A PAIR CORRELATION HYPOTHESIS AND THE
EXCEPTIONAL SET IN GOLDBACH’S PROBLEM

A. LANGUASCO anp A. PERELLI

§1. Introduction. In 1973, Montgomery [12] introduced, in order to study
the vertical distribution of the zeros of the Riemann zeta function, the pair
correlation function

FX,T)= Y  X'7"""w(y—7),
O0<yny:«T
where w(u)=4/(4+u*) and ¥;, J=1, 2, run over the imaginary part of the non-
trivial zeros of {(s). It is easy to see that, for T— oo,

F(X, T)<Tlog" T

uniformly in X, and Montgomery [12], see also Goldston-Montgomery [7],
proved that under the Riemann Hypothesis (RH)

1
FX,T)~—TlogT H
2

uniformly for X < T<X“, for any fixed 4> 1. He also conjectured, under RH,
that (1) holds uniformly for X *< T< X, for every fixed £>0. We denote by
MC the above conjecture.

It is well known that MC is strongly connected with the distribution of
primes and related problems, see, e.g., Gallagher-Mueller [3], Heath-Brown
[9], Goldston Montgomery [7] and Goldston [4]. In particular, Goldston-
Montgomery [7] showed that MC is equivalent to a certain asymptotic formula
for the mean-square of primes in short intervals, and Goldston [4] deduced
from MC the existence of Goldbach numbers in short intervals.

Qur aim here is to study the size of the exceptional set in Goldbach’s
problem under the assumption of the Generalized Riemann Hypothesis (GRH)
and a pair correlation type hypothesis for Dirichlet L-functions. For (a, ¢) =
I write

FX, T:q.a)= ) xi@)gAa)t(x1)t(x2)

1,2 (mod ¢)

X Z X"(V!‘Yz)w(yl_yz)’

Ivibly2 =T

where 7(y) denotes the Gauss sum and y,, j=1, 2, run over the imaginary
part of the non-trivial zeros of L(s, ;). The trivial bound for F(X, T; g, a),
as T— o0, is clearly

F(X, T;q.a)<qp(q)’T log® ¢T
uniformly in X, ¢ and a. By adapting Montgomery’s method in [12] we obtain
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THEOREM 1. Assume GRH and let A>1 by any fixed constant. Then
1
F(X, T;q,a)~= o(q)°T log X (2)
s
uniformly for X log X <T<X" and g<Xlog™* X.

We omit the proof of Theorem 1 since it follows mutatis mutandis from the
argument in [12]. We remark that in the same way we can also obtain the
estimate

F(X,T;q,a)<.q°T logX (3)

uniformly for X<T<X"* and g<Xlog’ X.
In view of Theorem 1 and (3) we consider the following hypothesis. Assume
GRH and let 6€(0, 3] be fixed and V=X"'"?/4: then for every £>0

F(X,T;q,a)<.4°TX" 4

uniformly for V< T<X, ¢<X? and (a,¢q)=1. We denote by GMC(8) the
above hypothesis. Comparing MC, (2), (3) and (4) we see that GMC(8) may
be regarded as a weak form of a pair correlation hypothesis for a suitable
average of zeros of L-functions. However, we remark that GMC(#) is a rather
strong hypothesis on the cancellation with respect to g in F(X, T q, a).

The connection between GMC(8) and the exceptional set in Goldbach’s
problem is provided by the following two results. Let (a,¢)=1, @0>1, H<X,

E(X, H)=|{2ne[X, X + H]: 2n is not a sum of two primes}|,
EX)=EWX,X), S(a)= 3  Ae(na), T@)= Y e(na),

X<n<2X X<n<2X
a (q)
R(n;q,a)=S(—+n>—ﬁiT(n)
q o(q)
and
1/4Q
I(X,0;q,a)= j |R(n: ¢, a)%dn.
—1/4Q

