proof is the
identification of the Fourier transform of the structural sheaf (with overconvergence
conditions at infinity) of V with the overconvergent local cohomology sheaf of OV′
with supports in the zero section. In addition, we prove that these isomorphisms
are compatible with Frobenius actions.

The third section gives some consequences of theorem 2.14 in rigid cohomol-
ogy. The most important is theorem 3.1, which provides a canonical isomorphism,
compatible with Frobenius actions, between the rigid homology of the zero locus
Z of a section u of a vector bundle V ′, and the rigid cohomology of the dual vector
bundle V with coefficients in the Dwork isocrystal Lπ,u defined by the section u
and the canonical pairing V ′ × V → A1. We also verify that this isomorphism
is compatible under the specialization morphisms with the similar isomorphism
defined in [27] for algebraic de Rham cohomology.

The last two sections are devoted to the actual comparison theorems with
Dwork cohomology. For simplicity, we only consider here Dwork’s original theory
for hypersurfaces, although the same methods could clearly be applied to give sim-
ilar comparison theorems (even in the singular case) for the complexes introduced
by Adolphson and Sperber to compute the zeta function of smooth complete inter-
sections [1] (cf. also [20], [21]). Let R be the ring of integers in a finite extension K
of Qp, and f ∈ R[X1, . . . , Xn+1] an homogeneous polynomial of degree d, defining
a projective hypersurface Z ⊂ PnR. Let Y ⊂ PnR be the complement of the coor-
dinate hyperplanes, and Yk, Zk the special fibers of Y , Z. In section 4, we first
recall the construction of the Dwork complexes associated to f , as given in [29],
and of the operator α which enters in Dwork’s computation of the zeta function of
Zk ∩ Yk. Dwork’s algebraic complex is built from the graded K-algebra L gener-
ated by monomials Xu = Xu0

0 Xu1
1 · · ·X

un+1
n+1 such that du0 = u1 + · · ·+ un+1. For

the analytic complex, we use, as in rigid cohomology, the point of view of Monsky
and Washnitzer, and we replace Dwork’s spaces L(b), which are Banach spaces of
series in the Xu satisfying appropriate growth conditions, by the union L(0+) of
all L(b), b > 0. This does not change Dwork’s characteristic series.

Let V be the vector bundle associated to the sheaf OPn(d), D ⊂ V the union
of the inverse images of the coordinate hyperplanes in Pn and of the zero section
of V , VK , DK the generic fibers, Lπ,f the algebraic module with connection con-
structed as above using the section of V ′ defined by f , Lπ,f the corresponding
Dwork isocrystal. We show that the Dwork complexes are isomorphic to the com-
plexes of global algebraic differential forms (resp. analytic with overconvergence
at infinity) on VK , with logarithmic poles along DK , and coefficients in Lπ,f (resp.
Lπ,f ). We then use [27, theorem 0.2] and theorem 3.1 to identify the cohomol-
ogy of the Dwork complexes to the algebraic de Rham cohomology and to the
rigid cohomology of the generic and special fibers of Y with supports in Z, in a
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manner which is compatible with specialization morphisms (theorem 4.6). This
provides a cohomological interpretation of Dwork’s formula [28, (21)] relating the
characteristic series det(I − tα) with the zeta function of Zk ∩ Yk.

In the last section, we follow Dwork’s method to relate det(I − tα) to the
zeta functions of Zk and of all its intersections with intersections of coordinate
hyperplanes. For that purpose, we define an increasing filtration on the Dwork
complexes with the following properties. On the one hand, its Fil0 term computes
the primitive algebraic de Rham cohomology and the primitive rigid cohomology
of the generic and special fibers of Z (the algebraic statement was proved in [27]).
On the other hand, its graded pieces of higher degree decompose as direct sums
of Fil0 terms for the Dwork complexes of the intersections of Z with intersections
of coordinate hyperplanes. This also provides a cohomological interpretation of a
combinatorial formula of Dwork [29, (4.33)].

Most of this work was done during the special period “Dwork Trimester in
Italy” (May-July 2001). It is a pleasure for the second author to thank the Uni-
versity of Padova for its hospitality, as well as all the colleagues in the Mathematics
Department who contributed to creating a wonderful working environment.

General conventions

Throughout this paper, we will adopt the following conventions:
(i) If E is an abelian group, then EQ := E ⊗Q.
(ii) All schemes are assumed to be separated and quasi-compact.
(iii) Notation and shift conventions for cohomological operations on D-modules

are those of Bernstein and Borel [19].
(iv) In most of this article, a prime number p and a power q = ps of p will be

fixed. For simplicity, we will then call “Frobenius action” an action of the s-th
power of the absolute Frobenius endomorphism, and “F -isocrystal” an isocrystal
endowed with such an action (cf. 1.9 for details).

1. Specialization and cospecialization in rigid cohomology

One of the essential ingredients in Dwork’s study of the zeta function for a
singular projective hypersurface is the fact that, when the hypersurface is defined
over a number field, the analytic cohomology spaces which carry the Frobenius
action are isomorphic for almost all prime to their algebraic analogues. We give
here a general result from which this comparison theorem follows.

For that purpose, we first construct, for an algebraic variety Z over the ring of
integers of a local field of mixed characteristics, a specialization map which relates
the algebraic de Rham homology of the generic fiber of Z with the rigid homology
of its special fiber. We then prove that, when Z comes from a number field, this
map is an isomorphism for almost all primes. We also give a similar result for
rigid cohomology with compact supports.
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1.1. In this section, we fix a complete discretely valued field K of mixed charac-
teristics (0, p). We denote by R its valuation ring, by m its maximal ideal, and by
k its residue field. Let S = Spec(R), and let X be a smooth S-scheme. We first
recall how the rigid cohomology of its special fiber Xk can be computed using the
analytic space X an

K associated to its generic fiber XK .
The scheme X defines a p-adic formal scheme X over R, and we denote by XK

its generic fiber (in the sense of Raynaud), which is a quasi-compact open rigid
analytic subspace of X an

K . For example, if X is a closed S-subscheme of an affine
space ArS , XK is the intersection of X an

K with the closed unit ball in the analytic
affine space Ar an

K , which is independent of the chosen embedding into an affine
space over S. In the general case, the construction can be deduced from the affine
case by a glueing argument (cf. [12, 0.2] or [14]).

Thanks to results of Nagata ([45], [46]), one can find a proper S-scheme X and
an open immersion X ↪→ X. Let X be the formal scheme defined by X. Note
that, since X is proper over S, the two analytic spaces X an

K and XK coincide,
and that XK is the tube ]Xk[X of Xk in XK . We refer to [12, 1.2] for the general
notion of a strict neighbourhood of XK inX an

K = XK . In particular, X an
K is a strict

neighbourhood of XK inX an
K [12, (1.2.4) (ii)]. Therefore, the strict neighbourhoods

of XK contained in X an
K form a fundamental system of strict neighbourhoods of

XK . Moreover, an open subset V ⊂ X an
K is a strict neighbourhood of XK in X an

K

if and only if one of the two following equivalent conditions is satisfied:
(i) The covering (V,X an

K \ XK) of X an
K is admissible.

(ii) For any affine open subset U ⊂ X, and any closed embedding U ⊂ ArS ,
there exists a real number ρ > 1 such that V ∩U an

K contains U an
K ∩B(0, ρ), where

B(0, ρ) is the closed ball of radius ρ in Ar an
K .

Since these conditions are intrinsic on X (i. e. do not depend upon the com-
pactification X), it is thus possible to define directly on X an

K the notion of a
(fundamental system of) strict neighbourhood(s) of XK in X an

K .
If V ′ ⊂ V is a pair of strict neighbourhoods of XK in X an

K , let jV,V ′ : V ′ ↪→ V
be the inclusion. For any abelian sheaf E on V , we define

j†E := lim−→
V ′⊂V

jV,V ′∗ j
−1
V,V ′E,

where the limit is taken over all strict neighbourhoods V ′ of XK contained in V .
Note that the functor j† is an exact functor [12, (2.1.3)]. The sheaf j†E is actually
independent of V in the sense that, if V1 ⊂ V is a strict neighbourhood of XK , j†1
the analogue of j† on V1, and E1 = j−1

V,V1
E, there is a canonical isomorphism

j†E
∼−−→ RjV,V1∗j

†
1E1 (1.1.1)

(cf. [14, 1.2 (iv)]). Since, for any j†OV -module E (resp. j†1OV1-module E1), the
map E → j†E (resp. E1 → j†1E1) is an isomorphism [12, (2.1.3)], it follows
that the functors j−1

V,V1
and jV,V1∗ (resp. RjV,V1∗) give quasi-inverse equivalences

between the categories (resp. derived categories) of j†OV -modules and j†1OV1-
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modules. Moreover, for any j†OV -module E, the canonical morphism

RΓ(V,E) −→ RΓ(V1, j
−1
V,V1

E)

is an isomorphism.
In particular, we can apply this remark to V = X an

K and V1 = X an
K , and to the

de Rham complex of X an
K . If j†, j†X denote the corresponding functors, we obtain

in this way a canonical isomorphism

RΓrig(Xk/K) := RΓ(X an
K , j†Ω•

X an
K

) ∼−−→ RΓ(X an
K , j†XΩ•

X an
K

), (1.1.2)

which shows that the rigid cohomology of Xk can be computed directly on X an
K

without using a compactification of Xk.

1.2. Let Z ⊂ X be a closed subscheme, U = X \ Z, and let U = X \ Zk be the
formal completion of U . We denote by j†U the analogue of j†X obtained by taking
the limit on strict neighbourhoods of UK . Thanks to (1.1.2), the rigid cohomology
groups of Xk with support in Zk [14, 2.3] are given by

RΓZk, rig(Xk/K) ' RΓ(X an
K , (j†XΩ•

X an
K
→ j†UΩ•

X an
K

)t), (1.2.1)

where the subscript t denotes the total complex associated to a double complex.
On the other hand, we can consider the de Rham cohomology groups of XK

with support in ZK . Let u denote the inclusion of U in X. If I• is an injective
resolution of Ω•

XK
as a complex of sheaves of K-vector spaces over XK , we obtain

by definition

RΓZK , dR(XK/K) = Γ(XK , (I• → uK∗u
−1
K I

• )t).

We now construct a canonical morphism, called the specialization morphism:

ρZ : RΓZK , dR(XK/K) −→ RΓZk, rig(Xk/K). (1.2.2)

Observe that, if J in a flasque sheaf on X an
K , then, for any U ⊂ X, the sheaf j†UJ

is acyclic for the functor Γ(X an
K ,−). Indeed, the isomorphism (1.1.1) allows to

replace X an
K by any strict neighbourhood of UK . Thus we can replace X an

K by a
quasi-compact strict neighbourhood V of UK (for example, the complement of an
open tube ]Xk \Uk[λ of radius λ < 1). This insures that H ∗(V,−) commutes with
direct limits, and the claim is clear.

Choose an injective resolution J • of Ω•
X an

K
, and denote by ε : X an

K → XK the
canonical morphism. The functoriality morphism for the de Rham complex can
be extended to a morphism

ε−1(I• → uK∗u
−1
K I

• )t −→ (J • → uan
K∗u

an
K
−1J • )t,

which can then be composed with the canonical morphism

(J • → uan
K∗u

an
K
−1J • )t −→ (j†XJ

• → j†UJ
• )t
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(we use here the fact that U an
K is a strict neighbourhood of UK). Taking sections on

X an
K and composing with the functoriality map induced by ε yields the morphism

ρZ .

Remark. – By [35], the groups RΓZK , dR(XK/K) are independent of the embedding
of ZK into the smooth scheme XK , and define the algebraic de Rham homology
of Z. Similarly, the groups RΓZk, rig(Xk/K) depend only upon Zk, and define the
rigid homology of Zk [47]. It is easy to check that the specialization morphism ρZ
depends also only upon Z. However, we will not use these facts here.

1.3. Let us change notation, and assume that K is a number field, R its ring
of integers, S = SpecOK , S0 its set of closed points, and X an S-scheme, with
generic fiber XK . For any s ∈ S0, the subscript s will denote the special fiber
at s. If s corresponds to p ⊂ R, let K(s) be the completion of K at p, R(s) its
valuation ring, X(s) = SpecR(s)×SpecR X, XK(s) the generic fiber of X(s) over
SpecR(s), X an

K(s) its associated analytic space, X (s) the formal completion of X(s)
with respect to the maximal ideal of R(s), X (s)K(s) its generic fiber.

Assume that X is smooth over S, and fix a closed subscheme Z ⊂ X. Together
with the base change map for algebraic de Rham cohomology, the specialization
homomorphism (1.2.2) provides, for each s, a canonical morphism

ρZ,s : K(s)⊗K RΓZK , dR(XK/K) −→ RΓZs, rig(Xs/K(s)), (1.3.1)

which we call the specialization morphism at s.

Theorem 1.4. Under the previous assumptions, there exists a finite subset Σ ⊂ S0

such that the specialization homomorphism (1.3.1) is an isomorphism for all s 6∈ Σ.

We begin the proof with the following remarks:
(i) Since the algebraic de Rham cohomology complexes RΓZK , dR(XK/K)

commute with base field extensions, the morphism (1.3.1) is an isomorphism at
a point s if and only if, on K(s), the corresponding local morphism (1.2.2) is an
isomorphism.

(ii) If there exists a non empty open subset S′ ⊂ S over which X is proper
and smooth, it follows from the construction of rigid cohomology and GAGA that
the morphism ρX,s is an isomorphism for all s ∈ S′. In particular, the theorem
then holds for the pair (X,X).

(iii) Both algebraic de Rham cohomology and rigid cohomology satisfy the
standard excision properties (cf. [35, (3.3)] for de Rham cohomology, and [14,
2.5] for rigid cohomology). It follows immediately from the above constructions
that the specialization morphisms define a morphism between the corresponding
distinguished triangles.

We use an induction argument similar to the one used in [14] to prove the
finiteness of rigid cohomology. We will show inductively the following assertions:
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(a)n : For any number field K and any smooth OK-scheme X such that
dimXK ≤ n, there exists a finite subset Σ ⊂ (SpecOK)0 such that the morphism

ρX,s : K(s)⊗K RΓdR(XK/K) −→ RΓrig(Xs/K(s))

is an isomorphism for s 6∈ Σ.
(b)n : For any number field K, any OK-scheme Z such that dimZK ≤ n and

any closed immersion Z ↪→ X into a smooth OK-scheme X, there exists a finite
subset Σ ⊂ (SpecOK)0 such that the morphism

ρZ,s : K(s)⊗K RΓZK , dR(XK/K) −→ RΓZs, rig(Xs/K(s))

is an isomorphism for s 6∈ Σ.
Let us first check (a)0. The scheme X is then étale over S, and XK is finite

over K. It follows that there exists a non empty open subset in S over which the
morphism X → S is finite. Thus the assertion follows from remark (ii) above.

Let us now prove that (b)n−1 implies (a)n. Let X be a smooth S-scheme such
that dimXK = n. Since K is of characteristic zero, we may use resolution of
singularities to find an isomorphism between XK and a dense open subset of a
proper and smooth K-scheme YK . By general arguments on direct limits, there
exists a non empty open subset S′ ⊂ S, a proper and smooth S′-scheme Y and an
open immersion X |S′ ↪→ Y extending over S′ the previous immersion XK ↪→ YK .
By remark (ii), the morphism ρY,s is an isomorphism for all s ∈ S′. Let Z = Y \X.
As XK is dense in YK , we have dimZK < n. Therefore, the induction hypothesis
implies that the morphism ρZ,s is an isomorphism for all s outside a finite subset
of S0. Shrinking S′ if necessary, the result for X then follows from remark (iii).

We finally prove that (b)0 holds, and that (b)n−1 + (a)n implies (b)n. Let
Z ↪→ X be a closed immersion into a smooth S-scheme X, with dimZK = n.
We may replace Z by Z red, since both source and target of (1.3.1) only depend
upon the reduced subscheme. Then, if T ⊂ Z is the closed subset where Z → S
is not smooth, we have dimTK < n. Using the excision exact sequences and the
induction hypothesis, we are reduced to the case where Z is smooth over S. Let
r = codim(Z,X). We have Gysin isomorphisms for algebraic de Rham cohomology
[35, (3.1)] and for rigid cohomology [14, 5.2-5.5]. Moreover, the Gysin isomorphism
for rigid cohomology is deduced from the Gysin morphism between algebraic de
Rham complexes by taking the analytification and applying suitable j† functors.
Therefore, the specialization morphisms fit in a commutative diagram

K(s)⊗K RΓdR(ZK/K) ∼−−−−→ K(s)⊗K RΓZK , dR(XK/K)[2r]

ρZ,s

y ρZ,s[2r]

y
RΓrig(Zs/K(s)) ∼−−−−→ RΓZs, rig(Xs/K(s))[2r].

Since Z is smooth, and dimZK = n, the induction hypothesis implies that the left
vertical arrow is an isomorphism, and the theorem follows.

Remark. – In the step (b)n−1⇒ (a)n, we could use de Jong’s theorem on alterations
instead of resolution of singularities. We would then argue as in [14, 3.5], using the
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fact that the specialization morphisms commute with the trace maps associated
with a finite étale morphism between two affine schemes.

1.5. We now give an analogue of theorem 1.4 for rigid cohomology with compact
supports. Let us first briefly explain the construction of the cospecialization mor-
phism between rigid cohomology with compact supports and algebraic de Rham
cohomology with compact supports (the reader can refer to [7, section 6] for more
details).

We consider again the situation of 1.1 and 1.2, where K was a complete dis-
cretely valued field of mixed characteristics (0, p), and we keep the same nota-
tion and hypotheses. Let Z be the closure of Z in X, T = Z \ Z, and let u :
]Tk[X ↪→ ]Zk[X be the inclusion. By construction [9], the rigid cohomology of Zk
with compact supports is given by

RΓc, rig(Zk/K) := RΓ]Zk[ (]Zk[X ,Ω
•

X
an
K

)

' RΓ(]Zk[X , (Ω
•

]Zk[
→ u∗Ω

•
]Tk[ )t). (1.5.1)

On the other hand, by [7, 1.2], the algebraic de Rham cohomology with compact
supports of ZK is defined as

RΓdR, c(ZK/K) := RΓ(XK , ((Ω
•

XK
)/ZK

→ (Ω•

XK
)/TK

)t), (1.5.2)

where (Ω•

XK
)/ZK

and (Ω•

XK
)/TK

are the formal completions along ZK and TK
respectively. Using the functoriality of the de Rham complex and GAGA, we
therefore obtain an isomorphism

RΓdR, c(ZK/K) ' RΓ(X an
K , ((Ω•

X an
K

)/Z an
K
→ (Ω•

X an
K

)/T an
K

)t). (1.5.3)

Since Z an
K and T an

K are closed analytic subsets of the open subsets ]Zk[X and ]Tk[X
of X an

K , we now have a functoriality morphism

RΓ(]Zk[X , (Ω
•

]Zk[
→ u∗Ω

•
]Tk[ )t) −→ RΓ(X an

K , ((Ω•

X an
K

)/Z an
K
→ (Ω•

X an
K

)/T an
K

)t).
(1.5.4)

The cospecialization morphism

ρc,Z : RΓc, rig(Zk/K) −→ RΓdR, c(ZK/K) (1.5.5)

is then obtained by composing (1.5.4) with the inverse of (1.5.3).

Remarks. – (i) It is easy to check that ρc,Z only depends upon Z, and not upon
the scheme X used to define both cohomologies with compact supports.

(ii) Algebraic de Rham cohomology and rigid cohomology both satisfy Poincaré
duality. Indeed, if we assume that X is of constant relative dimension n over S,
and if the exponent ∨ denotes the K-linear dual, we have canonical isomorphisms

RΓZK , dR(XK/K) ∼−−→ RΓdR, c(ZK/K)∨[−2n] (1.5.6)

(cf. [7, 3.4]) and

RΓZk, rig(Xk/K) ∼−−→ RΓc, rig(Zk/K)∨[−2n] (1.5.7)
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(cf. [15, 2.4]). One verifies easily that ρZ and ρc,Z are compatible with cup-
products on cohomology. On the other hand, the rigid trace map is constructed in
[15] starting from Hartshorne’s algebraic trace map for projective smooth varieties
[34], and this ensures the commutation of the rigid and de Rham trace maps with
ρc,Z . It follows that, under the Poincaré duality pairings, ρZ and ρc,Z are dual to
each other (a detailed proof can be found in [7, 6.9]).

1.6. We consider now the global situation of 1.3, and we use again the notation
and hypotheses of that section. For each s ∈ S0, the base change map for algebraic
de Rham cohomology with compact supports

K(s)⊗K RΓdR, c(ZK/K) −→ RΓdR, c(ZK(s)/K(s))

is an isomorphism, because algebraic de Rham cohomology commutes with base
field extensions [35, 5.2], and this property extends to algebraic de Rham coho-
mology with compact supports using the standard distinguished triangle defined
by a compactification. Composing the inverse of this isomorphism with (1.5.5)
gives the cospecialization morphism at s

ρc,Z,s : RΓc, rig(Zs/K(s)) −→ K(s)⊗K RΓdR, c(ZK/K). (1.6.1)

Theorem 1.7. Under the assumptions of 1.3, there exists a finite subset Σ ⊂ S0

such that the cospecialization homomorphism (1.6.1) is an isomorphism for all
s 6∈ Σ.

It follows from remark (ii) of 1.5 that the morphisms ρZ,s and ρc,Z,s are dual to
each other under Poincaré duality over K(s). Hence ρc,Z,s is an isomorphism if and
only if ρZ,s is an isomorphism, and theorem 1.4 and theorem 1.7 are equivalent.

