Ultra-hot Jupiters are defined as giant planets with equilibrium temperatures larger than 2000 K. Most of them are found orbiting bright A-F type stars, making them extremely suitable objects to study their atmospheres using high-resolution spectroscopy. Recent studies show a variety of atoms and molecules detected in the atmospheres of this type of planets. Here we present our analysis of the newly discovered ultra-hot Jupiter TOI-1431 b/MASCARA-5 b, using two transit observations with the HARPS-N spectrograph and one transit observation with the EXPRES spectrograph. Analysis of the Rossiter-McLaughlin effect shows that the planet is in a polar orbit, with a projected obliquity λ =-155-10+20 degrees. Combining the nights and applying both cross-correlation methods and transmission spectroscopy, we find no evidences of Ca I, Fe I, Fe II, Mg I, Na I, V I, TiO, VO or Hα in the atmosphere of the planet. Our most likely explanation for the lack of atmospheric features is the large surface gravity of the planet.

The obliquity and atmosphere of the ultra-hot Jupiter TOI-1431b (MASCARA-5b): A misaligned orbit and no signs of atomic or molecular absorptions

Nascimbeni V.;Sicilia D.;Malavolta L.;
2021

Abstract

Ultra-hot Jupiters are defined as giant planets with equilibrium temperatures larger than 2000 K. Most of them are found orbiting bright A-F type stars, making them extremely suitable objects to study their atmospheres using high-resolution spectroscopy. Recent studies show a variety of atoms and molecules detected in the atmospheres of this type of planets. Here we present our analysis of the newly discovered ultra-hot Jupiter TOI-1431 b/MASCARA-5 b, using two transit observations with the HARPS-N spectrograph and one transit observation with the EXPRES spectrograph. Analysis of the Rossiter-McLaughlin effect shows that the planet is in a polar orbit, with a projected obliquity λ =-155-10+20 degrees. Combining the nights and applying both cross-correlation methods and transmission spectroscopy, we find no evidences of Ca I, Fe I, Fe II, Mg I, Na I, V I, TiO, VO or Hα in the atmosphere of the planet. Our most likely explanation for the lack of atmospheric features is the large surface gravity of the planet.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3415737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 11
social impact