By an adaptation of the method of Kaczorowski-Perelli-Pintz [10] we get

THeEOREM 2. Assume GRH. Let >0 and X <0< VX' Assume also
that

I+¢

I(X,0;q,a)<,
0Q:q.a 0

(5)
uniformly for < Q and (a, q)=1. Then E(X,4Q°) <. X *.
We take this opportunity to correct a mistake occurring in {10], which has

been kindly pointed out by Professor R. C. Vaughan. This is done in Section 5.
Here we point out that, after correction of that mistake, the method in [10]
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yields the bound I(X,Q:q,a)<Q 'Xlog'X uniformly for ¢< Q<X and
{a, ¢)=1 under the assumption of GRH, which is weaker than (5) for large ¢.

The next step is to link 7(X, Q; q, @) with GMC(8). Such a link is provided
by the following

TueorREM 3. Let 0€(0, ~] be fixed, Q= 1X? and assume GMC(8). Then
(5) holds uniformly for g<Q and (a, g)=1.

From Theorems 2 and 3 we obtain

COROLLARY 1. Let He(0, 3] be fixed. Then GMC(0) implies that
EWX, X*Y<. X and E(X) <. X'7"¢.

The second assertion of Corollary 1 follows immediately from the first, by
subdividing the interval [X,2X] into <X'?° intervals of the form
[Y;, Y,+ Y% with suitable X < ¥,<2X.

It is well known that GRH implies that E(X) <, X '/*"*, see Hardy-Little-
wood [8], and hence GMC(6) appears to have a significant relevance to E(X)
only if He(i, 1] In fact, the method in [8)] can be used to obtain a more
direct link between GMC(8) and E(X), instead of arguing via E(X, H) as in
Corollary 1. In this way we can get the same bound for £(X) as in Corollary
1, but we lose information on E(X, H).

As it will be clear from (6) below, in order to use the method of Hardy-
Littlewood [8] we need, essentially, an individual estimate for S(a) over suit-
able minor arcs. To this end, we introduce the following slight extension of
GMC(#). Assume GRH, let 9e(0, 1] be fixed, £=E&(X, q)€(0, 3] and W=
3X&: then for every >0

F(X,T;q,a)<,¢TX®

uniformly for W< T<X, ¢<X’and (a, g)=1. We denote by GMC(0; &) this
hypothesis. We observe that GMC(8; &) coincides with GMC(6) if £=1/gQ
and Q= 1X" We have

THEOREM 4. Let 0e(0, 1] be fixed, & be as above and assume GMC(8, £).
Then for cvery £>90

S<“+ n) MDD ) 0,002 41+ (XE)' 7))
q o(q)
uniformly for q<X°, (a,q)=1 and \n) <é.

Theorem 4 may be compared with the result obtained by Baker-Harman
[1], Lemma 12, assuming only GRH, i.e.,

S<~“+ n><< )l min (X, [n]~ )+(qX)‘/2<1+<"7'X) ))long
q glog X log X

for |n| <X ~'/*. Essentially, our result saves a factor ¢'/> with respect to the
Baker-Harman result, and this reflects the analogous saving assumed in
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GMC(8; £). However, we need to use a more sophisticated technique than
that in [1] in order to exploit GMC(8; ). We also remark that, assuming
only GRH, the method of Baker-Harman [1], as optimized in Lemma 5 of
Goldston [5], apparently yields a slightly better result than that obtainable,
under the same assumption, by the method used in the proof of Theorem 4.

Since Theorem 4 can be proved along the lines of Theorem 3, we will give
only a brief sketch of its proof. From Theorem 4 and the above observation
we immediately get

COROLLARY 2. Let 0€(0, 3] be fixed, Q= X ? and assume GMC(8). Then

for every >0
a, \_ulg) < X' >
S{=+n|=—"TM+0,| ——>
(q n> o(q) ) qQ)"
uniformly for g<Q, (a,q)=1 and |n| <1/qQ.