One can also give a direct proof of 1.7 as in 1.4. One observes first that, if
Z ′ ⊂ Z is an open subset, with T = Z \Z ′, the cospecialization morphisms define
a morphism between the corresponding distinguished triangles for cohomologies
with compact supports. This allows to proceed by induction on the dimension of
ZK . Indeed, as in 1.4 (ii), the theorem is true if there is an open subset S′ ⊂ S
such that Z is proper and smooth over S′. In particular, the theorem is true when
dimZK = 0. In general, we can remove from Z a closed subscheme T such that
dimTK < dimZK , so as to insure that the generic fiber Z ′K of Z ′ := Z \ T is
smooth. It is enough to prove the theorem for Z ′, and we can use resolution of
singularities to find a compactification Z

′
of Z ′ which is proper and smooth over

a non empty open subset of S, and in which Z ′ is dense. By induction, the result
for Z

′
implies the result for Z ′.

1.8. In the local case, we will also use the specialization and cospecialization
morphisms for some cohomology groups with coefficients. For simplicity, we will
only consider here the case where Z = X, as this is the only case which will be
needed in the present article (the reader interested in the general case will easily
generalize our constructions, following the method used in 1.2 and 1.5).
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Our notation and hypotheses are again those of 1.1. Let us first observe that,
if V1 ⊂ V are two strict neighbourhoods of XK in X an

K , the equivalences j−1
V,V1

and
jV,V1∗ between the categories of j†OV -modules and j†1OV1-modules induce quasi-
inverse equivalences between the categories of coherent j†OV -modules endowed
with an integrable and overconvergent connection and of coherent j†1OV1-modules
endowed with an integrable and overconvergent connection. The category of over-
convergent isocrystals on Xk can thus be realized equivalently on V or on V1.
Therefore, for any overconvergent isocrystal L on Xk, we get as in 1.1 a canonical
isomorphism

RΓrig(Xk/K,L) ∼−−→ RΓ(X an
K ,L ⊗ Ω•

X an
K

), (1.8.1)

where L is viewed as a coherent j†XOX an
K

-module with an integrable and overcon-
vergent connection.

Let (L,∇) be a locally free finitely generated OXK
-module, endowed with an

integrable connection, (Lan,∇an) its inverse image on X an
K , and L = j†XL

an,
endowed with the corresponding connection. We assume that this connection on L
is overconvergent, so that L can be viewed as defining an overconvergent isocrystal
on Xk, still denoted by L. The specialization morphism for de Rham and rigid
cohomologies with coefficients in L is then defined as the composed morphism

ρLX : RΓ(XK , L⊗ Ω•
XK

) −→ RΓ(X an
K , Lan ⊗ Ω•

X an
K

) (1.8.2)

−→ RΓ(X an
K ,L ⊗ Ω•

X an
K

) ' RΓrig(Xk/K,L).

To define the cospecialization morphism, we choose a compactification X of
X, and a coherent OXK

-module L extending L on XK . Let I be the ideal of
T := X \X in X. In general, the connection ∇ does not extend to L, but it can
be extended as a connection on the pro-OXK

-module “ lim←−n”I
nL. This allows to

define the de Rham pro-complex I•L⊗Ω•

XK
:= (“ lim←−n”I

nL)⊗Ω•

XK
. The algebraic

de Rham cohomology with compact supports and coefficients in L is then defined
(cf. [4, App. D.2]) as

RΓdR, c(XK/K,L) := RΓ(XK ,R lim←− I
•
L⊗ Ω•

XK
)

' R lim←−RΓ(XK , I
•
L⊗ Ω•

XK
). (1.8.3)

Note first that GAGA provides a canonical isomorphism

R lim←−RΓ(XK , I
•
L⊗ Ω•

XK
) ∼−−→ R lim←−RΓ(X an

K , I
•
Lan ⊗ Ω•

X an
K

)
∼−−→ RΓ(X an

K ,R lim←− I
•
Lan ⊗ Ω•

X an
K

). (1.8.4)

Let us now denote by j : X an
K ↪→ X an

K the given open immersion. We can consider
onX an

K andX an
K the functors RΓ]Xk[ of local sections supported in the tube ]Xk[X .

As (X an
K , ]Tk[X ) is an admissible covering of X an

K , the canonical morphism

RΓ]Xk[ (Rj∗E) −→ Rj∗(RΓ]Xk[E) (1.8.5)
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is an isomorphism for any complex of abelian sheaves E on X an
K . For the same

reason, the canonical morphism R lim←−(I•Lan⊗Ω•

X an
K

)→ Rj∗(Lan⊗Ω•
X an

K
) induces

an isomorphism

RΓ]Xk[ (R lim←−(I•Lan ⊗ Ω•

X an
K

)) ∼−−→ RΓ]Xk[ (Rj∗(Lan ⊗ Ω•
X an

K
)). (1.8.6)

The cospecialization morphism for de Rham and rigid cohomologies with compact
supports and coefficients in L is then defined as the composed morphism

ρLc,X : RΓc, rig(Xk/K,L) := RΓ]Xk[ (X an
K , Lan ⊗ Ω•

X an
K

)

' RΓ(X an
K ,RΓ]Xk[ (Rj∗(Lan ⊗ Ω•

X an
K

)))

' RΓ(X an
K ,RΓ]Xk[ (R lim←−(I•Lan ⊗ Ω•

X an
K

)))

→ RΓ(X an
K ,R lim←−(I•Lan ⊗ Ω•

X an
K

))

' RΓdR, c(XK/K,L) (1.8.7)

deduced from the previous isomorphisms.

Remark. – It is again easy to check that the specialization and cospecialization
morphisms for cohomologies with coefficients in L are compatible with pairings on
cohomology. Together with the compatibility of the trace maps with cospecializa-
tion, this shows that, if the exponent ∨ is used to denote O-linear duals, and if X
is of pure relative dimension n, we obtain a commutative diagram

RΓdR(XK/K,L
∨) −−−−→ RΓdR, c(XK/K,L)∨[−2n]

ρL∨
X

y y(ρL
c,X)∨

RΓrig(Xk/K,L∨) −−−−→ RΓc, rig(Xk/K,L)∨[−2n],

and similarly exchanging the roles of cohomology and cohomology with compact
supports. In particular, if L is such that H ∗rig(Xk/K,L∨) and H∗c, rig(Xk/K,L)
are finite dimensional and satisfy Poincaré duality, then ρL

∨

X and ρLc,X are dual to
each other (note that these properties are not necessarily true without additional
assumptions on L).

1.9. Apart from the constant coefficients case, our main interest in this article
will be in cohomology groups with coefficients in Dwork’s F -isocrystal Lπ [10,
(1.5)]. We recall briefly here its construction and properties.

We assume now that K is a complete discretely valued field of mixed charac-
teristics (0, p), containing Qp(ζp), where ζp is a primitive pth root of 1. Let R
be the valuation ring of K, m its maximal ideal, k its residue field, S = SpecR,
S = Spf R. We recall that, for each root π of the polynomial tp−1 + p, there exists
a unique primitive pth root ζ of 1 such that ζ ≡ 1 + π mod π2 (cf. [28, p. 636]).
Therefore, the choice of an element π ∈ K such that πp−1 = −p is equivalent to
the choice of a non trivial additive K-valued character of Z/pZ. In the following,
we fix such an element π.
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To deal with Frobenius actions, we will also assume that there exists an en-
domorphism σ : R → R lifting a power F s of the Frobenius endomorphism of
k, and such that σ(π) = π. In this article, the integer s and the endomorphism
σ will be fixed, and we will work systematically with F s-isocrystals with respect
to (K,σ) rather than with F -isocrystals in the usual (absolute) sense. Therefore,
we will simplify the terminology, and use the expression “F -isocrystal” to mean
“F s-isocrystal with respect to (K,σ)”. Similarily, a Frobenius action will mean a
σ-semi-linear action of the s-th power of the absolute Frobenius endomorphism.

The datum of π defines a rank 1 bundle with connection Lπ on the affine line
A1
S , by endowing the sheaf OA1

S
with the connection ∇π such that

∇π(a) = (
da

dt
+ πa)⊗ dt, (1.9.1)

where t is the canonical coordinate on A1
S . For any S-morphism ϕ : X → A1

S ,
we will denote by Lπ,ϕ the inverse image of Lπ, endowed with the inverse image
connection.

Let A1 an
K be the rigid analytic affine line over K, Â1

S the formal affine line over
S, Â1 an

K its generic fiber (the closed unit disk in A1 an
K ), and let j†A1 be the functor

defined as in 1.1 using the strict neighbourhoods of Â1 an
K in A1 an

K . We denote
by Lan

π the analytic vector bundle with connection associated to Lπ on A1 an
K ,

and we define Lπ = j†A1L
an
π . Then the connection ∇an

π induces an overconvergent
connection on Lπ [10, (1.5)]. The natural embedding of A1

k into A1
S allows to realize

overconvergent isocrystals on A1
k as j†A1OA1 an

K
-modules endowed with an integrable

and overconvergent connection. Therefore, we can view Lπ as an overconvergent
isocrystal on A1

k, defined by the sheaf j†A1OA1 an
K

endowed with the connection
(1.9.1). Note that, if ψ is the character of Z/pZ corresponding to π as above, then
Lπ = Lψ−1 in the notation of [10].

In addition, Lπ has a canonical structure of F -isocrystal: if one lifts the s-th
power of the absolute Frobenius endomorphism of A1

k as the σ-linear endomor-
phism FA1 : A1

S → A1
S such that F ∗A1(t) = tq, the Frobenius action φ : F ∗A1Lπ → Lπ

is given by

φ(1⊗ a) = exp(π(tq − t))a. (1.9.2)

Since the category of overconvergent F -isocrystals is functorial with respect to
morphisms of k-schemes of finite type, any such morphism ϕ : Xk → A1

k defines by
pull-back an overconvergent F -isocrystal on Xk, which will be denoted by Lπ,ϕ.
When ϕ is the reduction mod m of a morphism of smooth S-schemes ϕ̃ : X → A1

S ,
then Lπ,ϕ is obtained as the inverse image of (j†A1OA1 an

K
,∇an

π ) by the morphism
of ringed spaces

ϕ̃an
K : (X an

K , j†Xk
OXan

K
) −→ (A1 an

K , j†A1OA1 an
K

),

i. e. Lπ,ϕ = j†Xk
Lan
π,ϕ̃ is given by j†Xk

OX an
K

endowed with the inverse image con-
nection ϕ̃an ∗

K (∇an
π ) (cf. [12, 2.5.5]). Moreover, if there exists a lifting FX : X → X

of the s-th power of the absolute Frobenius morphism of Xk as a σ-linear en-
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domorphism of X, the action of Frobenius on Lπ,ϕ is given by the composite
isomorphism

F ∗X ϕ̃
∗Lπ

∼−−→ ϕ̃∗F ∗A1Lπ
∼−−→ ϕ̃∗Lπ,

where the first isomorphism is the identification between the two inverse images
provided by the Taylor series of the connection ∇an

π , and the second one is the
inverse image of φ by ϕ̃.

Let us point out that the hypotheses needed in the remark of 1.8 are satisfied
by Dwork isocrystals. This is now known to be the case for any F -isocrystal,
thanks to Kedlaya’s results [42], but it can also be deduced from the case of the
constant isocrystal. Indeed, this is a consequence of the relation between Dwork
isocrystals and Artin-Schreier coverings, which we recall now in the algebraically
liftable case (cf. [10, (1.5)], [14, 3.10]). Note that the case of L∨π follows from the
case of Lπ, since L∨π = L−π (and L−π ' Lπ if p = 2). Let u : C → A1

S be the
finite covering defined by the equation yp − y − t = 0. Then u is étale outside
of the closed subscheme Spec(R[y]/(pyp−1 − 1)) ⊂ C, which is quasi-finite over
SpecR, concentrated in the generic fiber, and whose image in A1 an

K lies outside
the open disk of radius pp/(p−1) > 1. Let Y = X ×A1

S
C, v : Y → X, and let

Y be the formal completion of Y . Then v an
K is étale in a strict neighbourhood

of ]Yk[Y in Y an
K . The additive group Z/pZ acts on the sheaf j†Xk

v an
∗ OY an

K
, and

Lπ,ϕ is the direct factor of j†Xk
v an
∗ OY an

K
on which Z/pZ acts through the charac-

ter ψ−1. As v an
∗ j†Yk

OY an
K
' j†Xk

v an
∗ OY an

K
, it follows that the cohomology spaces

H ∗rig(Xk/K,L∨π,ϕ) (resp. H ∗c, rig(Xk/K,Lπ,ϕ)) can be identified with the subspaces
of H ∗rig(Yk/K) (resp. H ∗c, rig(Yk/K) on which Z/pZ acts through ψ (resp. ψ−1).
Thus the finiteness of the spaces H ∗rig(Xk/K,L∨π,ϕ) and H∗c, rig(Xk/K,Lπ,ϕ) fol-
lows from the finiteness of rigid cohomology with constant coefficients.

Moreover, the same argument shows that Poincaré duality for H ∗rig(Yk/K)
induces a perfect pairing between the subspaces H ∗rig(Xk/K,L∨π,ϕ) and
H ∗c, rig(Xk/K,Lπ,ϕ). On the other hand, the transitivity of the trace map im-
plies that the Poincaré pairing for H ∗rig(Yk/K) can be identified with the Poincaré
pairing for H ∗rig(Xk/K, v

an
∗ j†Yk

OY an
K

) (defined via the trace map on the finite étale
j†Xk
OX an

K
-algebra v an

∗ j†Yk
OY an

K
). Therefore, the previous pairing is equal to the

pairing defined between these cohomology groups by Poincaré duality on Xk.

2. The overconvergent Fourier transform

Unless otherwise specified, we assume for the rest of the paper that the base
field K satisfies the hypotheses of 1.9. Our goal in this section is to prove theorem
2.14, which will be the key result to interpret the cohomology of the analytic
Dwork complexes for a projective hypersurface in terms of rigid homology groups.

This theorem can be viewed as an analogue for rigid cohomology of [3, th. 1.1]
and [27, th. 0.2]. Our main tool here is the theory of D†X ,Q-modules, and our proof
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follows the method of [27] based on the Fourier transform. Therefore, we begin by
briefly recalling some notions about D†X ,Q-modules and their Fourier transform.

2.1. Let X be a smooth formal S-scheme of relative dimension n, and D̂X the
p-adic completion of the standard sheaf of differential operators on X . The sheaf
D†X ,Q is the subsheaf of rings of D̂X ,Q such that, if x1, . . . , xn are local coordinates
on an affine open subset U ⊂ X , and ∂i = ∂/∂xi, 1 ≤ i ≤ n, then

Γ(U ,D†X ,Q) =
{
P =

∑
k∈Nn

ak∂
[k]

∣∣∣ ∃ c, η ∈ R, η < 1, such that ‖ak‖ ≤ cη|k|
}
,

where ∂[k] = 1
k!∂

k, ak ∈ Γ(U ,OX ,Q), and ‖ − ‖ is a quotient norm on the Tate
algebra Γ(U ,OX ,Q). It can also be written canonically as a union of p-adically
complete subsheaves of rings

D†X ,Q =
⋃
m≥0

D̂(m)
X ,Q,

D̂(m)
X ,Q being defined by

Γ(U , D̂(m)
X ,Q) =

{
P =

∑
k

q(m)
k

!bk∂[k] ∈ Γ(U , D̂X ,Q)
∣∣∣ bk → 0 for |k| → ∞

}
,

with k = pmq
(m)
k + r

(m)
k , 0 ≤ r(m)

ki
< pm for all i [13].

One can also introduce overconvergence conditions along a divisor H ⊂ X,
where X is the special fiber of X . Let j : Y ↪→ X be the inclusion of the comple-
ment of H in X . The sheaf OX ,Q(†H) of functions with overconvergent singulari-
ties along H is the subsheaf of the usual direct image j∗OY,Q such that, if U ⊂ X
is an affine open subset, and h ∈ Γ(U ,OX ) a lifting of a local equation of H in the
special fiber U of U , then

Γ(U ,OX ,Q(†H)) =
{
g =

∑
i∈N

ai/h
i+1

∣∣∣ ∃ c, η ∈ R, η < 1, such that ‖ai‖ ≤ cηi
}
,

where the ai’s belong to Γ(U ,OX ,Q) and the norm is again a quotient norm. As
for D†X ,Q, there is a canonical way to write OX ,Q(†H) as a union of p-adically
complete sub-algebras. Indeed, if we fix m ≥ 0, there exists a p-adically complete
OX -algebra B̂(m)

X (H), depending only on X and H, such that, on any affine open
subset U as above,

B̂(m)
X (H)|U ' OU{T}/(hp

m+1
T − p),

T being an indeterminate [13]. The algebra OX ,Q(†H) is then given by

OX ,Q(†H) =
⋃
m≥0

B̂(m)
X ,Q(H).

It depends only upon the support of H, and not upon the multiplicities of its
components.
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Moreover, each B̂(m)
X ,Q(H) is endowed with a natural action of D̂(m)

X ,Q, compatible
with its OX -algebra structure [13]. Therefore, it is possible to endow the com-
pleted tensor product B̂(m)

X ,Q(H)⊗̂OX D̂
(m)
X ,Q with a ring structure extending those

of B̂(m)
X ,Q(H) and D̂(m)

X ,Q. One can then define the ring of differential operators
D†X ,Q(†H) as

D†X ,Q(†H) :=
⋃
m≥0

B̂(m)
X ,Q(H)⊗̂OX D̂

(m)
X ,Q.

It follows easily from this definition that, for any affine open subset U ⊂ X on
which there exist local coordinates, and a local equation for H in U , the sections
of D†X ,Q(†H) on U can be described as

Γ(U ,D†X ,Q(†H)) ={
g =

∑
i,k

ai,k
hi+1

∂[k]
∣∣∣ ∃ c, η ∈ R, η < 1, such that ‖ai,k‖ ≤ cηi+|k|

}
,

the notation being as above, and ai,k ∈ Γ(U ,OX ,Q).
When X is proper, and H is viewed as a divisor at infinity providing a compact-

ification of Y := X \H, it is often convenient to replace the notation OX ,Q(†H)
and D†X ,Q(†H) by OX ,Q(∞) and D†X ,Q(∞), if no confusion arises.

Recall that OX ,Q(†H) and D†X ,Q(†H) are coherent sheaves of rings, and that
coherent modules over these sheaves satisfy the standard A and B theorems [13,
4.3.2 and 4.3.6].

2.2. Let X be affine, with H, Y be as before, and let q : V = ÂrX → X be
the formal affine space of relative dimension r over X , q′ : V ′ → X the dual
affine space. Assume that X has local coordinates x1, . . . , xn relative to S, and let
t1, . . . , tr (resp. t′1, . . . , t

′
r) denote the standard coordinates on V (resp. V ′) relative

to X , ∂xj
, ∂ti (resp. ∂t′i) the corresponding derivations. Assume also that there

exists a section h ∈ Γ(X ,OX ) lifting a local equation of H in X.
We will use the results of [36], [37], [38] for the affine space V over (X ,H). While

these references are written in the absolute case, i. e. X = S, it is easy to check
that the proofs remain valid in our setting, requiring only obvious modifications.

Let us first define the weakly complete Weyl algebra A†r(X ,H) associated to
the affine space V over (X ,H). Let W = q−1(Y) = ÂrY , A = Γ(X ,OX ) ⊗ K,
Âr(Y) = Γ(W, D̂W)⊗K. An element P ∈ Âr(Y) can be written

P =
∑
i,j,k,l

ai,j,k,lh
−(i+1)tj∂

[k]
t ∂

[l]
x ,

with coefficients ai,j,k,l ∈ A such that ai,j,k,l → 0 when i + |j| + |k| + |l| → ∞.

Then P ∈ A†r(X ,H) ⊂ Âr(Y) iff the ai,j,k,l can be chosen so that there exists c,
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η ∈ R, with η < 1, such that

‖ai,j,k,l‖ ≤ cηi+|j|+|k|+|l|. (2.2.1)

It is easy to check that A†r(X ,H) is a sub-K-algebra of Âr(Y).
If P = P̂rX is the formal projective space of relative dimension r over X , and

P ′ the dual projective space, we will keep the notation q and q′ for the projections
P → X and P ′ → X . Let V , P be the special fibers of V and P, H∞ = P \ V ,
H1 = q−1(H) ∪H∞ (resp. V ′, P ′, H ′∞, H ′1). We will use the notation

OP,Q(∞) := OP,Q(†H1), D†P,Q(∞) := D†P,Q(†H1),

OP′,Q(∞) := OP′,Q(†H ′1), D†P′,Q(∞) := D†P′,Q(†H ′1).

The following theorem shows that coherent D†P,Q(∞)-modules are determined
by their global sections:

Theorem 2.3 (cf. [36], [37]). (i) The ring A†r(X ,H) is coherent.
(ii) There exists a canonical isomorphism of K-algebras

A†r(X ,H) ' Γ(P,D†P,Q(∞)). (2.3.1)

(iii) The functor Γ(P,−) induces an equivalence between the category of coher-
ent D†P,Q(∞)-modules and the category of coherent A†r(X ,H)-modules.

2.4. Under the previous hypotheses, let us describe the naive Fourier transform
for coherent D†P,Q(∞)-modules. Let A′r

†(X ,H) be the weakly complete Weyl al-
gebra associated to the dual affine space V ′ over (X ,H). A basic observation is
that the p-adic absolute value |πk/k!| satisfies the unequalities

1/kp ≤ |πk/k!| ≤ 1

for any k ∈ N. Comparing to the condition (2.2.1), it follows that the datum of π
allows to define a continuous isomorphism

φ : A′r
†(X ,H) ∼−−→ A†r(X ,H),

characterized by

φ(t′i) = −∂ti/π, φ(∂t′i) = πti.

IfM is a coherent D†P,Q(∞)-module, Γ(P,M) is a coherent A†r(X ,H)-module.
By restriction of scalars via φ, it can be viewed as a coherent A′r

†(X ,H)-module.
The previous theorem shows that, up to canonical isomorphism, there is a unique
coherent D†P′,Q(∞)-moduleM′ such that Γ(P ′,M′) = φ∗Γ(P,M). By definition,
the naive Fourier transform Fnaive(M) ofM is the D†P′,Q(∞)-module M′.

2.5. To define the geometric Fourier transform, we will use the standard coho-
mological operations for D†X ,Q-modules. We refer to [17] and [18] for their general
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definitions and basic properties, and we only recall here a few facts needed for our
constructions.

a) Let X , X ′ be smooth formal schemes of relative dimensions dX , dX ′ over S,
with special fibers X, X ′, f : X → X ′ an S-morphism, and let H ⊂ X, H ′ ⊂ X ′

be divisors such that f−1(H ′) ⊂ H. We use the notation D†X ,Q(∞), D†X ′,Q(∞) for
D†X ,Q(†H), D†X ′,Q(†H ′).

In this situation, the morphism f defines transfer bimodules D†X→X ′,Q(∞) and
D†X ′←X ,Q(∞) (cf. [18], or [36, 1.4.1]). The first one is a (D†X ,Q(∞), f−1D†X ′,Q(∞))-
bimodule and can be used to define an inverse image functor, which associates to
a left D†X ′,Q(∞)-module N the left D†X ,Q(∞)-module given by

f ∗N := D†X→X ′,Q(∞)⊗f−1D†X′, Q(∞) f
−1N .

Note that there is an abuse of notation here, since the definition of D†X→X ′,Q(∞)
involves completions, and therefore this functor cannot be identified in general
with the inverse image for OX ′,Q-modules or OX ′,Q(∞)-modules.

For any complex N in Db
coh(D†X ′,Q(∞)), the extraordinary inverse image func-

tor f ! is then defined as usual by

f !(N ) := Lf ∗(N )[dX/X ′ ],

where dX/X ′ = dX − dX ′ .
When f is smooth, D†X→X ′,Q(∞) is flat over f−1D†X ′,Q(∞), and f∗ preserves

coherence (cf. [17], [18]).

b) The bimodule D†X ′←X ,Q(∞) is a (f−1D†X ′,Q(∞),D†X ,Q(∞))-bimodule. It
can be used to define a direct image functor f+ on Db

coh(D†X ,Q(∞)), which as-
sociates to M ∈ Db

coh(D†X ,Q(∞)) the complex of left D†X ′,Q(∞)-modules given
by

f+(M) := Rf∗(D†X ′←X ,Q(∞)
L
⊗D†X , Q(∞) M).

When f is projective, and H is the support of a relatively ample divisor, the
acyclicity theorem of Huyghe [39, 5.4.1] shows that, if n ≥ 1, Rnf∗ vanishes for
coherent D†X ,Q(∞)-modules. On the other hand, f+ does not preserve coherence
in general.

c) Finally, let us recall that overconvergent isocrystals may be viewed as
D†X ,Q(∞)-modules in the following way. If X is a smooth formal S-scheme, H ⊂ X
a divisor in its special fiber, Y = X \ H, there is a specialization morphism
sp : XK → X , which is a continuous map, functorial with respect to X , such
that sp∗ j

†
YOXK

' OX ,Q(†H) (cf. [12] or [14, 1.1]). The functor sp∗ is exact
on the category of coherent OXK

-modules, and, since H is a divisor, it is also
exact on the category of coherent j†YOXK

-modules (cf. [14, proof of 4.2]). If L
is an isocrystal on Y which is overconvergent along H, then sp∗ L is a coherent
OX ,Q(†H)-module, endowed with a canonical structure of D†X ,Q(†H)-module [13,
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4.4]. By [13, 4.4.5 and 4.4.12], the functor sp∗ allows to identify the category of
isocrystals on Y which are overconvergent along H with a full subcategory of the
category of coherent D†X ,Q(†H)-modules. Moreover, this identification is compat-
ible with inverse images [36, 1.5.4]. Therefore, we will generally misuse notation,
and simply keep the letter L to denote sp∗ L.

2.6. We will need the geometric Fourier transform in a more general setup than
the situation considered for the definition of the naive Fourier transform. We
assume here that X is a smooth formal scheme of relative dimension n over S,
endowed with a divisor H ⊂ X, and that q : V → X , q′ : V ′ → X are dual vector
bundles of rank r over X . We denote Y = X \ H, W = q−1(Y), W ′ = q′

−1(Y).
Let q : P → X and q′ : P ′ → X be relative projective closures of V and V ′,
P ′′ := P ′ ×X P, with projections p : P ′′ → P, p′ : P ′′ → P ′, q′′ : P ′′ → X . We
write V , V ′, Y , W , W ′, P , P ′, P ′′ for the special fibers. We define the divisors
H∞, H ′∞, H1, H ′1 as in 2.2, and we endow P ′′ with the divisor

H2 = p−1(H∞) ∪ p′−1(H ′∞) ∪ q′′−1(H),

whose support is p−1(H1) ∪ p′−1(H ′1). We will use the notation

OP′′,Q(∞) := OP′′,Q(†H2), D†P′′,Q(∞) := D†P′′,Q(†H2).

To construct the kernel of the geometric Fourier transform, we apply 2.5 c) to
P ′′. Let

µ : V ′ ×X V −→ A1
X −→ A1

k

be the morphism obtained by composing the canonical pairing between V ′ and V
with the projection to A1

k. As seen in 1.9, µ defines by functoriality a canonical
rank 1 overconvergent F -isocrystal Lπ,µ over V ′ ×X V . A fortiori, j†W ′×WLπ,µ
defines an F -isocrystal on W ′×Y W , overconvergent along H2. We will denote by
LWπ,µ the rank one OP′′,Q(∞)-module sp∗(j

†
W ′×WLπ,µ), endowed with its natural

D†P′′,Q(∞)-module structure, and its Frobenius action. In particular, LWπ,µ has a
canonical basis e, and, above an open subset of X on which V has linear coordinates
t1, . . . , tr (with dual coordinates t′1, . . . , t

′
r), its underlying connection ∇π,µ is given

by

∇π,µ(ae) = e⊗ (da+ πa(
∑
i

t′idti + tidt
′
i)). (2.6.1)

If M′′ is a coherent D†P′′,Q(∞)-module, then LWπ,µ ⊗OP′′, Q(∞)M′′, viewed as

a left D†P′′,Q(∞)-module through the standard tensor product structure, is still
coherent.

We can now define the geometric Fourier transform of a coherent D†P,Q(∞)-
module M by

Fgeom(M) := p′+(LWπ,µ ⊗OP′′, Q(∞) p
∗(M)). (2.6.2)
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For simplicity, we do not use the standard shifts here, so that, whenM consists in
a single coherent D†P,Q(∞)-module placed in degree 0, LWπ,µ⊗p∗(M) is a coherent
D†P′′,Q(∞)-module placed in degree 0.

A priori, Fgeom(M) is only known to be a complex in Db(D†P′,Q(∞)). The fol-
lowing theorem, due to Huyghe, shows that Fgeom transforms a coherent D†P,Q(∞)-
module into a coherent D†P′,Q(∞)-module, and provides the comparison between
the naive and geometric Fourier transforms:

Theorem 2.7 ([36], [40]). Let M be a coherent D†P,Q(∞)-module.
(i) The complex Fgeom(M) is acyclic in degrees 6= 0. In degree 0, its coho-

mology sheaf is a coherent D†P′,Q(∞)-module.
(ii) Under the assumptions of 2.4, there is a natural isomorphism of

D†P′,Q(∞)-modules

Fgeom(M) ' Fnaive(M). (2.7.1)

One of the main steps in the proof of (ii) is the computation of the geometric
Fourier transform of D†P,Q(∞). We will actually use this result under the more
general assumptions of 2.6. By construction, the bimodule D†P′←P′′,Q(∞) is iso-
morphic to D†, d

P′′→P′,Q(∞) ⊗OP′′ ωP′′/P′ , where D†, d
P′′→P′,Q(∞) is the analogue of

D†P′′→P′,Q(∞) obtained using the right OP′,Q(∞)-module structure of D†P′,Q(∞)

rather than the left one, and ωP′′/P′ = ∧rΩ1
P′′/P′ . If we write V = Spf(Ŝ(E)),

where E is locally free of rank r over OX , then there is a canonical isomorphism

OP′′,Q(∞)⊗OP′′ Ω1
P′′/P′ ' OP′′,Q(∞)⊗OP′′ q

′′∗E .

Since LWπ,µ has a canonical section, one can use this remark to define a canonical
map

D†P′,Q(∞)⊗ q′∗(∧rE) → p′∗(D
†
P′←P′′,Q(∞)⊗ LWπ,µ).

On the other hand, D†P′←P′′,Q(∞)
L
⊗ (LWπ,µ ⊗ D

†
P′′→P,Q(∞)) can be computed

using the Spencer resolution of D†P′′→P,Q(∞)

· · · → D†P′′,Q(∞)⊗ TP′′/P → D†P′′,Q(∞) → D†P′′→P,Q(∞) → 0,

which gives a canonical map

p′∗(D
†
P′←P′′,Q(∞)⊗ LWπ,µ) → H0(p′+(LWπ,µ ⊗D

†
P′′→P,Q(∞))).

Using appropriate division theorems, one can then prove that the composite map
is an isomorphism

D†P′,Q(∞)⊗ q′∗(∧rE) ∼−−→ Fgeom(D†P,Q(∞)) (2.7.2)
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(cf. [40], and [22] for the complex analytic case). When E is a free OX -module, the
choice of a basis of E provides a trivialisation of ∧rE and the isomorphism (2.7.2)
reduces to the inverse of (2.7.1) for D†P,Q(∞).

Remark. – One can also give a Gauss-Manin style description of Fgeom(M), using
the de Rham resolution of the bimodule D†P′←P′′,Q(∞) to compute p′+ :

· · · → Ωr−1
P′′/P′ ⊗D

†
P′′,Q(∞) → ΩrP′′/P′ ⊗D

†
P′′,Q(∞) → D†P′←P′′,Q(∞) → 0.

In general, this is only a resolution in the category of (p′−1OP′,Q(∞),D†P′′,Q(∞))-
bimodules. However, when V is the trivial bundle ÂrX , it can be viewed as a
resolution in the category of (p′−1D†P′,Q(∞),D†P′′,Q(∞))-bimodules. Indeed, the
product structure P ′′ = P ′×S P̂rS and the fact that H2 = p−1(H1)∪p′−1(H ′1) allow
to define a ring homomorphism D†P′,Q(∞)→ p′∗D

†
P′′,Q(∞) (this is a consequence

of [17, 2.3.1]). The ring D†P′′,Q(∞) is thus endowed with a natural structure of
left (p′−1D†P′,Q(∞), p−1OP,Q(∞))-bimodule from which the claim follows easily.

Therefore, one obtains for Fgeom(M) the OP′,Q(∞)-linear presentation

Fgeom(M) ' (2.7.3)
Coker

(
p′∗(Ω

r−1
P′′/P′(∞)⊗ (LWπ,µ ⊗ p∗M))→ p′∗(Ω

r
P′′/P′(∞)⊗ (LWπ,µ ⊗ p∗M))

)
,

where Ω•
P′′/P′(∞) = Ω•

P′′/P′ ⊗ OP′′,Q(∞), all tensor products are taken over
OP′′,Q(∞), and the arrows are defined by the tensor product connection on LWπ,µ⊗
p∗M. Over an open subset on which V is trivial, the choice of a trivialisation
turns this presentation into a D†P′,Q(∞)-linear presentation, which induces on the
cokernel the canonical D†P′,Q(∞)-module structure of Fgeom(M). In particular,
this induced structure is independent of the trivialisation, and can be glued on
variable open subsets of X .

2.8. In view of our applications to Dwork cohomology, we want now to describe
the geometric Fourier transform of the constant D†P,Q(∞)-module OP,Q(∞) as a
local cohomology sheaf.

So let us first recall (in the smooth and liftable case, and for an overconvergent
isocrystal) the definition of the overconvergent local cohomology sheaves with sup-
ports in a closed subvariety. As before, we denote by X a smooth formal scheme,
H ⊂ X a divisor in its special fiber, Y = X \H. Let Z ⊂ X be a closed subscheme,
U = Y \ Z = X \ (H ∪ Z). If L is an isocrystal on Y overconvergent along H,
the overconvergent local cohomology of L with support in Z is the complex of
OX ,Q(†H)-modules given by

RΓ†Z(L) := R sp∗(L → j†U (L)).

This complex can be endowed with a natural structure of complex of D†X ,Q(†H)-
module: the case where H = ∅ is treated in [11, (4.1.5)], and one proceeds in the
same way in the general case, using [13, 4.4.3]. Its cohomology sheaves will be
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denoted by H†Zi(L). When L is the constant isocrystal, we will use the notation
RΓ†Z(OX ,Q(†H)), H† iZ (OX ,Q(†H)).

Remark. – Using the method of [17, 4.4.4], the definition of overconvergent local co-
homology can be extended to coherent D†X ,Q(†H)-modules (we refer to [18] for the
comparison between the two methods for overconvergent isocrystals). If i : Z ↪→ X
is a closed immersion of smooth formal S-schemes, andM∈ Db

coh(D†X ,Q(†H)), we
obtain with this definition a canonical isomorphism [17, (4.4.5.2)]

i+i
!M ∼−−→ RΓ†Z(M). (2.8.1)

For smooth subvarieties, the local structure of overconvergent local cohomology
is similar to the local structure of algebraic local cohomology:

Proposition 2.9. With the previous notation, assume that Z is smooth of codi-
mension r in X. Then:

(i) For all i 6= r, H† iZ (OX ,Q(†H)) = 0.
(ii) Let t1, . . . , tn be local coordinates on X such that Z = V (t1, . . . , tr), where

ti is the reduction of ti mod m. Then the map sending 1 to 1/t1 · · · tr provides a
D†X ,Q(†H)-linear isomorphism

D†X ,Q(†H)
/( r∑

i=1

D†X ,Q(†H)ti +
n∑

i=r+1

D†X ,Q(†H)∂ti
)

∼−−−→ H† rZ (OX ,Q(†H)).

(2.9.1)

We may assume that X is affine and has local coordinates t1, . . . , tn as in
(ii). For 1 ≤ i1 < . . . < ik ≤ r, let Hi1...ik = H ∪ V (ti1) ∪ . . . ∪ V (tik), and
Ui1...ik = X \Hi1...ik . Using the open covering of U given by U1, . . . ,Ur, we get a
Čech exact sequence [14, (1.2.2)]

0 → j†UOXK
→

r⊕
i=1

j†Ui
OXK

→ . . . → j†U1...r
OXK

→ 0 .

Since Hi1...ik is the support of a divisor, the complex R sp∗ j
†
Ui1...ik

OXK
is reduced

to its cohomology sheaf in degree 0, which is OX ,Q(†Hi1...ik). Thus the complex
RΓ†Z(OX ,Q(†H)) is isomorphic to

OX ,Q(†H) →
r⊕
i=1

OX ,Q(†Hi) → . . . → OX ,Q(†H1...r) → 0 → . . . .

On the other hand, the sequence t1, . . . , tr is regular on OX ,Q(†H), hence the
complex

0 → OX ,Q(†H) →
r⊕
i=1

OX ,Q(†H)[1/ti] → . . . → OX ,Q(†H)[1/t1 . . . tr] → 0



Dwork cohomology for singular hypersurfaces 23

is acyclic in degrees 6= r. Note that this is a complex of OX ,Q(†H) ⊗OX , Q DX ,Q-
modules; let DX ,Q(†H) = OX ,Q(†H)⊗OX , Q DX ,Q. Since B̂(m)

X (H)⊗̂OX D̂
(m)
X is flat

over B̂(m)
X (H) ⊗OX D

(m)
X for all m [13, (3.3.4)], D†X ,Q(†H) is flat over DX ,Q(†H).

Hence, assertion (i) will follow if we prove that, for any sequence i1 < . . . < ik,
the canonical map

D†X ,Q(†H)⊗DX , Q(†H) OX ,Q(†H)[1/ti1 . . . tik ] → OX ,Q(†Hi1...ik) (2.9.2)

is an isomorphism. A standard computation shows that the map sending 1 to
1/ti1 . . . tik yields an isomorphism

DX ,Q(†H)
/( k∑

j=1

DX ,Q(†H)∂tij
tij +

∑
i 6=i1,...,ik

DX ,Q(†H)∂ti
)

∼−−→ OX ,Q(†H)[1/ti1 . . . tik ].

Similarly, the map sending 1 to 1/ti1 · · · tik gives an isomorphism

D†X ,Q(†H)
/( k∑

j=1

D†X ,Q(†H)∂tij
tij +

∑
i 6=i1,...,ik

D†X ,Q(†H)∂ti
)

∼−−→ OX ,Q(†Hi1...ik).

(2.9.3)
Indeed, this is proposition (4.3.2) of [11] if H = ∅; as observed in the remark of
[14, 4.7], this remains true in the general case, using the method of the proof of
[14, 4.6]. These presentations imply that the map (2.9.2) is an isomorphism.

Finally, the presentation (2.9.3), combined with the exact sequence
r⊕
i=1

OX ,Q(†H1...̂i...r) → OX ,Q(†H1...r) → H† rZ (OX ,Q(†H)) → 0,

implies assertion (ii).

Returning to the setting of 2.6, our next result gives the Fourier transform of
OP,Q(∞):

Proposition 2.10. Under the assumptions of 2.6, let i : X → V ′ be the zero
section, and let us identify X with its image in V ′ ⊂ P ′. Then there exists a
canonical isomorphism of D†P′,Q(∞)-modules

Fgeom(OP,Q(∞)) ' H† rX (OP′,Q(∞)). (2.10.1)

Let us first assume that X is affine, with local coordinates x1, . . . , xn defin-
ing derivations ∂x1 , . . . , ∂xn

and that V = ArX , with standard linear coordinates
t1, . . . , tr defining derivations ∂t1 , . . . , ∂tr . The Spencer resolution of OP,Q(∞)
over D†P,Q(∞) yields an isomorphism

Γ(P,OP,Q(∞)) ' A†r(X ,H)
/( r∑

i=1

A†r(X ,H)∂ti +
∑
j

A†r(X ,H)∂xj

)
.
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Therefore, the naive Fourier transform of OP,Q(∞) is defined by

Γ(P,Fnaive(OP,Q(∞))) ' A†r(X ,H)
/( r∑

i=1

A†r(X ,H)ti +
∑
j

A†r(X ,H)∂xj

)
.

On the other hand, proposition 2.9 (ii) shows that Γ(P,H† rX (OP′,Q(∞))) has pre-
cisely the same presentation. Using 2.7, we obtain a D†P′,Q(∞)-linear isomorphism

Fgeom(OP,Q(∞)) ' Fnaive(OP,Q(∞)) ' H† rX (OP′,Q(∞)) (2.10.2)

as in (2.10.1).
To complete the construction of (2.10.1) in the general case, we need to glue

the previous isomorphisms (2.10.2) on variable open subsets where V is trivial,
and therefore to prove that they are independent of the choice of coordinates.

Let E = OrX , with basis t1, . . . , tr, defining the dual basis t′1, . . . , t
′
r. Thus

t1, . . . , tr are coordinates on ArX = Spf(Ŝ(E)), and t′1, . . . , t
′
r are a regular sequence

of generators for the ideal of the zero section in V ′. The D†P,Q(∞)-linear surjective
map D†P,Q(∞)→ OP,Q(∞) provides the following diagram

Fgeom(OP,Q(∞)) ∼ // Fnaive(OP,Q(∞)) ∼ // H† rX (OP′,Q(∞))

Fgeom(D†P,Q(∞))

OOOO

∼ // Fnaive(D†P,Q(∞))

OOOO

D†P′,Q(∞)

OOOO

D†P′,Q(∞)⊗ q′∗(∧rE)

∼

OO

∼

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeee
.

In this diagram, the upper composite arrow is the isomorphism (2.10.2), and the
right vertical arrow is the map corresponding to (2.9.1). The left square is com-
mutative by functoriality, and the right one because of the definition of the iso-
morphism (2.10.2). The oblique arrow is the trivialisation given by the basis
t1 ∧ . . . ∧ tr of ∧rE , and yields a commutative triangle as explained in 2.7. Since
the left composite arrow is canonical, it suffices to check that the composite map
D†P′,Q(∞) ⊗ q′∗(∧rE) → H† rX (OP′,Q(∞)) is independent of the choice of coordi-
nates. Equivalently, it suffices to check that the image of 1 under the corresponding
map D†P′,Q(∞) → H† rX (OP′,Q(∞)) ⊗ q′∗(∧r(E∨)) is independent of the choice of
coordinates. Since it is the section 1

t′1···t′r
⊗ t′1 ∧ . . . ∧ t′r, this is clear.

Remarks. – (i) It follows from this local calculation that, if one computes the
Fourier transform of OP,Q(∞) using the isomorphism

Fgeom(OP,Q(∞)) ' H0(p′∗(Ω
•
P′′/P′(∞)⊗ LWπ,µ[r])) (2.10.3)

as in (2.7.3), the isomorphism

ε : Hr(p′∗(Ω
•
P′′/P′(∞)⊗ LWπ,µ))

∼−−→ H† rX (OP′,Q(∞)) (2.10.4)
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defined by (2.10.1) is the unique D†P′,Q(∞)-linear isomorphism such that, for any
basis t1, . . . , tr of E ,

ε((dt1 ∧ . . . ∧ dtr)⊗ e) =
1

t′1 · · · t′r
,

where e is the canonical section of LWπ,µ.
(ii) Following the method of [8], one could also give a more conceptual proof

of proposition 2.10. However, our local computation will be useful to check the
compatibility of (2.10.1) with Frobenius actions.

2.11. To define Frobenius actions, we will use the fact that the inverse image
functor for D†X ,Q(∞)-modules can be defined with respect to non necessarily
liftable morphisms of schemes between the special fibers, as explained in [16,
2.1.6]. In particular, the inverse image F ∗M of a left D†X ,Q(∞)-module M by
the s-th power of the absolute Frobenius endomorphism of X can be defined with-
out assuming that it can be lifted to X . When such a lifting F exists, F ∗M is
the usual inverse image by F , and, up to canonical isomorphism, it is indepen-
dent of the choice of F . Applying this remark to D†X ,Q(∞), one can associate to
the s-th power of the absolute Frobenius endomorphism of X a transfer bimodule
D†X→X ,Q(∞) which can be locally identified to F ∗D†X ,Q(∞), for any local lifting
F . This allows to extend globally the definition of the functor F ∗ to the derived

category Db(D†X ,Q(∞)) by the usual formula F ∗M = D†X→X ,Q(∞)
L
⊗D†X , Q(∞) M.