Consider now the Farey dissection of the unit interval of order 0= 1.X ® and
denote by M(q, a) the Farey arc at a/q. Choose P=Q log™'° X and consider the
major and minor arcs relative to P and Q, i.e.,

moy= U Mqg,a) and m@= U U Mg a.

g<P (ag)=1 P<g<Q (ag)=1

The key point in [8] is to obtain a suitabie bound for j IS (a)*da. From

Corollary 2 we obtain

m(#)

1

f |S(a)|*da < sup 1S<a)|2f|5<a)azda<gx32”“‘ (6)
aen(@)
(o) 0
and hence the method of Hardy-Littlewood [8] can be shown to yield again
E(X)<.X'7?°"¢ under GMC(9).
We observe that, in the extreme case 0= é from Corollaries 1 and 2 we
get the “best possible” results

EX)<. X"
and

sup_ |S(a)] < X'7"",
aem(z)

of course under GMC(3), to be compared with Goldston [5] and [6].

We finally point out that the X © in all previous results can be replaced by
a suitable power of log X, by assuming a form of GMC(8) and GMC(9; &)
with a power of log X instead of X*. Moreover, in the proofs below we will
denote by & an arbitrarily small positive constant, whose value will not neces-
sarily be the same at each occurrence.

§2. Proof of Theorem 2. Given Qe[X® 1X'?, let H=4Q P=
Qlog '’ X, M(q, a) be the Farey arc centred at a/q, (a, g)=1, of the Farey
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dissection of order Q,

‘JJE=U U Mg, a) and m= U U M(q, a).

G<P lag)r=1 P<y<Q(ag)=1
Moreover, let

R(2n)= Y A(MAK), I1(2n)= Z 1
h+k=2n h+k=2n
hkelsX.2X] hkelaX,2X)

and

3 1 p—l)
cemy=2I1{1-— !
( ’1) Fl:lz< (p—1)2>p;1:}12(p—2

Observe that X < I(2n) <X uniformly for 2ne{X, X+ H].

We follow the argument in [10], referring to the relevant points instead of
repeating the arguments. Assuming GRH, after correcting the mistake in
Lemma 1 of [10], see Section 5, and its consequences on the estimates which
follow, from (12), (13) and (17) of [10] we get

Y R —12n)S(2n) + F(2n, X, H)|?

2

< ¥ fS(afe(—zna)da +XT, (7)
X<€2ns X+H

where F(2n, X, H) is a certain function satisfying
FQ2n X, H)<Xlog X (8)
uniformly for 2ne[X, X+ H].
From (18) of [10], see also the corrigendum, we have that

2 V/qQ

. fS(a)ze(—Zna)da <HX log X max J ’S(g—# 77)
X<WmsX+H P<¢<Q q
nt (a,q)=1 —l/qQ

2

dn

and since
1/qQ 5 192
a (9)
“s(w)\dw““ JtT(n)ﬁdnH(X,Q;q,a)
g o(gq

|
-1 /qQ —l/qQ

we obtain

2

Y fS(a)ze(—zna)da
X<22ng<X+H|J

<HXlog X max I(X,Q;qa)+X*"*. (9)
P<y<Q
{a.g)=1
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Hence from (5), (7) and (9) we get
Y |[R(2n)—I(2n)S(2n)+ F(2n, X, H)|* < X*"*, (10)

X<2n<X+H

and the estimate E(X, H)<X° follows from (8) and (10) by a standard
argument.

§3. Proof of Theorem 3. We first observe, as in [9], that writing

X, T, 0)=%X, T,v;9,a)= Y x@t(x) ¥ X7

X (mod g¢) IylsT

we have
F(X,T;q,a)= J IZ(X, T, v)|’e *"dv. (1)

We will repeatedly use the following two lemmas. In the following, we
will denote by a=a(X, Q, q) and B= (X, Q, q) suitable real numbers, not
necessarily the same at each occurrence, satisfying ¢ < a < < C for some abso-
lute constants ¢, C>0.