A Frobenius action on a complex M ∈ Db(D†X ,Q(∞)) can then be defined as an
isomorphism Φ : F ∗M ∼−−→M in Db(D†X ,Q(∞)).

The existence of Frobenius actions will generally follow from the functoriality
properties of rigid cohomology. Thus, the isomorphism

Fgeom(OP,Q(∞)) = p′+(LWπ,µ) ' p′∗(Ω
•
P′′/P′(∞)⊗ LWπ,µ)[r]

provides a Frobenius action on Fgeom(OP,Q(∞)) coming from the F -isocrystal
structure of LWπ,µ and the functoriality properties of rigid cohomomology for V ′′

relatively to V ′. Similarily, the canonical F -isocrystal structure of OP′,Q(∞) and
the fact that F ∗ commutes with the j† functors provides a Frobenius action on
H† rX (OP′,Q(∞)).

Proposition 2.12. The canonical isomorphism (2.10.1) commutes with the Fro-
benius actions defined above on Fgeom(OP,Q(∞)) = Hr(p′∗(Ω

•
P′′/P′(∞) ⊗ LWπ,µ))

and H† rX (OP′,Q(∞)).

This is a local property, hence we may assume that X is affine and that V = ArX ;
let X = Spf A . We may also assume that there exists h ∈ A lifting a local
equation of H in X. We fix a lifting F : X → X of the s-th power of the absolute
Frobenius endomorphism ofX, and we extend it to V and V ′ by setting F ∗(ti) = tqi ,
F ∗(t′i) = t′i

q.
The Frobenius action on Hr(p′∗(Ω

•
P′′/P′(∞)⊗LWπ,µ)) is deduced by functoriality

from the chosen liftings of Frobenius, and the given action on Lπ,µ. The latter is
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the composite isomorphism

F ∗Lπ,µ = F ∗µ∗Lπ
∼−−→ µ∗F ∗Lπ

∼−−→ µ∗Lπ = Lπ,µ,

where the first isomorphism is the Taylor isomorphism comparing the two inverse
images (since F ◦ µ 6= µ ◦ F ), and the second is the pull-back of the Frobenius
action on Lπ given by (1.9.2). It follows that the Frobenius action on Lπ,µ is given
by multiplication by

expπ((
∑
i

tit
′
i)
q −

∑
i

tit
′
i) expπ(

∑
i

tqi t
′
i
q − (

∑
i

tit
′
i)
q) =

∏
i

expπ(tqi t
′
i
q − tit′i).

(2.12.1)
Thus we want to compare the action induced by (2.12.1) on Hr(p′∗(Ω

•
P′′/P′(∞)⊗

LWπ,µ)) with the canonical action of Frobenius on H† rX (OP′,Q(∞)).
In order to follow the action of Frobenius, we will use the following description

of (2.10.1). Let B be the weak completion of A[h−1, t′1, . . . , t
′
r, t1, . . . , tr]. Then the

complex Γ(P ′, p′∗(Ω
•
P′′/P′(∞)⊗LWπ,µ)) can be identified with the total complex K•

associated to the r-uple complex such that Kj1,...,jr = BQ if (j1, . . . , jr) ∈ {0, 1}r
and 0 otherwise, the differentials being defined by

∇i = ∂ti + πt′i : Kj1,...,ji−1,0,ji+1,...,jr −→ Kj1,...,ji−1,1,ji+1,...,jr .

On the other hand, the covering of V ′ × V \ X × V by the open subsets D(t′i)
provides (thanks to [14, (1.2.3)]) a Čech exact sequence

0 → BQ →
⊕
i

B[t′i
−1]†Q → . . . → B[t′1

−1
, . . . , t′r

−1]†Q →

B[t′1
−1
, . . . , t′r

−1]†Q /
∑
i

B[t′1
−1
, . . . , t̂′i

−1, . . . , t′r
−1]†Q → 0,

in which the last term is equal to Γ(P ′, p′∗(H
† r
P (OP′′,Q(∞)))); here P is embedded

into P ′′ thanks to the closed immersion i′ = i × IdP . Since the arrows commute
with the ∇i’s, we can build out of this sequence a similar exact sequence of r-uple
complexes. Thus, the total complexes associated to these r-uple complexes sit in
a similar exact sequence of complexes

0 → K
• →

⊕
i

K
•
i → . . . → K

•
1,...,r → K ′

• → 0, (2.12.2)

in which the complexes K• and K ′• are respectively

Γ(P ′, p′∗(Ω
•
P′′/P′(∞)⊗ LWπ,µ))

and

Γ(P ′, p′∗(Ω
•
P′′/P′(∞)⊗H† rP (LWπ,µ))).

It is clear from its construction that this is an exact sequence of complexes of
Γ(P ′,D†P′,Q(∞))-modules (if we view here Γ(P ′,D†P′,Q(∞)) as a subring of
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Γ(P ′, p′∗D
†
P′′,Q(∞)) thanks to the choice of coordinates as in the remark of 2.7),

and that it is compatible with the action of Frobenius.
In the next lemma, we will show that ∇i is an isomorphism on any term of

the form B[t′i1
−1
, . . . , t′ik

−1]†Q when i is one of the ij ’s. Therefore, all complexes
K•
i1,...,ik

are acyclic, and the exact sequence (2.12.2) provides in Db
coh(D†P′,Q(∞))

an isomorphism K• [r] ∼−−→ K ′• . Both complexes are actually reduced to a single
cohomology sheaf in degree 0, and we obtain a D†P′,Q(∞)-linear isomorphism

Hr(p′∗(Ω
•
P′′/P′(∞)⊗ LWπ,µ))

∼−−→ H0(p′∗(Ω
•
P′′/P′(∞)⊗H† rP (LWπ,µ))), (2.12.3)

compatible with the natural Frobenius actions. Using 2.9 (i) and (2.8.1), we obtain

H† rP (LWπ,µ) ' RΓ†P (LWπ,µ)[r] ' i′+i
′!(LWπ,µ)[r] ' i′+i

′∗(LWπ,µ).

But i′∗(LWπ,µ) is the trivial F -isocrystal OP,Q(∞), as follows from (2.6.1) and
(2.12.1) (or from the fact that the restriction of µ to V ↪→ V ′×X V factors through
the zero section of A1

k). Thus (2.12.3) can be written as a Frobenius compatible
isomorphism

Hr(p′∗(Ω
•
P′′/P′(∞)⊗ LWπ,µ))

∼−−→ H0(p′∗(Ω
•
P′′/P′(∞)⊗H† rP (OP′′,Q(∞)))).

The target can be computed using the canonical isomorphisms

H0(p′∗(Ω
•
P′′/P′(∞)⊗H† rP (OP′′,Q(∞)))) ∼−−→ H0(p′+i

′
+(OP,Q(∞))[−r])

∼−−→ H0(i+q+(OP,Q(∞))[−r])

(cf. [17, 4.3.6, 4.3.7]). The complex q+(OP,Q(∞))[−r] is given by the relative
de Rham cohomology of an overconvergent power series algebra over OX ,Q(∞).
Therefore, it is isomorphic to OX ,Q(∞), and we obtain

H0(p′∗(Ω
•
P′′/P′(∞)⊗H† rP (OP′′,Q(∞)))) ∼−−→ H† rX (OP′,Q(∞)).

It is easy to check that this isomorphism is compatible with the functoriality
actions of Frobenius. By composition, we finally obtain an isomorphism

Hr(p′∗(Ω
•
P′′/P′(∞)⊗ LWπ,µ))

∼−−→ H† rX (OP′,Q(∞)) (2.12.4)

which is compatible with the Frobenius actions.
To end the proof, we only have to check that this isomorphism is equal to

(2.10.4). Remark 2.10 (i) shows that it suffices to check that (2.12.4) maps
(dt1 ∧ . . . ∧ dtr) ⊗ e to 1/t′1 · · · t′r. If r = 1 (which will be the case in our ap-
plication), the sequence (2.12.2) is a short exact sequence of length 1 complexes,
and the claim follows from an easy computation based on the snake lemma. In
the general case, one can first observe that it is enough to prove the analo-
gous claim in the algebraic situation, where each B[t′i1

−1
, . . . , t′ik

−1]† is replaced
by A[h−1, t′1, . . . , t

′
r, t1, . . . , tr, t

′
i1
−1
, . . . , t′ik

−1], because it provides a complex simi-
lar to (2.12.2), mapping to (2.12.2). Thus one can define for algebraic de Rham
cohomology a morphism similar to (2.12.4) and mapping to it. It is then enough
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to observe that, in the algebraic situation, the rank r case can be reduced to the
rank 1 case by a multiplicativity argument.

We now check the acyclicity lemma used in the above proof.

Lemma 2.13. For any sequence 1 ≤ i1 < . . . < is ≤ r, and any i ∈ {i1, . . . , is},
the map

∇i = ∂ti + πt′i : B[t′i1
−1
, . . . , t′is

−1]†Q → B[t′i1
−1
, . . . , t′is

−1]†Q

is an isomorphism.

We may assume that i = i1 = 1, and write t, t′, ∂,∇ for t1, t′1, ∂t1 ,∇1. Let C =
A[h−1, t′, . . . , t′r, t2, . . . , tr, t

′−1, . . . , t′is
−1]†. We endow the Tate algebra Â[h−1]Q

with any Banach norm, extend it by setting ‖ti‖ = ‖t′i‖ = ‖t′i−1‖ = 1 for all i, and
take the induced norm on CQ. Then any element ϕ ∈ B[t′−1, . . . , t′is

−1]†Q can be
written uniquely as a series ϕ =

∑
k≥0 αkt

k, where the coefficients αk ∈ CQ are
such that ‖αk‖ ≤ cηk for some constants c, η ∈ R, η < 1. If ∇(ϕ) = 0, then

(k + 1)αk+1 + πt′αk = 0

for all k ≥ 0. Then the coefficient αk is given by

αk = (−1)kα0
πk

k!
t′
k
,

and ‖αk‖ = ‖α0‖|πk/k!|. As lim|πk/k!|1/k = 1, the αk cannot be the coefficients
of an element of B[t′−1, . . . , t′is

−1]†Q if α0 6= 0. Therefore, ϕ = 0.
To check the surjectivity of ∇, let ψ =

∑
k≥0 βkt

k be a given element in
B[t′−1, . . . , t′is

−1]†Q. We must find a sequence of elements αk ∈ CQ such that

(k + 1)αk+1 + πt′αk = βk

for all k ≥ 0. Because there exists c, η ∈ R such that ‖βk‖ ≤ cηk, with η < 1, we
can define αk as the sum of the series

αk :=
1
πt′

(−πt′)k

k!

∑
j≥k

j!
(−πt′)j

βj ,

which converges in CQ. The coefficients αk satisfy the previous relation, and it
is easy to check that, for any η′ such that η < η′ < 1, there exists c′ ∈ R such
that ‖αk‖ ≤ c′η′

k. Thus they define a series ϕ ∈ B[t′−1, . . . , t′is
−1]†Q such that

∇(ϕ) = ψ.

Remark. – Similar computations show that the algebraic analogue of lemma 2.13,
where B[t′i1

−1
, . . . , t′is

−1]† is replaced by A[h−1, t′1, . . . , t
′
r, t1, . . . , tr, t

′
i1
−1
, . . . , t′ik

−1],
is also true.

We can now deduce from 2.10 the main result of this section. Our proof follows
the method of [27].
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Theorem 2.14. Under the assumptions of 2.6, let u : X → V ′ be a section,
LWπ,u = (u× Id)∗LWπ,µ the overconvergent F -isocrystal on W obtained by functorial-
ity, Z ⊂ X the zero locus of u, Z the special fiber of Z. Assume that Z is locally a
complete intersection of codimension r in X. Then there exists in Db

coh(D†X ,Q(∞))
a canonical isomorphism

q+(LWπ,u) ' RΓ†Z(OX ,Q(∞))[r], (2.14.1)

compatible with the Frobenius actions on both sides.

As in 2.11, the Frobenius actions are defined by functoriality using comparison
with rigid cohomology.

Let u′ = u× Id : P ↪→ P ′′. We consider the cartesian square

P � � u′ //

q

��

P ′′

p′

��
X � � u // P ′,

and we apply the functor u! to the isomorphism (2.10.1). In view of 2.9, we obtain
an isomorphism

u!(p′+(LWπ,µ)) ' u!(H† rX (OP′,Q(∞))) ' u!(RΓ†X(OP′,Q(∞))[r]) (2.14.2)

in Db(D†X ,Q(∞)). Thus it is enough to check that there exists canonical isomor-
phisms

u!(p′+(LWπ,µ)) ' q+(LWπ,u)[−r], (2.14.3)

u!(RΓ†X(OP′,Q(∞))) ' RΓ†Z(OX ,Q(∞))[−r]. (2.14.4)

We only give a rough sketch here, refering to [18] for more details. Using the
techniques of [17] to handle direct and inverse limits, one can reduce to proving
the analogs of (2.14.3) and (2.14.4) in Db(D(m)

Xi
), where the subscript i denotes

the reduction mod pi, and m is any positive integer. The first isomorphism is a
base change result, which follows from the following two facts:

a) If D̃(m)
P ′i

= D(m)
P ′i
⊗ B(m)

P ′i
(H ′1), D̃

(m)
P ′′i

= D(m)
P ′′i
⊗ B(m)

P ′′i
(H2) and D̃(m)

P ′i←P ′′i
=

D(m)
P ′i←P ′′i

⊗ B(m)
P ′′i

(H2), then D̃(m)
P ′i←P ′′i

is a flat D̃(m)
P ′i

-module, whose formation com-
mutes with base changes;

b) If D̃(m)
Pi

= D(m)
Pi
⊗B(m)

Pi
(H1), D̃(m)

Xi←Pi
= D(m)

Xi←Pi
⊗B(m)

Pi
(H1) andM is a flat

quasi-coherent D̃(m)
P ′′i

-module, then the canonical base change morphism

Lu∗(Rp′∗(D̃
(m)
P ′i←P ′′i

⊗D̃(m)
P ′′

i

M)) → Rq∗(D̃(m)
Xi←Pi

⊗D̃(m)
Pi

u′
∗(M))

is an isomorphism.
The proof of the second isomorphism is more delicate, and uses the description

of overconvergent local cohomology with support in a closed subscheme defined by
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an ideal I in terms of the RHom of the divided power envelopes Pn(m)(I) of I (cf.
[17, 4.4.4]). This allows to reduce the assertion to the following claim:

c) If J and I are the ideals of Xi and Zi in P ′i and Xi respectively, the
canonical morphism

Lu∗(RHomOP ′
i
(Pn(m)(J ),OP ′i )) → RHomOXi

(Pn(m)(I),OXi
)

is an isomorphism.
The key point here is that, thanks to our complete intersection hypothesis for Z

in X, the two copies of OXi
viewed as OP ′i -modules via the section u and the zero

section, are Tor-independent over OP ′i . Using known results on the structure of
divided power envelopes in the case of complete intersections [13, 1.5.3], it follows
that the canonical map

Lu∗(Pn(m)(J )) → Pn(m)(I)

is an isomorphism, which implies our claim.
This provides the construction of (2.14.1) in Db(D†X ,Q(∞)). However, the right

hand side of (2.14.1) is known to have coherent cohomology (thanks to a straight-
forward generalization of [17, 4.4.9] adding overconvergent poles along some divi-
sor). Thus, (2.14.1) is an isomorphism in Db

coh(D†X ,Q(∞)).
Since (2.10.1) is compatible with Frobenius actions, the isomorphism (2.14.2)

defined by applying u! to (2.10.1) is compatible with the Frobenius actions obtained
by inverse image (thanks to [17, 4.3.4]). Using the construction of functoriality
maps in rigid cohomology [14, 1.5] to define Frobenius actions, it is easy to check
that the isomorphism (2.14.3) identifies the inverse image of the Frobenius action
on Rp′∗(Ω

•
P′′/P′(∞)⊗ LWπ,µ) with the Frobenius action on Rq∗(Ω•

P/X (∞)⊗ LWπ,u).
On the other hand, using the rigid analytic construction of overconvergent local
cohomology, it is also immediate to check that the isomorphism (2.14.4) identifies
the inverse image of the Frobenius action on RΓ†X(OP′,Q(∞)) with the Frobenius
action on RΓ†Z(OX ,Q(∞)). It follows that the isomorphism (2.14.1) commutes
with Frobenius actions.

Remark. – The complete intersection hypothesis on Z has only been used to give a
simple proof of the isomorphism (2.14.4). While (2.14.4) has not yet been checked
in the general case, there is no doubt that it should be true in full generality,
and therefore that 2.14 should remain valid without the complete intersection
hypothesis.

For example, it is worth noting that the theorem is true when the section u
reduces to the zero section X ↪→ V ′, hence Z = X. Indeed, the functors u+ and
u! only depend upon the reduction of u over Spec(k) [16], so we may assume that
u itself is the zero section. Then, thanks to [17, (4.4.5.2)], there is a canonical
isomorphism

RΓ†X(OP′,Q(∞)) ∼−−→ u+(u!(OP′,Q(∞))).

Moreover, the functors u+ and u! are quasi-inverse equivalences between coherent
D†X ,Q(∞)-modules and coherent D†P′,Q(∞)-modules with support in X [17, 5.3.3].
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Therefore, the previous isomorphism gives an isomorphism

u!(RΓ†X(OP′,Q(∞))) ∼−−→ u!(OP′,Q(∞)) = OX ,Q(∞)[−r],

and (2.14.4) is an isomorphism. As LWπ,u = OP,Q(∞) in this case, the isomorphism
(2.14.1) is simply the isomorphism

q+(OP,Q(∞)) ∼−−→ OX ,Q(∞)[r]

resulting from the triviality of the relative de Rham cohomology of a vector bun-
dle.

3. Applications to rigid cohomology

We now derive consequences of 2.14 for rigid cohomology, including rigid co-
homology with compact supports. We will also check the compatibility between
our isomorphism and its algebraic analog, constructed in [27].

Theorem 3.1. With the notation and hypotheses of 2.14, assume in addition that
X is proper over Spf R. Then there exists a canonical isomorphism

RΓrig(W/K,Lπ,u) ' RΓZ∩Y, rig(Y/K) (3.1.1)

which commutes with the natural Frobenius actions F ∗ on both cohomology spaces.

Let f : X → S be the structural morphism, and n the relative dimension
of X over S. Since (2.14.1) is an isomorphism in Db(D†X ,Q(∞)), it defines an
isomorphism

f+(q+(LWπ,u)[−r])[−n] ' f+(RΓ†Z(OX ,Q(∞)))[−n].

As q+(LWπ,u) belongs to Db
coh(D†X ,Q(∞)), we obtain

f+(q+(LWπ,u)[−r])[−n] ' (f ◦ q)+(LWπ,u)[−r − n]

' RΓ(P,Ω•
P ⊗ LWπ,u)

' RΓ(P,R sp∗(Ω
•
PK
⊗ j†WL

an
π,µ◦(u×Id)))

' RΓ(PK ,Ω•
PK
⊗ j†WL

an
π,µ◦(u×Id))

= RΓrig(W/K,Lπ,u),

the latter isomorphism being due to the fact that (P,H2) is a smooth compactifi-
cation of W. On the other hand, if U = X \ Z, we obtain

f+(RΓ†Z(OX ,Q(∞)))[−n] ' RΓ(X ,Ω•
X ⊗ RΓ†Z(OX ,Q(∞)))

' RΓ(X ,R sp∗((Ω
•
XK
⊗ (j†YOXK

→ j†U∩YOXK
))t))

= RΓZ∩Y, rig(Y/K).
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Therefore, we obtain the isomorphism (3.1.1). As (2.14.1) is compatible with
Frobenius actions, the same holds for (3.1.1).

Remark. – As for theorem 2.14, theorem 3.1 remains valid when the reduction of
u over Spec(k) is the zero section.

Corollary 3.2. Under the assumptions of 3.1, there exists a canonical isomor-
phism

RΓc, rig(W/K,Lπ,u) ' RΓc, rig(Z ∩ Y/K)[−2r], (3.2.1)

which commutes with the Frobenius actions F ∗ on RΓc, rig(W/K,Lπ,u) and qrF ∗

on RΓc, rig(Z ∩ Y/K).

Replacing Lπ by L−π in (3.1.1) and taking K-linear duals yields an isomor-
phism

RΓrig(W/K,L−π,u)∨ ' RΓZ∩Y, rig(Y/K)∨

which commutes with the dual actions of Frobenius F∗ = F ∗ ∨ on both sides.
Poincaré duality is compatible with F ∗, and provides isomorphisms

RΓrig(W/K,L−π,u)∨ ' RΓc, rig(W/K,Lπ,u)[2n+ 2r],
RΓZ∩Y, rig(Y/K)∨ ' RΓc, rig(Z ∩ Y/K)[2n].

Since F ∗ = qn+rσ on H
2(n+r)
c, rig (W/K) (resp. qnσ on H2n

c, rig(Y/K)), these isomor-
phisms identify F∗ on RΓrig(W/K,L−π,u)∨ to qn+r(F ∗)−1 on RΓc, rig(W/K,Lπ,u),
and F∗ on RΓZ∩Y, rig(Y/K)∨ to qn(F ∗)−1 on RΓc, rig(Z∩Y/K). The corollary fol-
lows.

3.3. We now want to check that, when the previous situation is algebraizable,
the isomorphism (3.1.1) is compatible with specialization. As we are returning to
a situation similar to 1.1, we change notation. For any S-scheme X, we denote by
XK and Xk the generic and special fibers of X, αX : XK ↪→ X the inclusion of
the generic fiber, and X the (p-adic) formal completion of X.