Lemma 1. We have

BX

2
f Y ox@u(x) Y Y| dv<XF(X, T;q,a).
. x (mod g) lrl<sT

Proof. Arguing as in [9], we make the substitution y= Xe" and get
BX +oc

2
J Yo z@uq) 3 Y7 dveX Jl}:(x, T, v)|%e v,

x (mod ¢} lyl<T
aX -

and Lemma 1 follows from (11).

LEMMA 2. Let T>UZ20. Then

Y ox@t(p) Y X7<T'"? max F(X,u;q, a)’

x (mod ¢) U<|y|<T UsugT

Proof. Arguing again as in {9] we write

G(v)=|Z(X, T, v) —Z(X, U, v)|*.
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From the Sobolev-Gallagher inequality, see Lemma 1.1 of Montgomery [13],
and (11) we have

2

Y @t Y X"

x (mod q) U<iyi<T

1

1
=G(0) < J |G(v)|dv+ J |G'(v)|dv

-1 -1

1
<F(X,T;q,a)+F(X, U;q,a)+f|G/(v)!dU- (12)
-1

By the Cauchy-Schwarz inequality we get

1 1 1/2

jIG’(v)Idv< J Y ox@rm) Y X7

dv
x (mod g¢) U<|y|<T
-1 -1

1 1/2

2
x f Yo ox@r(x) Y yX7e|dv

x (mod ¢) U<|y|<T
—1

Hence by partial summation we obtain that

JIG’(v)ldv<<T max F(X,u;q, a) (13)
U<u<sT
-1

and Lemma 2 follows from (12) and (13).
Let now (0, 3] be fixed, 0= 3X% and assume GMC(6). We have

1
R(n;q,a)=— Y  x(@t()W(X, x, n)+O(log’ gX)
(p(q)x(modq)

where

1 if y =y,
WX, x.m= Y  Amxmelnn)—35,T(n), 61={ AT
I sns2x 0 if y #xo.

Hence applying Gallagher’s lemma, see Lemma 1.9 of Montgomery [13], using
the explicit formula for L-functions, see Davenport [2], and writing K=XQ~"/%,
we get

€ I+¢

X
I(X,Q;q,a)<w(ln+12+13)+ 20 (14)
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where
ix ,
. +h)Y = (5 X))
1= J Y x@t(p) ¥ O T XY dv,
‘ x (mod ¢) lyl<K P
X—h
px R
_ (y+h)y =y
12=f S oz Y 2
x (mod ¢) lyl<K
aX
2% N
B X)) —-y*|
I= f > ¥ T g
x (mod ) fyl<k p
2X—h
and h=1¢0Q.

We first treat I,. We split I, into
L<l; +1;,
according to |y| <2V and 2V <|y| <K, and observe that 2V <K< X. Clearly

px R
_ v
12<XJ o x@(zy L —|ay
a % (mod ¢) 2r<iyi<k P

We remove the factor 1/p by partial summation and the Cauchy-Schwarz
inequality, thus getting from Lemma 1 that

BX R
I;<Xx'™* KZJ Y ox@tx) Y y7ldy
x (mod ¢) W<yl <K
aX
K BX 5
+f“_3 J S ox(@tnx) Yy dyldu
’ " x (mod ¢) 2V<ly|<u

<X2te K_z(F(X, K;q,a)+F(X,2V;q,a))

«
+fu3(p()(,u;q, a)+ F(X,2V; q,a))du) | (15)
2V

From (15) and GMC(6) we easily see that the total contribution of 73 to (14)
is <X'"¢/q0.
In order to treat I, we write

BX | y+h 2

12=J J Y ox(@t(z) Y u” lduldy

x (mod gq) [yl <2V
aX b



THE EXCEPTIONAL SET IN GOLDBACH'S PROBLEM 357

and hence by the Cauchy-Schwarz inequality and Lemma 1 we get

BX
2 2
.k : ,
Iy < J Y ooxa(x) Y V| dy<hF(X.2V;q,a).  (16)
X x (mod ¢) lyi<2V
aX
From (16) and GMC(8) we see that the total contribution of I, to (14) is

<4Yl+£/qgl
Now we turn to the tails I, and I;. Since their treatment is completely
similar, we will treat explicitly only ;. Again we split /3 into

according to |y| €2V and 2V <|y| < K. Moreover, the treatment of /5 is com-
pletely similar to the one of 75, so its total contribution to (14) is, under
GMC(0), <X'"/q0.
In order to deal with 7+, we further split it into
I3 <L +J,

with
pX

J1<Xj

aX

Y z@uz) Y

x (mod ¢) 2V<|y| <K P

dy (17)

and
2X

-]

2X—h

2

x)” dy

Y x@r(x) X

x (mod ¢) w<iyick P

2

@2x)” . (18)

<hX) Y x@tu(x) X

x (mod ¢) ww<|yl<k P

From (17) we see that J, can be estimated as I, and therefore its total contribu-
tion to (14) is, under GMC(8), <X'**/40Q.

Applying partial summation to (18), from Lemma 2, applied with 2X in
place of X, we get that

2

i )
Jo<hX ‘ Y x@t(p)y Y @2x)”
x (mod ¢) 2V<|yl<K
K 2
+ fuz Yo ox(a)yr(g) Y (2X)7"\du
x (mod ¢) 2<lyl<u

2V

hX
<? max F(2X,u;q,a)

2V<us K

2V<uv<u

K
+hX J‘u’m max F(2X,v;q,a)?du . (19
2w
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Observing that 2V>(2X)'?/q, from (19) and GMC(8) we see that the total
contribution of J; to (14) is <X '"/gQ and Theorem 3 is proved.

§4. Proof of Theorem 4. Using the Sobolev-Gallagher inequality, see
Lemma 1.1 of [13], and the Cauchy-Schwarz inequality, for |7] <& we have
that

£
I
|R(7; g, a)l2<g JIR(n;q,a)lzdn
-&
1,2

172

g &
+ jiR(n;q,a)lzdn flR’(n;q,a)lzdn . 0)

G

By partial summation we get

£
f IR (n; 4, a)l’dn

—<

2
dn. 1)

na u(q))
A Mol Y 0l £4
:xg<y< (n)e<q) o(q) et

<X? max J

XS Y<2x
-

The last integral in (21) can be treated exactly as ﬁ c |R(n; g, a)|*dn, and hence
we may assume without loss of generality that the maximum in (21) is attained
at Y=2X. We may therefore assume that

g 13
f |R(n; g, a)|’dn <X* J |R(n: q, a)l*dn. (22)
—& -¢
The treatment of ji : |R(17; g, @)|*dn is completely similar to the treatment

of I(X, Q; ¢q, a) in the proof of Theorem 3. In fact, writing in this case K=
X(g&)"? and h=1/2¢&, we get the following analogue of (14)

2ye

4
2 5X I+e
|R(n; ¢, a)|"dn < 7 (h+thL+L)+8X ™% (23)

-

where the integrals [;, j=1, 2, 3, are defined after (14).

The treatment of the //’s is formally the same as in the proof of Theorem
3, apart from the following slight difference. Write the parameter W in the
definition of GMC(6; &) as W= W (X, g). Then, in this case, we split J; into
I; and I} according to |¥| < W(X;, ¢) and W(X,, q)<|y| <K, where X, = iX,
X,=X and X;=2X; the further splitting of /{ and /7 is done in the same way
as in the proof of Theorem 3. Moreover, in the case when K> X, we may use
(3) in addition to GMC(0; &).
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Following the argument leading to (15)-(19), we obtain that

1+& 2

q .
i< '*g . J=1,2,3,

uniformly for ¢ <X’ and (a, ¢) =1. and hence from (23) we get

S

JIR(n;q, a)l’dn<Ex '™, (24)

I3
©

again uniformly for ¢ <X’ and (a, ¢)=1.
Theorem 4 follows now from (20), (22) and (24).