Let f : X → S be a proper and smooth morphism of relative dimension n,
q : V → X a vector bundle of rank r over X, q′ : V ′ → X the dual vector bundle,
P and P ′ their projective closures over X, u : X ↪→ V ′ a section, Z ↪→ X its
zero locus. We also assume that H ⊂ X is a relative divisor over S, and we set
Y = X \H, W = q−1(Y ), W ′ = q′−1(Y ).

Let Lπ,µ be the rank 1 module with integrable connection on V ′K × VK defined
as the inverse image of Lπ by the canonical pairing V ′K×XK

VK → A1
K , and Lπ,u its

inverse image by the section uK×Id : VK ↪→ V ′K×XK
VK . Note that, on A1

K , Lπ is
the inverse image of the usual exponential module under the automorphism defined
by multiplication by π. Therefore, we can deduce from [27, th. 0.2] canonical
isomorphisms

qK,+(Lπ,u)[−r] ' RΓZK
(OXK

), (3.3.1)
RΓdR(WK/K,Lπ,u) ' RΓZK∩YK , dR(YK/K). (3.3.2)
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Proposition 3.4. Under the previous assumptions, the square

RΓdR(WK/K,Lπ,u)
(3.3.2)−−−−→
∼

RΓZK∩YK , dR(YK/K)

ρ
Lπ,u
W

y yρZ∩Y

RΓrig(Wk/K,Lπ,u)
(3.1.1)−−−−→
∼

RΓZk∩Yk, rig(Yk/K),

(3.4.1)

where the vertical arrows are the specialization morphisms defined in 1.8 and 1.2,
is commutative.

To check this compatibility, we will first give an interpretation of the special-
ization morphisms in terms of D-modules.

3.5. Let X be a smooth S-scheme, H ⊂ X a relative divisor, j : Y ↪→ X the
inclusion of Y := X \H in X, i : X → X the canonical morphism, and ian : XK ↪→
X an
K the inclusion. We consistently regard OX -modules as OX -modules via i∗. If
D(m)
X (resp. DXK

) is the sheaf of differential operators of level m on X (resp.
the sheaf of differential operators on XK), we will use the notation D(m)

X (∞) =
j∗(D(m)

Y ), DXK
(∞) = jK ∗(DYK

), DX,Q(∞) = j∗(DY ) ⊗ Q ' αX ∗(DXK
(∞)), as

well as OXK
(∞) = jK ∗(OYK

), OX,Q(∞) = j∗(OY ) ⊗ Q ' αX ∗(OXK
(∞)). For

any m, there is a canonical ring isomorphism

DX,Q(∞) ' D(m)
X (∞)⊗Q.

On the other hand, the construction of D†X ,Q(∞) provides a ring homomorphism

D(0)
X (∞) → B̂(0)

X (Hk)⊗̂D̂(0)
X ⊗Q → D†X ,Q(∞).

Thus we obtain a canonical ring homomorphism

DX,Q(∞) → D†X ,Q(∞). (3.5.1)

If M ∈ Db(DXK
(∞)), and M ∈ Db(D†X ,Q(∞)), a specialization morphism

from M to M is by definition a morphism

RαX ∗(M) → M, (3.5.2)

in Db(DX,Q(∞)); note that RαX ∗(M) = αX ∗(M) if M is a quasi-coherent
DXK

(∞)-module. For example, the morphism (3.5.1) itself, as well as the canon-
ical morphism

OX,Q(∞) → OX ,Q(∞)

defined similarily, are specialization morphisms.
More generally, let M be a DXK

(∞)-module, M an the associated analytic
sheaf, which is a (DXK

(∞))an-module. Note that, for any open subset U ⊂ X,
with formal completion U , we have UK ⊂ XK ∩ U an

K . It follows that there is a
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natural DX,Q(∞)-linear morphism

αX ∗(M) → sp∗(i
an∗(M an)).

Therefore, if Man is a (DXK
(∞))an-module such that M := sp∗(ian∗(Man))

is endowed with a structure of D†X ,Q(∞)-module inducing its natural DX,Q(∞)-
module structure, the datum of a (DXK

(∞))an-linear morphism M an → Man

defines a specialization morphism from M to M. In particular, we will use this
remark in the following situations:

a) Let L be a coherent OYK
-module endowed with an integrable connection,

such that the induced connection on L = j†Yk
(Lan) is overconvergent along Hk.

If M = jK ∗(L) and M = sp∗(ian∗(L)), then there is a canonical specialization
morphism from M toM.

b) Let Z ⊂ X be a closed subscheme, U = Y \ Z = X \ H ∪ Z, M =
RΓZK

(OXK
(∞)), M = RΓ†Zk

(OX ,Q(∞)). If J• is an injective resolution of
OXK

(∞) over DXK
(∞), and J • an injective resolution of (OXK

(∞))an over
(DXK

(∞))an, one can choose a (DXK
(∞))an-morphism ϕ : J• an → J • inducing

the identity on (OXK
(∞))an. As X an

K \Z an
K is a strict neighbourhood of ]Uk[X , ϕ

induces a morphism (ΓZK
(J• ))an → (J • → j†Uk

(J • ))t. One obtains in this way
a canonical specialization morphism from M toM.

Specialization morphisms are functorial in X in the following sense. Let f :
X → X ′ be an S-morphism, H ⊂ X, H ′ ⊂ X ′ relative divisors such that
f−1(H ′) ⊂ H, Y = X \ H, Y ′ = X ′ \ H ′. As for (3.5.1), there are natural
specialization morphisms on X

αX ∗(DXK→X′
K

(∞)) → D†X→X ′,Q(∞)

αX ∗(DX′
K←XK

(∞)) → D†X ′←X ,Q(∞),

where DXK→X′
K

(∞) = jK ∗(DYK→Y ′K ), DX′
K←XK

(∞) = jK ∗(DY ′K←YK
). More-

over, these morphisms are semi-linear with respect to the ring homomorphism
f−1(DX′,Q(∞)) → f−1(D†X ′,Q(∞)) deduced from (3.5.1) on X ′. It follows that,
for any complexes M ′ ∈ Db(DX′

K
(∞)), M′ ∈ Db(D†X ′,Q(∞)) (resp. M ∈

Db(DXK
(∞)), M ∈ Db(D†X ,Q(∞))), a specialization morphism from M ′ to M′

(resp. from M toM) defines canonically specialization morphisms

αX ∗(f ∗K(M ′)) → f ∗(M′),
αX′ ∗(fK +(M)) → f+(M).

Finally, a specialization morphism defines a morphism between de Rham co-
homologies. This is the particular case of the previous situation where X ′ = S,
and it can be described in the following way. A specialization morphism from
M ∈ Db(DXK

(∞)) toM∈ Db(D†X ,Q(∞)) defines a morphism

ωX ⊗L
D(0)

X

RαX ∗(M) → ωX ⊗L
D(0)

X

M.
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Using the de Rham resolution of ωX over D(0)
X and taking global sections, we

obtain a morphism

RΓdR(XK/K,M) → RΓdR(X/S,M). (3.5.3)

When X is proper, and M , M come from an OYK
-module with connection L as

in a) above, the morphism (3.5.3) can be written as

RΓdR(YK/K,L) → RΓrig(Yk/K,L).

The computation based on de Rham resolutions shows that this morphism is the
specialization morphism ρLY defined in (1.8.2). Similarily, if X is proper, M =
RΓZK

(OXK
(∞)) andM = RΓ†Zk

(OX ,Q(∞)) as in b) above, the morphism (3.5.3)
can be written as

RΓZK∩YK , dR(YK/K) → RΓZk∩Yk, rig(Yk/K),

and this morphism is the morphism ρZ∩Y defined in (1.2.2).

3.6. We now return to the proof of 3.4. We endow P , P ′ and P ′′ = P ′ ×X P
with the divisors defined by H and the hyperplanes at infinity as in 2.6. Using the
natural specialisation morphism for Lπ,µ, and applying the previous remarks, we
obtain a specialization morphism

αP ′ ∗(p′+(LWπ,µ)) → p′+(LWπ,µ),

where LWπ,µ is defined as in 2.6, LWπ,µ denotes the direct image of (Lπ,µ)|W ′
K×WK

by the inclusion W ′K × WK ↪→ P ′K × PK , and we keep the notation p′ for the
projections P ′′K → P ′K and P ′′ → P ′. On the other hand, we also obtain a
specialization morphism

αP ′ ∗(HrXK
(OP ′K (∞))) → H† rXk

(OP′,Q(∞)).

These morphisms fit in a commutative square

αP ′ ∗(p′+(LWπ,µ)) −−−−→∼ αP ′ ∗(HrXK
(OP ′K (∞)))y y

p′+(LWπ,µ)
(2.10.1)−−−−−→
∼

H† rXk
(OP′,Q(∞)),

(3.6.1)

where the upper isomorphism is the algebraic analogue of (2.10.1) (cf. [27, 2.3]).
Indeed, this commutativity is a local property on X, hence one may assume that
V = ArX , with coordinates t1, . . . , tr, and then it follows from the fact that both
isomorphisms send the section (dt1 ∧ . . . ∧ dtr) ⊗ e, where e is the basis of LWπ,µ
(resp. LWπ,µ), to the section 1/t′1 . . . t

′
r of the corresponding local cohomology sheaf.

Using the isomorphisms (2.14.3) and (2.14.4), and their algebraic analogues, it
follows by functoriality that the specialization morphisms defined in 3.5 fit in a
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commutative square

RαX ∗(q+(LWπ,u)) −−−−→∼ RαX ∗(RΓZK
(OXK

(∞)))[r]y y
q+(LWπ,u)

(2.14.1)−−−−−→
∼

RΓ†Zk
(OX ,Q(∞))[r],

(3.6.2)

where the upper isomorphism is the image by RαX ∗ of the isomorphism defined
in [27, 0.2]. Taking de Rham cohomology, the proposition follows as explained in
3.5.

3.7. Let us now assume that we are in the situation considered in 1.3, where K
is a number field, with ring of integers R, and S = SpecR. Consider a proper and
smooth S-scheme X, endowed with a divisor H, Y = X \H, a vector bundle V of
rank r over X, and a section u : X ↪→ V ′ of the dual vector bundle, such that the
zero locus Z of u is flat over S, and locally a complete intersection of codimension
r in X. For each closed point s ∈ S0, let K(s) be the completion of K at s,
k(s) its residue field, ps the characteristic of k(s). We choose for each s a root
πs of the polynomial Xps−1 + ps in a finite extension K ′(s) of K(s), with residue
field k′(s). If R′ is an R-algebra, we denote by the subscript R′ objects deduced
from S-objects by base change from Spec(R) to Spec(R′). Then, combining 1.4
with the previous proposition, and using Poincaré duality, we obtain the following
corollary:

Corollary 3.8. Under the previous assumptions, there exists a finite subset Σ ⊂ S0

such that the morphisms

ρ
Lπs,u

W : RΓdR(WK′(s)/K
′(s), Lπs,u) → RΓrig(Wk′(s)/K

′(s),Lπs,u), (3.8.1)

ρ
Lπs,u

c,W : RΓc, rig(Wk′(s)/K
′(s),Lπs,u) → RΓdR, c(WK′(s)/K

′(s), Lπs,u) (3.8.2)

are isomorphisms for all s /∈ Σ.

4. The algebraic and analytic Dwork complexes

We will now use the results of the previous sections to explain the geometric
interpretation of the algebraic and analytic complexes constructed by Dwork to
obtain a rationaliy formula for the zeta function of a projective hypersurface over
a finite field.

In this section, K will be a finite extension of Qp, R its ring of integers, k its
residue field, of cardinality q = ps. We assume that K contains the primitive p-th
roots of 1, and we fix an element π ∈ K such that πp−1 = −p. Let X = PnS be
the projective space of relative dimension n over S = Spec(R), X1, . . . , Xn+1 the



Dwork cohomology for singular hypersurfaces 37

standard projective coordinates on X, H1, . . . ,Hn+1 the corresponding coordinate
hyperplanes, Ui = X \Hi, H = H1 ∪ . . . ∪Hn+1, Y = X \H.

We fix an homogeneous polynomial f ∈ R[x1, . . . , xn+1] of degree d ≥ 1, and
we denote by Z ⊂ X the projective hypersurface defined by f . As before, the
subscripts K and k will denote the generic and special fibers. In [28, (21)], Dwork
introduces a characteristic series χF (t) defined by a Frobenius operator, such that
the zeta function of the affine hypersurface Zk∩Yk can be expressed by the formula

ζ(Zk ∩ Yk, qt) = (1− t)−(−δ)n

χF (t)−(−δ)n+1
, (4.0.1)

where the operator δ on the multiplicative group K[[t]]× is defined by A(t)δ =
A(t)/A(qt). Although the proof given in [28] is non-cohomological, Dwork gave in
subsequent articles a cohomological interpretation of this formula when Zk is non
singular ([29], [30]). We will show here that, using Dwork’s computations and our
previous results, this formula has an interpretation in terms of rigid cohomology
which holds also in the singular case.

4.1. We first recall the construction of the algebraic and analytic Dwork com-
plexes associated to f (cf. [29, §3]). Let T be the set of multi-indexes u =
(u0, u1, . . . , un+1) ∈ Nd+2 such that

du0 = u1 + . . .+ un+1.

a) We denote by L the graded sub-algebra of K[X0, X1, . . . , Xn+1] whose ele-
ments are polynomials of the form

P (X0, X1, . . . , Xn+1) =
∑
u∈T

auX
u.

For any b ∈ R, b > 0, we denote by L(b) the sub-algebra of the power series
algebra K[[X0, X1, . . . , Xn+1]] defined by

L(b) =
{
ξ =

∑
u∈T

auX
u

∣∣ ∃ c ∈ R such that ord(au) ≥ bu0 + c
}
.

The algebra L(b) can be endowed with the norm ‖ξ‖ = supu |au|pbu0 , for which
it is a p-adic Banach algebra. If b < b′, then L(b′) ⊂ L(b), and the inclusion is a
completely continuous map [48]. We define

L(0+) =
⋃
b>0

L(b).

b) For any i ≥ 1, the differential operator

Di = Xi
∂

∂Xi
+ πX0Xi

∂f

∂Xi
(4.1.1)
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acts on L and L(b), for all b, hence also on L(0+). Moreover, we have Di ◦Dj =
Dj ◦Di for all i, j. Therefore, we can form “Koszul complexes”

K
• (L;D) ⊂ K

• (L(b);D) ⊂ K
• (L(0+);D).

using the sequence D = (D1, . . . , Dn+1). For example, K• (L;D) is defined as

L →
n+1⊕
i=1

L · ei →
⊕
i<j

L · ei ∧ ej → · · · → L · e1 ∧ · · · ∧ en+1,

the differential being defined by

d(Pei1 ∧ . . . ∧ eik) =
n+1∑
i=1

(DiP )ei ∧ ei1 ∧ . . . ∧ eik .

The definition of K• (L(b);D) and K• (L(0+);D) is similar. We will consider these
complexes as being concentrated in degrees in [0, n+ 1].

c) Let F (X0, . . . , Xn+1) ∈ K[[X0, . . . Xn+1]] be the formal power series

F (X0, . . . , Xn+1) = exp(π(X0f(X1, . . . , Xn+1)−Xq
0f(Xq

1 , . . . , X
q
n+1))).

If b0 is small enough, then F ∈ L(b0), and multiplication by F in K[[X]] induces
a continuous endomorphism of L(b′) for any b′ ≤ b0. On the other hand, one can
define an endomorphism ψ of K[[X]] by ψ(

∑
u auX

u) =
∑
u aquX

u, and ψ induces
a continuous homomorphism ψ : L(b/q) → L(b) for any b ≤ b0. Finally, one can
define an endomorphism α : K[[X]] → K[[X]] by α(ξ) = ψ(Fξ). If b ≤ qb0, then
α induces a completely continuous endomorphism of L(b), which is the composite

α : L(b) ↪→ L(b/q) F−→ L(b/q)
ψ−→ L(b).

Dwork defines the characteristic series χF (t) of α as the limit (for the topology
of pointwise convergence of coefficients in K) of the characteristic polynomials
det(I− tαN ), where αN is the endomorphism of the vector space of polynomials of
degree ≤ N defined by replacing F by its truncation in degrees ≤ (q−1)N [29, §2].
In particular, χF does not depend upon b, and will not change if K is replaced by
an extension which is complete under a valuation inducing the p-adic valuation on
K. On the other hand, we can view α as a completely continuous endomorphism
of L(b) for small b, which allows to define its Fredholm determinant det(I − tα).
For any such b, we have det(I − tα) = χF (t), thanks to [48, §9].

Since α is a completely continuous endomorphism of L(b), it endows L(b) with
the structure of a nuclear space in Monsky’s sense [44, 1.3], and det(I−tα) is equal
to Monsky’s characteristic series for nuclear operators. Moreover, since det(I−tα)
is independent of b, the space L(0+) = ∪bL(b) endowed with α is still nuclear, and
the characteristic series of α on L(0+) is still equal to det(I − tα) = χF (t) [44,
1.6].

For any i, we have α ◦Di = qDi ◦ α. Thus, one can define an endomorphism
(again be denoted by α) of the complex K• (L(0+);D), by setting

α(Pei1 ∧ . . . ∧ eik) = qn+1−kα(P )ei1 ∧ . . . ∧ eik (4.1.2)
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in degree k. The characteristic series of α on K• (L(0+);D) is then defined by

det(I − tα|K• (L(0+);D)) :=
n+1∏
i=0

det(I − tα|Ki(L(0+);D))(−1)i

= χF (t)(−δ)
n+1

. (4.1.3)

On the other hand, α acts on the cohomology spaces Hi(K• (L(0+);D)). By [44,
1.4], they are still nuclear spaces, and we have

det(I − tα|K• (L(0+);D)) =
n+1∏
i=0

det(I − tα|Hi(K• (L(0+);D)))(−1)i

.

hence
n+1∏
i=0

det(I − tα|Hi(K• (L(0+);D)))(−1)i

= χF (t)(−δ)
n+1

. (4.1.4)

4.2. To give a geometric interpretation of Dwork’s complexes, we follow [27], and
we introduce the vector bundle V = Spec(S(OX(d))) over X. Let q : V → X be
the projection, Vi = q−1(Ui), H ′i = q−1(Hi), H ′ = ∪iH ′i = q−1(H). We view
X as a closed subscheme of V via the zero section, and we define D = H ′ ∪ X,
W = V \H ′ = q−1(Y ), W ∗ = V \D = W \ Y . We observe that D is a relative
normal crossings divisor in V above S = Spec(R). For all r ≥ 0, we will denote
by ΩrV (logD) the sheaf of differential forms of degree r over V with logarithmic
poles along D.

Note also that these definitions, as well as the definition of L given above, make
sense over any base ring R.

Lemma 4.3. With the above notation, we have:
(i) Over any base ring R, there is a natural isomorphism of R-algebras

L
∼−−→ Γ(V,OV ), (4.3.1)

and Hi(V,OV ) = 0 for all i ≥ 1.
(ii) If d is invertible in R, the sheaf Ω1

V (logD) is a free OV -module.

Since V = Spec(S(OX(d))), we have

Rq∗(OV ) = q∗(OV ) =
⊕
m≥0

OX(md),

hence

RΓ(V,OV ) ' RΓ(X,
⊕
m≥0

OX(md)) '
⊕
m≥0

Γ(X,OX(md)) ' Γ(V,OV ).
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If we denote by k[X1, . . . , Xn+1]i the R-submodule of homogeneous polynomials
of degre i, we can compose the standard isomorphism⊕

m≥0

k[X1, . . . , Xn+1]md
∼−−→

⊕
m≥0

Γ(X,OX(md))

with the obvious isomorphism

L
∼−−→

⊕
m≥0

k[X1, . . . , Xn+1]md

defined by the substitution X0 7→ 1, and the first assertion follows.
To construct a basis for Ω1

V (logD), one can use the following local coordinates
on the open subsets Vj , 1 ≤ j ≤ n+ 1. For i 6= j, 1 ≤ i ≤ n+ 1, let xi,j = Xi/Xj ,
so that the xi,j are local coordinates on Uj . On the other hand, the section
tj = Xd

j ∈ Γ(X,OX(d)) ⊂ Γ(V,OV ) defines a relative coordinate on V above Uj .
Keeping the notation xi,j for the inverse images of the xi,j on Vj , we obtain a
system of local coordinates (xi,j , tj)i 6=j on Vj . It will sometimes be convenient
to use also the notation xj,j = Xj/Xj = 1. Thus, the image in Γ(Vj ,OV ) of a
monomial Xu ∈ L is the section

tu0
j x

u1
1,j · · ·x

un+1
n+1,j . (4.3.2)

If d is invertible in R, we can now define a family (ωi)1≤i≤n+1 of global differ-
ential forms on V by setting

ωi|Vj
=

1
d

dtj
tj

+
dxi,j
xi,j

if j 6= i, (4.3.3)

ωi|Vi
=

1
d

dti
ti

( =
1
d

dti
ti

+
dxi,i
xi,i

).

When j varies, the ωi|Vj
glue to define global sections ωi = 1

d
dti
ti
∈ Γ(V,Ω1

V (logD)),
and it is clear that, on any Vj , they form a basis of Ω1

V (logD).

4.4. Returning to our initial context where R is the ring of integers of K, we
denote by X , V, Uj , Vj the formal p-adic completions of X, V , Uj , Vj . Over
Uj,K , the generic fiber VK of V is the compact open subset of V an

K defined by the
condition |tj(y)| ≤ 1, so that the map VK → XK is a locally trivial fibration whose
fibers are closed unit discs. Let P be the projective closure of V and P be the
formal completion of P along its special fiber. We recall that the tube ]Vk[P of
Vk in PK is equal to VK . Let j†V be the functor of overconvergent sections around
VK , as defined in 1.1. The first assertion of the previous lemma has the following
analytic counterpart:

Lemma 4.5. With the previous notation, there is a natural isomorphism of K-
algebras

L(0+) ∼−−→ Γ(V an
K , j†V (OV an

K
)) (4.5.1)
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extending the isomorphism (4.3.1). Furthermore, Hi(V an
K , j†V (OV an

K
)) = 0 for all

i ≥ 1.

For any ρ ∈ R, ρ ≥ 1, and any j ∈ {1, . . . , n + 1}, let Vj,ρ ⊂ (q an)−1(Uj,K) be
the affinoid open subset defined as Vj,ρ = {y | |tj(y)| ≤ ρ}. If j, j′ ∈ {1, . . . , n+1},
then tj′ = xdj′,jtj . As |xj′,j(x)| = 1 for all x ∈ Uj′,K ∩ Uj,K , it follows that
Vj,ρ ∩ (q an)−1(Uj,K ∩ Uj′,K) = Vj′,ρ ∩ (q an)−1(Uj,K ∩ Uj′,K). Hence the Vj,ρ for
variable j glue together to define an open subset Vρ ⊂ V an

K . Note that V1 = VK . It
is clear that, for ρ >→ 1, the Vρ are a fundamental system of strict neighbourhoods
of VK . Thus, if jρ : Vρ ↪→ V an

K denotes the inclusion morphism, there is a natural
isomorphism j†V (OV an

K
) ∼−−→ lim−→ρ

>→1
jρ ∗(OVρ

).

For b > 0, let ξ =
∑
u∈T auX

u ∈ L(b), and let ρ be such that 1 < ρ < pb. Since
‖xi,j‖ ≤ 1 in Γ(Uj,K ,OX an

K
), the series∑

u∈T

au
(
tu0
j

∏
i

xui
i,j

)
=

∑
u0

( ∑
u1+...+un+1=du0

au
∏
i

xui
i,j

)
tu0
j

converges towards an element ξj,ρ ∈ Vj,ρ. Moreover, since tj′ = xdj′,jtj and xi,j′ =
xi,jxj,j′ above Uj ∩ Uj′ , these series glue for variable j to define an element ξρ ∈
Γ(Vρ,OV an

K
). Then the homomorphism (4.5.1) is obtained by sending ξ ∈ L(b) ⊂

L(0+) to the image of ξρ in Γ(V an
K , j†V (OV an

K
)), for any ρ such that 1 < ρ < pb.

If ξ 6= 0, then ξj,ρ 6= 0, hence (4.5.1) is injective. To prove it is surjective, we
define, for b ≥ 0,

L′(b) =
{
ξ =

∑
u∈T

auX
u

∣∣ ord(au)− bu0 → +∞ if u0 → +∞
}
.

Thus L′(b) ⊂ L(b) for all b > 0, and L(0+) =
⋃
b>0 L

′(b). The previous construc-
tion provides a natural homomorphism

L′(logp(ρ)) −→ Γ(Vρ,OVρ
) (4.5.2)

for any ρ ≥ 1. Then it suffices to construct a decreasing sequence of real numbers
ρm, with limit 1, such that the following holds when ρ is one of the ρm’s:

a) The homomorphism (4.5.2) is an isomorphism.
On the other hand, it follows from 1.1 that, for any fixed ρ0 > 1, we have

Hi(V an
K , j†V (OV an

K
)) ' Hi(Vρ0 , j

†
V (OV an

K
))

' lim−→
ρ

>→1

Hi(Vρ0 , jρ ∗(OVρ))

' lim−→
ρ

>→1

Hi(Vρ,OVρ),

where the second isomorphism is due to the fact that Vρ0 is quasi-compact and
separated, and the third one to the fact that, for any affinoid A in Vρ0 , A ∩ Vρ is
affinoid. As above, the vanishing of Hi(V an

K , j†V (OV an
K

)) will follow if we construct
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a decreasing sequence of real numbers ρm, with limit 1, such that the following
holds when ρ is one of the ρm’s:

b) For any i > 0, Hi(Vρ,OVρ) = 0.
Let us prove that assertions a) and b) hold when ρ belongs to the sequence

ρm = p1/m. As it suffices to prove these properties after a finite extension of the
base field K, we may assume that there exists an element λ ∈ K such that |λ| = ρ.
Then multiplication by λ in the vector bundle V an

K induces an isomorphism of
rigid spaces hλ : V1

∼−−→ Vρ. Moreover, the substitution X0 7→ λX0 defines
an isomorphism h′λ : L′(logp(ρ))

∼−−→ L′(0), and the homomorphisms (4.5.2) are
compatible with h′λ and h∗λ. Therefore, it suffices to prove a) and b) when ρ = 1.

In this case, we have V1 = VK , and Hi(V1,OV1) = Hi(V,OV)⊗K for all i ≥ 0.
On the other hand, L′(0) = L̂R ⊗ K, where L̂R is the p-adic completion of the
algebra L constructed over the base ring R. Denoting by Rj , Vj the reductions
modulo pj of R, V, and applying lemma 4.3 over Rj , we obtain that

LRj

∼−−→ Γ(Vj ,OVj
), Hi(Vj ,OVj

) = 0 if i ≥ 1.

In particular, the cohomology groups Hi(Vj ,OVj
) satisfy the Mittag-Leffler con-

dition for all i ≥ 0, and therefore this gives an isomorphism

Hi(V,OV)
∼−−→ lim←−

j

Hi(Vj ,OVj
)

for all i. Since L̂R = lim←−j LRj , assertions a) and b) follow.

Theorem 4.6. Under the assumptions of 4.2 and 4.4, let q′ : V ′ → X be the
dual vector bundle of V , u : X ↪→ V ′ the section defined by the homogeneous
polynomial f ∈ Γ(X,OX(d)), Lπ,f the rank one module with connection on V
obtained as the inverse image of Lπ by the morphism V ↪→ V ′ × V → A1

S defined
by u, Lπ,f = j†V (Lan

π,f ) the corresponding overconvergent F -isocrystal on Vk. We
denote again by the subscripts K and k the generic fiber and the special fiber of
an S-scheme.

(i) There exists an isomorphism of complexes

θ : K
• (L;D) ∼−−→ Γ(VK ,Ω

•
VK

(logDK)⊗ Lπ,f ), (4.6.1)

which can be identified in degree 0 to the isomorphism (4.3.1) (using the canonical
basis of Lπ,f ). In the derived category of K-vector spaces, θ defines an isomor-
phism

K
• (L;D) ∼−−→ RΓdR(W ∗K/K,Lπ,f ). (4.6.2)

(ii) There exists an isomorphism of complexes

θ† : K
• (L(0+);D) ∼−−→ Γ(V an

K , j†V (Ω•
V an

K
(logDan

K )⊗ Lan
π,f )) (4.6.3)

which can be identified in degree 0 to the isomorphism (4.5.1). In the derived
category of K-vector spaces, θ† defines an isomorphism

K
• (L(0+);D) ∼−−→ RΓrig(W ∗k /K,Lπ,f ), (4.6.4)



Dwork cohomology for singular hypersurfaces 43

in which the endomorphism α of K• (L(0+);D) corresponds to the endomorphism
F∗ = qn+1(F ∗)−1 on rigid cohomology.

Let us recall that, by construction, Lπ,f is a rank 1 OV -module endowed with a
natural basis e. If we use this basis to identify Lπ,f to OV , then the isomorphisms
θ and θ† have been defined in degree 0 by the previous lemmas. Thus, if θj is the
composed homomorphism

θj : L
∼−−→ Γ(VK ,OVK

) ↪→ Γ(Vj,K ,OVK
),

and u ∈ T, we obtain in Γ(Vj,K ,Lπ,f )

θ(Xu) = θj(Xu)⊗ e = tu0
j x

u1
1,j · · ·x

un+1
n+1,j ⊗ e, (4.6.5)

thanks to (4.3.2). In higher degrees, we define θ (resp. θ†) as the unique isomor-
phism which is semi-linear with respect to (4.3.1) (resp. (4.5.1)), and sends any
product ei1 ∧ . . . ∧ eik to ωi1 ∧ . . . ∧ ωik ⊗ e, where (ωi)i is the basis defined in
(4.3.3). We obtain in this way isomorphisms of graded modules θ and θ†.

For each j, let t′j be the dual coordinate associated to tj on V ′j = q′−1(Uj).
Under the composed morphism ϕj : Vj ↪→ V ′ × V → A1

S , the inverse image of the
coordinate t ∈ Γ(A1

S ,OA1
S
) is

ϕ∗j (t) = u∗(t′j)tj = tjf(x1,j , . . . , xn+1,j) = θj(f).

It follows that, viewing f as an element of Γ(V,OV ) through (4.3.1), the connection
∇π,f of Lπ,f is given by

∇π,f (g e) = (d(g) + πg d(f))⊗ e (4.6.6)

for any section g of OV .
Since the ωi are a basis of Ω1

VK
(logDK) over OVK

, we can define derivations
∂i of OVK

by setting

d(g) =
n+1∑
i=1

∂i(g)ωi,

so that ∇π,f is given by

∇π,f (g e) =
n+1∑
i=1

(∂i(g) + πg∂i(f))ωi ⊗ e.

To prove the commutation of θ and θ† with the differentials, it is then enough to
prove that, when g ∈ K[X1, . . . , Xn+1] is homogeneous of degree dk, the iso-
morphism (4.3.1) maps Xk

0Xi ∂g/∂Xi to ∂i(g) for all i. We can compute in
Γ(Vn+1,K ,OVK

), and use the coordinates tn+1, x1,n+1, . . . , xn,n+1 to write g =
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tkn+1g(xn+1, 1), where xn+1 stands for x1,n+1, . . . , xn,n+1. Then we obtain

d(g) = ktkn+1g(xn+1, 1)
dtn+1

tn+1
+

n∑
i=1

tkn+1xi,n+1
∂g

∂Xi
(xn+1, 1)

dxi,n+1

xi,n+1

= dktkn+1g(xn+1, 1)ωn+1 +
n∑
i=1

tkn+1xi,n+1
∂g

∂Xi
(xn+1, 1)(ωi − ωn+1)

= tkn+1(dkg(xn+1, 1)−
n∑
i=1

xi,n+1
∂g

∂Xi
(xn+1, 1))ωn+1

+
n∑
i=1

tkn+1xi,n+1
∂g

∂Xi
(xn+1, 1)ωi,

from which the claim follows.
The acyclicity property of lemma 4.3 implies that

Γ(VK ,Ω
•
VK

(logDK)⊗ Lπ,f ) = RΓ(VK ,Ω
•
VK

(logDK)⊗ Lπ,f )

in the derived category. As Lπ,f has no singularities along D, Deligne’s theorem
[25, II 3.14] shows that the canonical morphism

RΓ(VK ,Ω
•
VK

(logDK)⊗ Lπ,f ) −→ RΓ(W ∗K ,Ω
•
W ∗

K
⊗ Lπ,f )

is an isomorphism. Combined with (4.6.1), it provides the isomorphism (4.6.2).
Similarily, lemma 4.5 implies that

Γ(V an
K , j†V (Ω•

V an
K

(logDan
K )⊗ Lan

π,f )) = RΓ(V an
K , j†V (Ω•

V an
K

(logDan
K )⊗ Lan

π,f )).

in the derived category. On the other hand, corollary A.4 of the Appendix provides
an isomorphism

RΓ(V an
K , j†V (Ω•

V an
K

(logDan
K )⊗ Lan

π,f ))
∼−−→ RΓrig(W ∗k /K,Lπ,f ),

so that this gives (4.6.4) by composition as in the algebraic case. Indeed, let T be
the infinity divisor in the special fiber of P , and D the closure of D in P . As Lπ,f
has no singularities along D, j†V (Lan

π,f ) satisfies the hypothesis of A.1, and we can
apply corollary A.4 to P endowed with the divisors T , D, and to j†V (Lan

π,f ) on the
strict neighbourhood V an

K of VK . Then (A.4.1) gives the above isomorphism.
To compare the Frobenius actions on K• (L(0+);D) and RΓrig(W ∗k /K,Lπ,f ),

we must describe explicitly the F -isocrystal structure of Lπ,f . We first observe
that V can be endowed with a global lifting FV of the Frobenius morphism of Vk
by setting F ∗V (Xi) = Xq

i for all i, hence F ∗V (xi,j) = xqi,j , F
∗
V (tj) = tqj for all i, j. Let

u′ = u× IdV : V ↪→ V ′× V . Then the Frobenius action φπ,f : F ∗V (Lπ,f )
∼−−→ Lπ,f

is given by the composed isomorphism

F ∗V (Lπ,f ) = F ∗V u
′∗µ∗(Lπ)

∼−−→ u′∗µ∗F ∗A1(Lπ)
∼−−→ u′∗µ∗(Lπ) = Lπ,f ,

where the first isomorphism is the Taylor isomorphism relating the two inverse
images of Lπ under the morphisms µ ◦ u′ ◦ FV and FA1 ◦ µ ◦ u′, and the second
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one is the pull-back of φ : F ∗A1(Lπ)
∼−−→ Lπ. Over Vj , the inverse images of

the coordinate t on A1 under the morphisms µ ◦ u′ ◦ FV and FA1 ◦ µ ◦ u′ are
equal respectively to tqjf(xqi,j) and tqjf(xi,j)q. Thus, the restriction of the first
isomorphism over (q an)−1(Uj,K) is given in the canonical basis by multiplication
by exp(πtqj(f(xqi,j)− f(xi,j)q)). From (1.9.2) we deduce that the restriction of the
second one is given by multiplication by exp(π(tqjf(xi,j)q − tjf(xi,j))). Therefore,
φπ,f is given by

φπ,f (1⊗ e) = exp(π(tqjf(xqi,j)− tjf(xi,j))) e. (4.6.7)

The inverse image morphism F ∗ on RΓrig(W ∗k ,Lπ,f ) is obtained by applying
the functor RΓ(V an

K ,−) to the morphism of complexes Φπ,f :

j†W ∗(Ω•
V an

K
)⊗j†V (OV an

K
) Lπ,f

F ∗⊗Id−−−−→ F∗(j
†
W ∗(Ω•

V an
K

)⊗j†V (OV an
K

) F
∗(Lπ,f ))

o
yId⊗φπ,f

F∗(j
†
W ∗(Ω•

V an
K

)⊗j†V (OV an
K

) Lπ,f ).

The direct image morphism F∗ on RΓrig(W ∗k ,Lπ,f ) is defined as the Poincaré
dual of the morphism F ∗ on RΓc, rig(W ∗k ,L∨π,f ), and it is easy to check that
F∗ = qn+1(F ∗)−1 (since F ∗ = qn+1 on H2n+2

c, rig (W ∗k /K) [47, 6.5], and F ∗ is an
isomorphism compatible with pairings). On the other hand, FV is finite étale of
rank qn+1 over W ∗K , and the corresponding trace morphism extends to a morphism
of complexes

TrF : F∗(j
†
W ∗(Ω•

V an
K

))→ j†W ∗(Ω•
V an

K
)

such that the composed morphism

j†W ∗(Ω•
V an

K
) F ∗−−→ F∗(j

†
W ∗(Ω•

V an
K

)) TrF−−→ j†W ∗(Ω•
V an

K
)

is multiplication by qn+1. Let Ψπ,f be the composed morphism

F∗(j
†
W ∗(Ω•

V an
K

)⊗j†V (OV an
K

) F
∗(Lπ,f ))

Id⊗φ−1
π,f←−−−−−

∼
F∗(j

†
W ∗(Ω•

V an
K

)⊗j†V (OV an
K

) Lπ,f )

o
y

F∗(j
†
W ∗(Ω•

V an
K

))⊗j†V (OV an
K

) Lπ,f
TrF ⊗ Id−−−−−→ j†W ∗(Ω•

V an
K

)⊗j†V (OV an
K

) Lπ,f .

It is clear that Ψπ,f ◦Φπ,f = qn+1, hence Ψπ,f induces F∗ on RΓrig(W ∗k /K,Lπ,f ).
As F ∗(dtj/tj) = q dtj/tj and F ∗(dxi,j/xi,j) = q dxi,j/xi,j , the morphism TrF

can also be defined on j†V (Ω•
V an

K
(logDan

K )), and the canonical morphism

j†V (Ω•
V an

K
(logDan

K )) −→ j†W ∗(Ω•
V an

K
)

commutes with the morphisms TrF on both complexes. Repeating the definition of
Ψπ,f , we obtain an endomorphism F∗ of the complex Γ(V an

K , j†V (Ω•
V an

K
(logDan

K ))⊗
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Lπ,f ) such that the canonical isomorphism

Γ(V an
K , j†V (Ω•

V an
K

(logDan
K ))⊗ Lπ,f )

∼−−→ RΓrig(W ∗k /K,Lπ,f )

commutes with F∗. Therefore, it suffices to show that the isomorphism θ† identifies
α to F∗. But on the one hand θ† identifies qn+1ψ on L(0+) with the trace of F on
the algebra Γ(V an

K ,OV an
K

). On the other hand we have on (q an)−1(Uj,K)

θ†(F (X0, . . . , Xn+1)) = exp(π(tjf(xi,j)− tqjf(xqi,j))),

which by (4.6.7) is the series defining φ−1
π,f . The claim then follows easily from

(4.1.2).

As a consequence, general results known for rigid cohomology also apply to
Dwork cohomology:

Corollary 4.7. Without assumption on f , the Dwork cohomology spaces
Hi(K• (L(0+);D)) are finite dimensional K-vector spaces, and α induces an au-
tomorphism on these spaces.

Thanks to (4.6.4), this follows from 1.9, or from [42].

Corollary 4.8. Let K be a number field, R its ring of integers, S = Spec(R), S0

the set of closed points in S. For each s ∈ S0, let K(s) be the completion of K at s,
ps its residue characteristic, K ′(s) a finite extension of K(s) containing a root πs
of the polynomial Xps−1+ps. Assume that f ∈ R[X1, . . . , Xn+1] is a homogeneous
polynomial of degree d ≥ 1, and denote by K• (Ls;D), K• (Ls(0+);D) the Dwork
complexes built with f on K ′(s). Then there exists a finite subset Σ ⊂ S0 such
that, for all s ∈ S0 \ Σ, the inclusion

K
• (Ls;D) ⊂ K

• (Ls(0+);D)

induces an isomorphism on the cohomology spaces.

Using again (4.6.4), this is a consequence of 3.7.

Our next theorem relates Dwork’s cohomology with the rigid homology of the
affine hypersurface Zk ∩ Yk.

Theorem 4.9. Under the assumptions of 4.2 and 4.4, there exists distinguished
triangles

RΓZK∩YK , dR(YK/K) −→ K
• (L;D) −→ RΓdR(YK/K)[−1] +1−−→ (4.9.1)

RΓZk∩Yk, rig(Yk/K) −→ K
• (L(0+);D) −→ RΓrig(Yk/K)[−1] +1−−→ (4.9.2)
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and a canonical morphism of distinguished triangles

RΓZK∩YK , dR(YK/K) −−−−→ K• (L;D) −−−−→ RΓdR(YK/K)[−1] +1−−−−→

ρZ∩Y

y y yρY [−1]

RΓZk∩Yk, rig(Yk/K) −−−−→ K• (L(0+);D) −−−−→ RΓrig(Yk/K)[−1] +1−−−−→ ,
(4.9.3)

where the left and right vertical maps are the specialisation morphisms (1.2.2) and
the middle one is the canonical inclusion.

Moreover, the arrows in the triangle (4.9.2) commute with the following endo-
morphisms:

a) qn+1F ∗−1 on RΓZk∩Yk, rig(Yk/K),
b) α on K• (L(0+);D),
c) qnF ∗−1 on RΓrig(Yk/K)[−1].

With the notation of 4.2, the decomposition D = H ′ ∪X gives rise to an exact
sequence of logarithmic de Rham complexes

0 −→ Ω•
V (logH ′) −→ Ω•

V (logD) Res−−→ Ω•
X(logH)(−1)[−1] −→ 0, (4.9.4)

where Res is the residue map [25, II 3.7]. This sequence is compatible with the
action of FV by functoriality, provided that the functoriality map on Ω•

X(logH)
is multiplied by q, as indicated by the −1 twist: this is due to the fact that, on
each Vj , we have F ∗V (dtj/tj) = q dtj/tj .

Tensoring with Lπ,f , which is trivial on the zero section X ⊂ V , and taking
cohomology on VK , we obtain a distinguished triangle

RΓ(XK ,Ω
•
XK

(logHK))[−1]
+1

wwooooooooooo

RΓ(VK ,Ω
•
VK

(logH ′K)⊗ Lπ,f ) // RΓ(VK ,Ω
•
VK

(logDK)⊗ Lπ,f ).

ggOOOOOOOOOOO

(4.9.5)

Using the Grothendieck-Deligne theorem, we obtain the following isomorphisms:

RΓ(VK ,Ω
•
VK

(logH ′K)⊗ Lπ,f )
∼−−→ RΓ(WK ,Ω

•
WK
⊗ Lπ,f ),

RΓ(VK ,Ω
•
VK

(logDK)⊗ Lπ,f )
∼−−→ RΓ(W ∗K ,Ω

•
W ∗

K
⊗ Lπ,f ),

RΓ(XK ,Ω
•
XK

(logHK)) ∼−−→ RΓ(YK ,Ω
•
YK

).

On the other hand, (3.3.2) gives a canonical isomorphism

RΓ(WK ,Ω
•
WK
⊗ Lπ,f )

∼−−→ RΓZK∩YK , dR(YK/K).