§5. Correction of [10]. In this section we use the notation of [10].
Professor R. C. Vaughan has pointed out that the proof of Lemma 1 in [10]
is not correct. In fact, the condition ne[x, x+2gQ] n[1,2N] in (7) of [10],
which arises after applying Gallagher’s lemma, was overlooked in what
followed. This condition, which should in fact read nelx, x+ %qQ] ~[1,2N],
gives rise to two extra integrals which are the analogues of the integrals /; and
I; in Section 3 above, and the smoothing technique of Saffari-Vaughan [15]
does not apply to such integrals. After correcting this, the bound in Lemma
1 in [10] has the factor L’ replaced by L* in the general case of ¥ (mod ¢) with
g< Q<N, although the bound with the factor L can be shown to hold in a
certain restricted range for ¢ and Q.

As a consequence, the argument in [10] does not prove the results stated
in the Theorem and Corollary there, which have to be modified by suitably
increasing the exponent of the relevant logarithmic factors, at least when H is
large. We remark that the most interesting case in [10] is when H is small,
and in this range the argument in [10] suffices to prove the stated results.

However, the results in [10] can be retrieved by the following technical
device. Instead of starting with the exponential sum S(a) and the counting
function R(2#n), we start with

Sta)= i Aln)e "Ne(na) and R(2n)=e*"R(2n)
iy

n

and use the approximation

S(a+fl>:#<q‘) L
g olq) =

where (a, g)=1, z=N""'—2rin and

N ]
Rn;q )= > x(@)t(x)

(P(Q) x (mod ¢)

X < i An)x(n)e "Ne(nn) _&>+ Otlog 4N
n i

<
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Following the argument in [10], applied to S(a) instead of S(a), we get
the main term 2ne >/V&S(2n) instead of 2n&S(2n). Moreover, the treatment of
the critical error terms coming from the major arcs, as well as the treatment
of the minor arcs, will depend on the analogue of the crucial Lemma 1 there,
with

Y Amx(nye™ Ne(nn) = (8,/2)

n=1
instead of w'(2N, x, n1). The other error terms are easily estimated in the same
way as in {10].

When g =1, the required analogue of Lemma 1 is contained in Languasco-
Perelli [11], see (23) there. It is not difficult to see that the argument in [11]
carries over to the general case of y (mod g), thus providing the required
analogue of Lemma 1 in [10], i.e., under GRH we have

1/4Q 2
= 5 NL?
J > A(n)x(n)e’"/Ne(nn)—?" dn<fQ~ (25)
=1/4Q "l 1

uniformly for ¥ (mod ¢g) with ¢ < Q< N. Using (25) in the same way as Lemma
1 1s used in {10], we ~obtain the analogue of the Theorem in [10] for the modified
counting function R(2n), i.e., under GRH we have

Y |R@2n)—2neNS(2n)+ F(n, N, H)|><H'*N’L*  (26)

N<2n<N+H
where F“(n, N, H) is a certain function satisfying
Fn, N, HY<NH "8(LM)">.

The Corollary in [10] follows at once from (26) by a standard technique.

We finally remark that, in point of principle, the mistake in Lemma 1 of
[10] occurs also in (21) and (24) of Perelli-Pintz [14], and the above technical
device can be successfully applied in this case too. However, since [14] deals
only with a saving of arbitrary powers of L, simple estimates based on the
orthogonality of characters suffice in this case in order to bound the extra
integrals coming from the application of Gallagher’s lemma, thus providing a
correct proof of the results in [14].
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