Thus the triangle (4.9.5) can be written as

RΓZK∩YK , dR(YK/K) −→ RΓdR(W ∗K/K,Lπ,f ) −→ RΓdR(YK/K)[−1] +1−−→ .
(4.9.6)
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The exact sequence (4.9.4) defines a similar sequence on V an
K . Applying j†V ,

tensoring with Lπ,f and taking cohomology on V an
K provides a distinguished tri-

angle

RΓ(X an
K ,Ω•

X an
K

(logH an
K ))(−1)[−1]

+1

wwooooooooooo

RΓ(V an
K , j†V (Ω•

V an
K

(logH ′K
an))⊗ Lπ,f ) // RΓ(V an

K , j†V (Ω•
V an

K
(logDan

K ))⊗ Lπ,f ),

ggOOOOOOOOOOO

(4.9.7)

in which the arrows are compatible with the action of FV by functoriality. Using
A.4, we obtain as in the algebraic case isomorphisms

RΓ(V an
K , j†V (Ω•

V an
K

(logH ′K
an))⊗ Lπ,f )

∼−−→ RΓ(V an
K , j†W (Ω•

V an
K

)⊗ Lπ,f ),

RΓ(V an
K , j†V (Ω•

V an
K

(logDan
K ))⊗ Lπ,f )

∼−−→ Γ(V an
K , j†W ∗(Ω•

V an
K

)⊗ Lπ,f )

RΓ(X an
K ,Ω•

X an
K

(logH an
K )) ∼−−→ RΓ(X an

K , j†Y (Ω•
X an

K
)),

and the targets are respectively equal by construction to RΓrig(Wk/K,Lπ,f ),
RΓrig(W ∗k /K,Lπ,f ), RΓrig(Yk/K). Note that these isomorphisms identify F ∗V to
F ∗. Thanks to (3.1.1), we also have an isomorphism

RΓrig(Wk/K,Lπ,f ) ' RΓZk∩Yk, rig(Yk/K)

which is compatible to F ∗. Taking the Frobenius actions into account, the triangle
(4.9.7) can therefore be rewritten as

RΓZk∩Yk, rig(Yk/K) −→ RΓrig(W ∗k /K,Lπ,f ) −→ RΓrig(Yk/K)(−1)[−1] +1−−→ .
(4.9.8)

Because of the functoriality of the constructions used to build the triangles
(4.9.5) and (4.9.7) from the exact sequence (4.9.4), it is clear from the definition
of the specialization morphisms given in 1.2 and 1.8 that they fit in a morphism
of triangles

RΓdR(WK/K,Lπ,f )

ρ
Lπ,f
W

��

// RΓdR(W ∗K/K,Lπ,f )

ρ
Lπ,f
W ∗

��

// RΓdR(YK/K)[−1]

ρY [−1]

��

+1 //

RΓrig(Wk/K,Lπ,f ) // RΓrig(W ∗k /K,Lπ,f ) // RΓrig(Yk/K)[−1]
+1 // .

On the other hand, proposition 3.4 shows that the isomorphisms (3.3.2) and (3.1.1)
identify ρZ∩Y with ρ

Lπ,f

W . Therefore, the specialization morphisms define a mor-
phism of triangles from (4.9.6) to (4.9.8).

Finally, we can use the isomorphisms (4.6.2) and (4.6.4) to rewrite triangle
(4.9.6) as (4.9.1), and triangle (4.9.8) as (4.9.2). Under these isomorphisms, the
inclusion K• (L;D) ⊂ K• (L(0+);D) corresponds to the inclusion

Γ(VK ,Ω
•
VK

(logDK)⊗ Lπ,f ) ⊂ Γ(V an
K , j†V (Ω•

V an
K

(logDan
K )⊗ Lπ,f )),
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hence to the specialization morphism ρ
Lπ,f

W ∗
K

. Therefore, we obtain the morphism
of triangles (4.9.3). As the endomorphism α of K• (L(0+);D) corresponds to
qn+1(F ∗V )−1 in the derived category, the morphisms of the triangle (4.9.2) satisfy
the announced compatibilities with Frobenius actions.

Using the triangle (4.9.2), one can give an interpretation of Dwork’s formula
(4.0.1) in terms of rigid cohomology:

Corollary 4.10. The characteristic series χF (t) of α satisfies the relation

χF (t)(−δ)
n+1

= (1− t)−(−δ)n
2n−2∏
i=n−1

det(I − t qF ∗|Hi
c, rig(Zk ∩ Yk/K))(−1)i

= (1− t)−(−δ)n

ζ(Zk ∩ Yk, qt)−1. (4.10.1)

Since all complexes in the triangle (4.9.2) have finite dimensional cohomology
groups, we obtain the relation

det(I − t α|K• (L(0+);D)) = det(I − t qn+1F ∗−1|RΓZk∩Yk, rig(Yk/K))
×det(I − t qnF ∗−1|RΓrig(Yk/K)[−1]),

and, by (4.1.4), we have

det(I − t α|K• (L(0+);D)) = χF (t)(−δ)
n+1

.

The affine variety Yk is an n-dimensional torus, hence we have for any i

Hi
rig(Yk/K) = K(n

i),

and F ∗ is multiplication by qi on Hi
rig(Yk/K). It follows that

det(I − t qnF ∗−1|RΓrig(Yk/K)[−1]) = (1− t)−(−δ)n

.

Finally, Poincaré duality provides a perfect pairing

RΓZk∩Yk, rig(Yk/K)⊗K RΓc, rig(Zk ∩ Yk/K) −→ K(−n)[−2n],

which is compatible to F ∗. Therefore the automorphism qn+1F ∗−1 is dual to qF ∗

on RΓc, rig(Zk/K), and we obtain

det(I − t qn+1F ∗−1|RΓZk∩Yk, rig(Yk/K)) =∏
i

det(I − t qF ∗|Hi
c, rig(Zk ∩ Yk/K))(−1)i

.

Thanks to [33, 6.3 I], the second relation of the corollary follows. To complete
the proof of the first one, we observe first that Hi

c, rig(Zk ∩ Yk/K) = 0 for i >
2n − 2 because dim(Zk ∩ Yk) = n − 1. On the other hand, Hi

c, rig(Yk \ Zk/K) =
Hi

c, rig(Yk/K) = 0 for i < n, because Yk \ Zk and Yk are affine and smooth of
dimension n, so that their rigid cohomology with compact supports is Poincaré
dual to their Monsky-Washnitzer cohomology, which is concentrated in degrees
≤ n. Hence Hi

c, rig(Zk ∩ Yk/K) = 0 for i < n− 1.
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Corollary 4.11. For any i, the eigenvalues of α acting on the Dwork cohomology
space Hi(K• (L(0+);D)) are Weil numbers, whose weights belong to the interval
[2n− 2i+ 2, 2n− i+ 2].

The first assertion results from the fact that the eigenvalues of F ∗ on
RΓZk∩Yk, rig(Yk/K) are Weil numbers, a result proved by Chiarellotto using com-
parison with `-adic cohomology [24, I 2.3], and more recently by direct p-adic
methods by Kedlaya [43]. To get estimates on the weights, we use the exact
sequences

Hi
Zk∩Yk, rig

(Yk/K) −→ Hi(K• (L(0+);D)) −→ Hi−1
rig (Yk/K).

From the above discussion, it follows that qnF ∗−1 is pure of weight 2n− 2(i− 1)
on Hi−1

rig (Yk/K). From [24, I 2.3], we get that qn+1F ∗−1 is mixed of weights in
[2n− 2i+ 4, 2n− i+ 2] on Hi

Zk∩Yk, rig
(Yk/K). The above estimate follows.

5. The coordinate filtration

While theorems 4.6 and 4.9 relate the cohomology of Dwork complexes to the
de Rham and rigid cohomologies of the open subsets ZK ∩ YK and Zk ∩ Yk, the
cohomologies of the projective hypersurfaces ZK and Zk themselves can also be
computed using the Dwork complexes, and the same holds for the cohomologies
of all their intersections with any intersection of coordinate hyperplanes. The
method developed by Dwork relies on the construction of certain subcomplexes
of L and L(0+), and we want now to give a cohomological interpretation of these
subcomplexes, and of the following formula (5.0.1) of Dwork, which is closely
related.

We denote by N the subset {1, . . . , n + 1} ⊂ N. For each non empty subset
A ⊂ N , we define

HA =
⋂
i/∈A

Hi, ZA = Z ∩HA.

In particular, ZN = Z. Let m(A) = #(A) − 1, so that HA is a linear projective
subspace of dimension m(A) of PnS , and let PA(t) be the rational function defined
by

ζ(ZA,k, t) = PA(t)(−1)m(A)
(1− qm(A)t)

/m(A)∏
i=0

(1− qit)

= PA(t)(−1)m(A)
(1− qm(A)t)ζ(Pm(A)

k , t).

Then a combinatorial argument based on (4.0.1) shows that

χF (t)δ
n+1

= (1− t)
∏
A⊂N
A 6=∅

PA(qt) (5.0.1)
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(cf. [29, (4.33)]).

5.1. For all A ⊂ N , let ΠA : L→ L, Π†A : L(0+)→ L(0+) be the homomorphisms
defined by sending Xi to 0 if i /∈ A, and Xi to Xi otherwise. We define

LA = Im(ΠA : L→ L), LA(0+) = Im(Π†A : L(0+)→ L(0+)).

Thus we obtain L∅ = K, LN = L.
We denote respectively by fA and DA,i, for i ∈ A, the polynomial and the

differential operator deduced from f and Di by substituting 0 to Xj if j /∈ A.
Thus fA is the equation defining ZA as an hypersurface in HA, and DA,i is the
differential operator defined by fA as in (4.1.1). We can introduce the algebras
LA and LA(0+) built on the variables X0 and Xi for i ∈ A, and define the Koszul
complexes K• (LA;DA), K• (LA(0+);DA) associated to the differential operators
DA,i, i ∈ A. We denote by αA the endomorphism of K• (LA(0+);DA) defined by
the polynomial fA.

For all B ⊂ A ⊂ N , let MB =
∏
i∈B Xi, let (MB) ⊂ K[[X0, . . . , Xn+1]] be the

ideal generated by MB , and let

LBA = LA ∩ (MB), LBA(0+) = LA(0+) ∩ (MB).

In particular, L∅A = LA.
We want to define an increasing filtration on the complexes K• (L;D) and

K• (L(0+);D). We first define for each subset A ⊂ N an increasing filtration
FilAr L (resp. FilAr L(0+)) on L (resp. L(0+)) by

FilAr L =


0 if r < 0,∑
B⊂A
#(A\B)=r

LBN if 0 ≤ r ≤ #A,

L if r > #A

(resp. L(0+), LBN (0+)). Note that FilA0 L = LAN , and FilAa L = L for a = #A.
We can now define FilrK

• (L;D) (resp. L(0+)) by

FilrKj(L;D) =
⊕

#A=j

FilAr L · eA (5.1.1)

(resp. L(0+)), where eA = ei1 ∧ . . . ∧ eij if A = {i1, . . . , ij} with i1 < . . . < ij . To
check that this is indeed a sub-complex, we observe that

d(P · eA) =
∑
i/∈A

Di(P ) ei ∧ eA.

Assume i /∈ A, and write Ai = A∪{i}. If P is divisible byMB for some B ⊂ A with
#(A\B) = r, then i /∈ B, and Di(P ) is divisible by Xi, hence by XiMB = MB∪{i}.
Therefore Di(P ) ∈ FilAi

r , hence Filr is a subcomplex.
For all A ⊂ N , LAN (0+) is stable under the endomorphism α of L(0+). In-

deed, this is clearly the case for both multiplication by F (X0, . . . , Xn+1) and ψ.
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It follows that, for all r, the subcomplex FilrK
• (L(0+);D) is stable under the

endomorphism α of K• (L(0+);D).
Finally, we observe that, since LA and LA(0+) are built from fA as L and

L(0+) from f , the complexes K• (LA;DA) and K• (LA(0+);DA) can be endowed
with an analogous filtration.

To describe the associated graded complex, we first prove a lemma.

Lemma 5.2. Let A ⊂ N be a subset, and A′ = N \ A. For all r, there exists a
canonical isomorphism ⊕

B⊂A
#(A\B)=r

LBA′∪B
∼−−→ grAr L (5.2.1)

(resp. L(0+)).

The proofs for L and L(0+) are completely parallel, so we limit ourselves here
to the case of L. For B ⊂ A, with #(A \ B) = r, we have LBA′∪B ⊂ LBN ⊂ FilAr L,
which defines the map.

Let a = #A. We first observe that FilAr L has a K-basis formed by monomials
Xu, u ∈ T, such that ui ≥ 1 for at least a − r indices in A. Therefore grAr L
has a basis formed by the classes of monomials Xu such that ui ≥ 1 for exactly
(a − r) indices in A. This set of monomials is the disjoint union, for all B ⊂ A
with #(A \ B) = r, of the subsets of monomials divisible by MB and not by any
Xi for i ∈ A \B. It follows immediately that the map (5.2.1) is an isomorphism.

Proposition 5.3. With the notation of 5.1, there exists for all r a canonical
isomorphism of complexes⊕

#A=n+1−r

Fil0K
• (LA;DA)[−r] ∼−−→ grrK

• (L;D) (5.3.1)

(resp. LA(0+), L(0+)). In the case of L(0+), this isomorphism is compatible with
the actions of the endomorphisms α.

We first describe Fil0K
• (LA;DA), with A ⊂ N . For all B ⊂ A, we have

FilB0 LA = LBA , hence Fil0K
• (LA;DA) is the complex

LA −→
⊕
B⊂A
#B=1

LBA · eB −→ . . . −→
⊕
B⊂A

#B=#A−1

LBA · eB −→ LAA · eA −→ 0.

Using lemma 5.2, we obtain for each r and each j

grrK
j(L;D) =

⊕
#A=j

grAr L · eA

'
⊕

#A=j

⊕
B⊂A

#B=j−r

LBA′∪B · eA,

with A′ = N \ A. Let A′′ = A′ ∪ B. Then #A′′ = n + 1 − r, and the datum of
(A,B) is equivalent to the datum of (A′′, B). Let C = A \ B. If we map eB to
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(−1)rjε(B,C)eA, where ε(B,C) is the signature of the permutation {B,C} of A,
we obtain an isomorphism

grrK
j(L;D) '

⊕
#A′′=n+1−r

⊕
B⊂A′′

#B=j−r

LBA′′ · eB

'
⊕

#A′′=n+1−r

Fil0Kj−r(LA′′ ;DA′′).

It is then easy to check that, for variable j, these isomorphisms define an isomor-
phism of complexes as claimed in (5.3.1).

The same proof applies to grrK
• (L(0+);D), and the compatibility with the

endomorphisms α is straightforward.

Corollary 5.4. The characteristic series χF (t) satisfies the relation

χF (t)δ
n+1

= (1− t)
∏
A 6=∅

det(I − tα|Fil0K
• (LA(0+);DA))(−1)#A

. (5.4.1)

By definition (cf. (4.1.3)), χF (t)(−δ)
n+1

= det(I − tα|K• (L(0+);D)). Since
the filtration Fil• K

• (L(0+);D) is stable under α, the corollary follows from the
proposition by observing that

grn+1K
• (L(0+);D) ' Fil0K

• (L∅(0+); 0)[−n− 1],

and that Fil0K
• (L∅(0+); 0) = K• (L∅(0+); 0) = K, with α∅ = Id.

We now want to give a geometric interpretation of the complexes
Fil0K

• (LA;DA) and Fil0K
• (L(0+)A;DA), providing a computation of

det(I − tα) in terms of zeta functions. It is clearly sufficient to treat the case
where A = N .

5.5. We first introduce a notation used in our next theorem. Let C be an abelian
category, and C(C) the category of complexes of objects of C. For any n ∈ Z, the
truncation functor τ≥n associates to a complex E• ∈ C(C) the complex

τ≥nE
• : . . . −→ 0 −→ En/d(En−1) −→ En+1 −→ . . . .

The category C(C) is itself an abelian category. If E•,• is a double complex of
objects of C, we can view it as a complex of objects of C(C) indexed by the second
index. We will then denote by τ II

≥nE
•,• the double complex obtained by applying

the truncation functor in C(C(C)). If g : E•,• → E′
•,• is a morphism of double

complexes, then g induces a morphism τ II
≥ng : τ II

≥nE
•,• → τ II

≥nE
′•,• . It is easy to

check that, if g, g′ : E•,• → E′
•,• are homotopic in the sense of [23, IV 4], then

the morphisms τ II
≥ng and τ II

≥ng
′ are also homotopic. In particular, the morphisms

τ II
≥ng t and τ II

≥ng
′
t induced between the associated simple complexes are homotopic

(in the usual sense).
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Let C′ be another abelian category, and F : C → C′ a left exact functor. Assume
that C has enough injectives. Then any complex E• ∈ C+(C) has an injective
Cartan-Eilenberg resolution I•,• for which there exists an index i0 such that Ii,j =
0 for i < i0. We can apply the functor τ II

≥n to the double complex F (I•,• ) defined
by such a resolution, and take the associated total complex τ II

≥nF (I•,• )t. The
above remarks show that, viewed as an object in the derived category D(C′),
this complex is independent of the choice of the resolution I

•,• , and depends
functorially upon E• ∈ C+(C). We will denote

τ II
≥nRF t : C+(C) −→ D+(C′).

the functor defined in this way. For n = 1 and any E• ∈ C+(C), this construction
gives rise to a distinguished triangle

F (E• ) −→ RF (E• ) −→ τ II
≥1RF t(E

• ) +1−−→ (5.5.1)

in D+(C′). This triangle is functorial with respect to E• when E• varies in C+(C)
(but of course not in D+(C)).

When E• ∈ C≥0(C), one can find a Cartan-Eilenberg resolution I
•,• of E•

such that Ii,j = 0 for i < 0. Therefore, τ II
≥nRF t(E

• ) is concentrated in degree
≥ n. Applying the usual truncation functor τ≥n to the second morphism in (5.5.1),
one obtains a canonical morphism

τ≥nRF (E• ) −→ τ II
≥nRF t(E

• ) (5.5.2)

in D≥n(C).

Theorem 5.6. (i) There exists natural isomorphisms of complexes

Fil0K
• (L;D) ∼−−→ Γ(VK ,Ω

•
VK
⊗ Lπ,f ), (5.6.1)

Fil0K
• (L(0+);D) ∼−−→ Γ(V an

K , j†V (Ω•
V an

K
)⊗ Lπ,f ), (5.6.2)

the latter being compatible with the Frobenius actions α on Fil0K
• (L(0+);D) and

F∗ = Ψπ,f on Γ(V an
K , j†V (Ω•

V an
K

)⊗ Lπ,f ) (cf. 4.6 for the definition of Ψπ,f ).
(ii) Let s : X ↪→ V be the zero section. With the notation of 5.5, the functo-

riality morphisms

q∗(Ω
•
V ⊗ Lπ,f ) −→ q∗s∗(Ω

•
X) ' Ω•

Pn
S
,

q an
∗ (j†V (Ω•

V an
K

)⊗ Lπ,f ) −→ q an
∗ san
∗ (Ω•

X an
K

) ' Ω•
Pn an

K
,

induced by s give rise to a commutative diagram of isomorphisms

τ II
≥1RΓt(VK ,Ω

•
VK
⊗ Lπ,f )

∼−−−−→ τ≥1RΓ(PnK ,Ω
•
Pn

K
)yo yo

τ II
≥1RΓt(V an

K , j†V (Ω•
V an

K
)⊗ Lπ,f )

∼−−−−→ τ≥1RΓ(Pn an
K ,Ω•

Pn an
K

),

(5.6.3)

in which the lower horizontal isomorphism is compatible with the Frobenius actions
F ∗.
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The algebraic part of this theorem is essentially [27, 3.3]. We give here a proof
which extends to the rigid context.

To prove assertion (i), we consider the isomorphisms of complexes

K• (L;D) ∼ //
� _

��

Γ(VK ,Ω
•
VK

(logDK)⊗ Lπ,f )
� _

��

K• (L(0+);D) ∼ // Γ(V an
K , j†V (Ω•

V an
K

(logDan
K ))⊗ Lπ,f )

provided by (4.6.1) and (4.6.3), and we look at the images of Fil0 under these
isomorphisms. For all A ⊂ N , the element eA is mapped to

ωA =
∧
i∈A

ωi =
∧
i∈A

(
1
d

dtj
tj

+
dxi,j
xi,j

),

where the last equality takes place in Γ(Vj,K ,Ω
•
VK

(logDK)) for any j. Expanding
this form, one obtains a sum of terms whose denominator is of degree ≤ 1 with
respect to any of the coordinates tj , xi,j , i ∈ A. As any monomial Xu ∈ FilA0 L =
LAN is divisible by the Xi’s for i ∈ A, its image in Γ(Vj,K ,OVK

) is divisible by
the xi,j , i ∈ A. If A 6= ∅,

∑
i∈A ui > 0, hence u0 > 0, and the image of Xu

is also divisible by tj . It follows that the image of XueA is a differential form
which has no poles along DK . Therefore the isomorphisms (4.6.1) and (4.6.3)
map respectively Fil0K

• (L;D) and Fil0K
• (L(0+);D) to Γ(VK ,Ω

•
VK
⊗Lπ,f ) and

Γ(V an
K , j†V (Ω•

V an
K

)⊗ Lπ,f ).
Conversely, let Xu ∈ L be a monomial such that the image of XueA is in

Γ(VK ,Ω
•
VK
⊗ Lπ,f ). Then, for each j, the form tu0

j x
u1
1,j . . . x

un+1
n+1,jωA belongs to

Γ(Vj,K ,Ω
•
VK

). Using (4.3.3), it follows that, for each j, ui ≥ 1 for all i ∈ A, i 6= j,
hence that ui ≥ 1 for all i ∈ A. Therefore XueA belongs to Fil0K

• (L;D), and
(5.6.1) is an isomorphism. Applying the same argument with a series in L(0+), we
see that (5.6.2) is also an isomorphism. The compatibility with Frobenius actions
results from the proof of 4.6.

Using a Cartan-Eilenberg resolution of Ω•
VK
⊗ Lπ,f , we obtain a canonical

isomorphism

τ II
≥1RΓt(VK ,Ω

•
VK
⊗ Lπ,f )

∼−−→ τ II
≥1RΓt(PnK , q∗(Ω

•
VK
⊗ Lπ,f ))

which defines by functoriality the upper horizontal morphism in (5.6.3). Using the
first cohomology spectral sequences, the proof that it is an isomorphism is reduced
to proving that the maps Hi(PnK , q∗(ΩrVK

))→ Hi(PnK ,ΩrPn
K

) are isomorphisms for
all i ≥ 1 and all r. As Ω1

V/Pn
S
' q∗(OPn

S
(d)), there are exact sequences

0 −→ q∗(ΩrPn
S
) −→ ΩrV −→ q∗(Ωr−1

Pn
S

(d)) −→ 0 (5.6.4)

for all r. They give rise to exact sequences

0 −→
⊕
k≥0

ΩrPn
S
(kd) −→ q∗(ΩrV ) −→

⊕
k>0

Ωr−1
Pn

S
(kd) −→ 0,
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in which the map ΩrPn
S
→ q∗(ΩrV ) is a section of the map q∗(ΩrV ) → ΩrPn

S
defined

by s. Since Hi(PnS ,ΩrPn
S
(m)) = 0 for all r and i,m > 0 (and any basis S) [26, 1.1],

the claim follows. Moreover, since Ω•
Pn

K
is concentrated in positive degrees, (5.5.2)

gives a canonical morphism

τ≥1RΓ(PnK ,Ω
•
Pn

K
) −→ τ II

≥1RΓt(PnK ,Ω
•
Pn

K
).

It is an isomorphism since Γ(PnK ,ΩrPn
K

) = 0 for r ≥ 1, and this allows to replace
τ II
≥1RΓt by τ≥1RΓ in the right column of (5.6.3).

The lower horizontal morphism in (5.6.3) is defined similarily. To prove that it
is an isomorphism, one takes the exact sequence of analytic sheaves corresponding
to (5.6.4) and one applies the exact functor j†V . Taking direct images, one obtains
an exact sequence

0 → q an
∗ (j†V (q an ∗(ΩrPn an

K
))) → q an

∗ (j†V (ΩrV an
K

)) → q an
∗ (j†V (q an ∗(Ωr−1

Pn an
K

(d)))) → 0.

The surjectivity here results from the fact that Riq an
∗ (j†V (E)) = 0 for i ≥ 1 and any

coherent OV an
K

-module E. Indeed, if we denote by Vρ the strict neighbourhoods
of V introduced in the proof of lemma 4.5, and if U ⊂ Pn an

K is any affinoid open
subset, then q an−1(U)∩Vρ is affinoid, which implies thatHi(q an−1(U), j†V (E)) = 0
for i ≥ 1.

In this exact sequence, we have isomorphisms

q an
∗ (j†V (OV an

K
))⊗ ΩrPn an

K

∼−−→ q an
∗ (j†V (q an ∗(ΩrPn an

K
))),

q an
∗ (j†V (OV an

K
))⊗ Ωr−1

Pn an
K

(d) ∼−−→ q an
∗ (j†V (q an ∗(Ωr−1

Pn an
K

(d)))).

Furthermore, the canonical morphism OPn an
K

(d)→ q an
∗ (j†V (OV an

K
)) induces an iso-

morphism

q an
∗ (j†V (OV an

K
))(d) ∼−−→ q an

∗ (j†V (OV an
K

))/OPn an
K

.

Therefore, proving that the lower horizontal line of (5.6.3) is an isomorphism is
reduced as above to proving that

Hi(Pn an
K , q an

∗ (j†V (OV an
K

))⊗ ΩrPn an
K

(d)) = 0

for all i ≥ 1 and all r. One can then proceed as in the proof of lemma 4.5 to
reduce this claim to a similar vanishing statement for the (algebraic) projective
space over a Z/pnZ-scheme, which results again from the vanishing of the spaces
Hi(PnS ,ΩrPn

S
(m)) for all i,m > 0, all r, and any basis S.

Finally, one obtains the commutative square (5.6.3) by functoriality. As the
right vertical arrow is an isomorphism, the same holds for the left one. It is clear
that the lower isomorphism commutes with the actions of F by functoriality.
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Corollary 5.7. There exists distinguished triangles, related by a morphism of
triangles defined by the specialization morphisms,

Fil0K
• (L;D) −−−−→ RΓZK , dR(PnK/K) −−−−→ τ≥1RΓdR(PnK/K) +1−−−−→y yρZ

yo
Fil0K

• (L(0+);D) −−−−→ RΓZk, rig(Pnk/K) −−−−→ τ≥1RΓrig(Pnk/K) +1−−−−→ .
(5.7.1)

Moreover, the morphisms in the lower triangle commute with the following Frobe-
nius actions:

a) α on Fil0K
• (L(0+);D),

b) qn+1(F ∗)−1 on RΓZ, rig(Pnk/K),
c) qn+1(F ∗)−1 on τ≥1RΓrig(Pnk/K).

We only explain the construction of the analytic triangle, since the argument
is similar in the algebraic case.

Applying (5.5.1) to the functor Γ(Pn an
K ,−) and to the complex q an

∗ (j†V (Ω•
V an

K
)⊗

Lπ,f ), we obtain a distinguished triangle

τ II
≥1RΓt(Pn an

K , q an
∗ (j†V (Ω•

V an
K

)⊗ Lπ,f ))
+1

wwnnnnnnnnnnnn

Γ(Pn an
K , q an

∗ (j†V (Ω•
V an

K
)⊗ Lπ,f )) // RΓ(Pn an

K , q an
∗ (j†V (Ω•

V an
K

)⊗ Lπ,f ))

ggPPPPPPPPPPPP

(5.7.2)
in which all arrows are compatible with F ∗. Thanks to (5.6.2), we have an iso-
morphism

Fil0K
• (L(0+);D) ∼−−→ Γ(Pn an

K , q an
∗ (j†V (Ω•

V an
K

)⊗ Lπ,f ))

which identifies α on Fil0K
• (L(0+);D) to the endomorphism Ψπ,f defined by

TrF . Therefore the composed morphism

Fil0K
• (L(0+);D) −→ RΓ(Pn an

K , q an
∗ (j†V (Ω•

V an
K

)⊗ Lπ,f ))

' RΓ(V an
K , j†V (Ω•

V an
K

)⊗ Lπ,f )
= RΓrig(Vk/K,Lπ,f )

commutes with α and qn+1(F ∗)−1. On the other hand, theorem 3.1 (applied for
H = ∅) provides an isomorphism

RΓrig(Vk/K,Lπ,f )
∼−−→ RΓZk, rig(Pnk/K)

which commutes with F ∗. This gives the definition of the first arrow in (5.7.1)
and shows its compatibility with Frobenius actions.
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To complete the construction of (5.7.1), we use the bottom line of (5.6.3), which
gives an isomorphism

τ II
≥1RΓt(Pn an

K , q an
∗ (j†V (Ω•

V an
K

)⊗ Lπ,f ))
∼−−→ τ≥1RΓ(Pn an

K ,Ω•
Pn an

K
)

= τ≥1RΓrig(Pnk/K)

compatible with F ∗. The corollary follows.

5.8. To conclude, we explain how corollary 5.7 implies Dwork’s formula (5.0.1).
Thanks to (5.4.1), it suffices to prove that, for any A ⊂ N , A 6= ∅,

det(I − tα|Fil0K
• (LA(0+);DA)) = PA(qt)(−1)#A

.

Recall that m(A) = #A− 1. The triangle (5.7.1) relative to fA gives

det(I − tα|Fil0K
• (LA(0+);DA)) =

det(I − qt(qm(A)(F ∗)−1)|RΓZA,k, rig(P
m(A)
k /K))

·det(I − qt(qm(A)(F ∗)−1)|τ≥1RΓrig(Pm(A)
k /K))−1.

Since qm(A)(F ∗)−1 = F∗, the first factor is equal to ζ(ZA,k, qt)−1, while the sec-
ond one is equal to ζ(Pm(A)

k , qt)(1 − qm(A)+1t). The claim then follows from the
definition of PA(t).

Remark. – When A = N , the previous equation can be written as

det(I − tα|Fil0K
• (L(0+);D))−1 = ζ(Zk, qt)(1− qt) · · · (1− qnt), (5.8.1)

a formula which does not seem to appear explicitly in Dwork’s papers, but was
pointed out by Adolphson and Sperber (cf. [1, p. 289]).

Appendix: Logarithmic versus rigid cohomology of an
overconvergent isocrystal with logarithmic singularities

In the body of this paper, we made use of the following strengthened version
of the comparison theorems proved in [5] and [14, 4.2].

We place ourselves in the local situation of 1.1 and consider a smooth formal
scheme X over S = Spf OK . We fix a divisor T of the special fiber X of X and
let V = X \T denote the complementary open subscheme of X. We also choose a
divisor Z in X with relative normal crossings over S, union of smooth irreducible
components Z1, . . . ,Zn, and let U = X \ Z. We have the functor j†U (resp. j†V )
defined for abelian sheaves on XK , and more generally for abelian sheaves on any
strict neighborhood of ]U [X (resp. of ]V [X ) in XK , by using the full system of
strict neighborhoods of ]U [X (resp. of ]V [X ) in XK . We let sp : XK −→ X be the
specialization morphism.

Theorem A.1. Let L be a coherent j†VOXK
-module, such that sp∗L is a locally

free OX ,Q(†T )-module (of finite type). Assume L is endowed with an integrable
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connexion

∇ : L −→ j†V (Ω1
XK

(logZK))⊗j†VOXK
L (A.1.1)

with logarithmic singularities along ZK and that j†U (L,∇) = j†U∩V (L,∇) is over-
convergent along Z ∪ T . Consider the following assumption:

(NL)G The additive subgroup Λ of Kalg generated by the exponents
of monodromy of (L,∇) around the components of ZK , consists of
p-adically non-Liouville numbers.

Then, if the assumption (NL)G is satisfied, and none of the exponents of mon-
odromy of (L,∇) around the components of ZK is a negative integer, the canonical
inclusion of complexes of K-vector spaces on X

ιX : sp∗(j
†
V (Ω•

XK
(logZK))⊗j†VOXK

L) −→ sp∗(j
†
U∩V (Ω•

XK
)⊗j†VOXK

L) (A.1.2)

is a quasi-isomorphism.

We have the following general result [14, p. 355].

Proposition A.2. Let E be a coherent j†VOXK
-module. For any open affine Y ⊂

X , and any q ≥ 1,

Hq(YK , E) = 0. (A.2.1)

Therefore:
(i) Rqsp∗E = 0, ∀q ≥ 1;
(ii) Hq(Y, sp∗E) = 0, for any open affine Y ⊂ X , and q ≥ 1.

Let h ∈ O(Y) be a lifting of an equation of the divisor T ∩ Y of Y , and let
Γ0 ⊂ R× be the multiplicative group of absolute values of non zero elements of
K, Γ = Γ0 ⊗ Q ⊂ R×. For λ ∈ Γ, let jλ : Uλ ↪→ YK be the inclusion of the open
affinoid Uλ = {x ∈ YK | |h(x)| ≥ λ}. Then there exists a λ0 ∈ Γ and a coherent
OUλ0

-module E such that

E|YK
= lim−→

λ0≤λ<1
λ∈Γ

jλ∗ j
−1
λ,λ0
E , (A.2.2)

where jλ,λ0 : Uλ ↪→ Uλ0 denotes the immersion. So, YK being quasi-compact and
separated, and by Kiehl’s acyclicity theorem applied to the affinoid Uλ and the
coherent sheaf j−1

λ,λ0
E ,

Hq(YK , E) = lim−→
λ0≤λ<1
λ∈Γ

Hq(YK , jλ∗ j−1
λ,λ0
E) = lim−→

λ0≤λ<1
λ∈Γ

Hq(Uλ, j−1
λ,λ0
E) = 0.

This proves (A.2.1). Then (i) follows because Rqsp∗E is the sheaf associated to
the presheaf U 7→ Hq(UK , E) on X . Finally,

Hq(Y, sp∗E) = Hq(RΓ(Y,−) ◦ Rsp∗(E)) = Hq(RΓ(YK , E)) = Hq(YK , E).
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A.3. We now prove theorem A.1. Let u : Y ↪→ X be an open formal subscheme
of X . The inverse image on YK of the morphism ιX of (A.1.2) via uK is the
morphism ιY for the data (uK)−1(L), T ∩ Y, Z ∩ Y (cf. [12, 2.1.4.2]). So, it will
suffice to prove that Γ(Y, ιY) is a quasi isomorphism for all Y in a basis of open
affine formal subschemes of X . When X is affine, the previous proposition shows
that Γ(X , ιX ) identifies with the natural morphism of hypercohomology

RΓ(XK , j†V (Ω•
XK

(logZK))⊗j†VOXK
L) −→ RΓ(XK , j†U∩V (Ω•

XK
)⊗j†VOXK

L).
(A.3.1)

We will therefore prove that, for any q ≥ 0, the natural morphism of hyperco-
homology groups

Hq(XK , j†V (Ω•
XK

(logZK))⊗j†VOXK
L) −→ Hq(XK , j†U∩V (Ω•

XK
)⊗j†VOXK

L)
(A.3.2)

is an isomorphism of K-vector spaces, when X is replaced by any element of a
basis of open affine formal subschemes of the original formal scheme X . We may
then assume that L is a free j†VOXK

-module of finite type and that there exists a
system of coordinates t1, . . . , td on X such that Z is defined by t1 · · · tr = 0. We
choose a lifting h ∈ O(X ) of an equation of T .

We now follow the arguments of [5], with minor modifications. For λ, σ ∈
(0, 1) ∩ Γ we define strict neighborhoods {Wλ,σ} (resp. {Vσ}) of ]U ∩ V [X (resp.
]V [X ) in XK , by

Wλ,σ = {x ∈ XK | |h(x)| ≥ σ, |t1(x)| > λ, . . . , |tr(x)| > λ},

while

Vσ = {x ∈ XK | |h(x)| ≥ σ},

and we denote by jλ,σ : Wλ,σ ↪→ Vσ, the open embedding. For σ sufficiently close
to 1, say σ ≥ σ0, there is a free OVσ -module of finite type Lσ, equipped with a
logarithmic connection

∇σ : Lσ −→ Ω1
Vσ

(logZK ∩Vσ)⊗OVσ
Lσ, (A.3.3)

such that j†V (Lσ,∇σ) = (L,∇). The condition of overconvergence of (L,∇) along
T ∪ Z means that:

(SC) There exist functions σ, λ : (0, 1) ∩ Γ −→ (0, 1) ∩ Γ such that for
any η ∈ (0, 1)∩Γ, σ(η) ≥ σ0, and for any open affinoid C ⊂Wλ(η),σ(η)

and any section e ∈ Γ(C,Lσ(η))

lim
|α|→∞

||(α!)−1∇(∂/∂t)α(e)||C η|α| = 0, (A.3.4)

where ∇(∂/∂t)α =
∏d
i=1∇(∂/∂ti)αi and || ||C denotes any Banach

norm on Γ(C,Lσ(η)).

For any α ∈ Nd and e ∈ Γ(Vσ, Lσ), tα∇(∂/∂t)α(e) has no poles along ZK ∩
Vσ. On the other hand, if C is a strict affinoid neighborhood of ]V [X of the
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form C = {x ∈ XK | |h(x)| ≥ ε}, for any ε ∈ Γ, it is easy to check that, for
any holomorphic function f ∈ Γ(C,OC), ||f ||C = ||f ||C∩]U [X , where the Banach
norms || ||C and || ||C∩]U [X are related by the presentation Γ(C∩]U [X ,OC) '
Γ(C,OC){T}/(Tt1 · · · tr−1). So, the condition of overconvergence of (L,∇) along
T ∪ Z may be reformulated as follows:

(SC)′ There exists a function σ : (0, 1) ∩ Γ −→ (0, 1) ∩ Γ such that
for any η ∈ (0, 1) ∩ Γ, any open affinoid C ⊂ Vσ(η) and any section
e ∈ Γ(C,Lσ(η))

lim
|α|→∞

||(α!)−1tα∇(∂/∂t)α(e)||C η|α| = 0 (A.3.5)

where || ||C denotes any Banach norm on Γ(C,Lσ(η)).

Let η0, η1 : (0, 1) ∩ Γ −→ (0, 1) ∩ Γ be non-decreasing functions such that
λ < η0(λ) < η1(λ), for all λ. We parametrize a fundamental system of strict
neighborhoods {Wλ} (resp. {Vλ}) of ]U∩V [X (resp. ]V [X ) in XK , by λ ∈ (0, 1)∩Γ,
as follows:

Wλ = Wλ,σ(η1(λ)) = {x ∈ XK | |h(x)| ≥ σ(η1(λ)), |t1(x)| > λ, . . . , |tr(x)| > λ},

while

Vλ = Vσ(η1(λ)) = {x ∈ XK | |h(x)| ≥ σ(η1(λ))},

where σ is a function satisfying property (SC)′ such that σ(η) > η for any η ∈
(0, 1) ∩ Γ, and we denote by jλ : Wλ ↪→ Vλ the open embedding. We abusively
write (Lλ,∇λ) for (Lσ(η1(λ)),∇σ(η1(λ))).

It will be enough to compare, for any λ ∈ (0, 1) ∩ Γ, the effect in hypercoho-
mology of the morphism of complexes of abelian sheaves on Vλ

Ω•
Vλ

(log(ZK ∩ Vλ))⊗ Lλ −→ jλ∗(Ω
•
Wλ
⊗ Lλ|Wλ

) (A.3.6)

We slightly modify the construction of [5, §4], and, for any fixed λ ∈ (0, 1)∩Γ,
we construct an admissible covering {US,λ} of XK parametrized by the subsets S
of T = {1, . . . , r}, where

US,λ = {x ∈ XK | |ti(x)| < η1(λ), for i ∈ S, |tj(x)| ≥ η0(λ), for j ∈ T \ S}.
(A.3.7)

As shown in [5, 4.2], US,λ is a trivial bundle in open polydisks of radius η1(λ)
of relative dimension s = cardS over the affinoid space

VS,λ = {x ∈ XK | |ti(x)| = 0, for i ∈ S, |tj(x)| ≥ η0(λ), for j ∈ T \ S}. (A.3.8)

Let h0 be the restriction of the function h to the closed analytic subspace VS,λ. Un-
der the previous description of VS,λ, US,λ∩Vλ identifies with WS,λ×Ds(0, η1(λ)−),
the trivial bundle in open polydisks of radius η1(λ) of relative dimension s over
the affinoid space

WS,λ = {x ∈ VS,λ | |h0(x)| ≥ σ(η1(λ))}. (A.3.9)
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Under the previous identification, US,λ ∩Wλ identifies with

WS,λ × Cs(0, (λ, η1(λ))),

the trivial bundle in open polyannuli of interior radius λ and exterior radius
η1(λ) of relative dimension s over WS,λ. Let now A := O(WS,λ) be the affi-
noid algebra corresponding to WS,λ and || ||A be any Banach norm on A.
We set Aη1(λ){{x}} = Aη1(λ){{x1, . . . , xs}} := O(WS,λ × Ds(0, η1(λ)−)), where
x = (x1, . . . , xs) denotes an ordered arrangement of {ti, i ∈ S}, a topological
K-algebra with the locally convex topology defined by the family of seminorms

||
∑
α∈Ns

aαx
α||ε = sup

α
||aα||Aε|α|,

indexed by ε ∈ (0, η1(λ)). Let LA be the K-Lie-algebra of continuous derivations
of A/K, trivially extended to Aη1(λ){{x}}, and LA,x be the K-Lie-subalgebra
of the K-Lie-algebra of continuous derivations of Aη1(λ){{x}}/K generated by
LA and the xi∂/∂xi, for i = 1, . . . , s. So, the free Aη1(λ){{x}}-module of finite
type M := Lλ(WS,λ × Cs(0, (λ, η1(λ)))), carries an action of LA,x. By a trivial
dilatation, we may assume that η1(λ) = 1, so that Aη1(λ){{x}} = A{{x}} in the
notation of [6, 4.1.1]. It readily follows from condition (SC)′ that M satisfies the
local overconvergence condition [6, 5.1]

(SCL) For all m ∈M and ε, η ∈ (0, 1)

lim
|α|→∞

||(α!)−1xα∇(∂/∂x)α(m)||ε η|α| = 0, (A.3.10)

So, in the notation of [6, §5], M is an object of SCModfA,Σ(A{{x}},LA,x),
where Σ := Λ + Z is an additive subgroup of Kalg which, by the assumption
(NL)G, does not contain any p-adically Liouville number. So, the classifica-
tion result [6, 6.5.2] applies and we may assume that M is a λ-simple object
of SCModfA,Σ(A{{x}},LA,x) [6, §4.2], for λ = (λ1, . . . , λs) ∈ Σs. As in the proof
of [5, 6.4], we can assume, by localisation on an admissible affinoid covering of
WS,λ, that M = A{{x}} with trivial action of LA, while xi∂/∂xi, for i = 1, . . . , s,
acts via ∇(xi∂/∂xi) = xi∂/∂xi + λi. Our result then follows from [5, 6.6, (i)].

Corollary A.4. Under the hypothesis of A.1, let us assume in addition that X
is proper over S. Then, for any strict neighborhoood W of ]V [X , there exists a
canonical isomorphism

RΓ(W, j†V (Ω•
XK

(logZK))⊗j†VOXK
L) ∼−−−→ RΓrig(U ∩ V,L), (A.4.1)

where we still denote by L the overconvergent isocrystal on U ∩ V defined by
j†U∩V (L).

From (1.1.1), we deduce that the canonical morphism

RΓ(XK , j†V (Ω•
XK

(logZK))⊗j†VOXK
L) −→ RΓ(W, j†V (Ω•

XK
(logZK))⊗j†VOXK

L)
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is an isomorphism. On the other hand, applying the functor RΓ(X ,−) to the
isomorphism (A.1.2) and using A.2 (i), we get an isomorphism

RΓ(XK , j†V (Ω•
XK

(logZK))⊗j†VOXK
L) ∼−−→ RΓ(XK , j†U∩V (Ω•

XK
)⊗j†VOXK

L).

Since X is proper, the target space is equal to RΓrig(U ∩ V,L), and the corollary
follows.
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[11] P. Berthelot, Cohomologie rigide et théorie des D-modules, in Proc. Conference p-
adic analysis (Trento 1989), Lecture Notes in Math. 1454, p.78-124, Springer-Verlag
(1990).

[12] P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, première
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R. Acad. Sci. Paris 325, p. 493-498 (1997).

[16] P. Berthelot, D-modules arithmétiques II. Descente par Frobenius, Mémoires Soc.
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Univ. Rennes 1 (2000).
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